Superrigidity for group actions on the n-sphere and their skew products

Operator algebras, dynamics and groups – an ICM satellite conference

Copenhagen, 1 - 4 July 2022

Stefaan Vaes – KU Leuven
Isometric actions on the hyperbolic plane

Consider the group of isometries \(\text{PSL}(2, \mathbb{R}) \ltimes \mathbb{H}^2 = \{ z \in \mathbb{C} \mid \text{Im} z > 0 \} \) given by

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az + b}{cz + d}
\]

Theorem (Drimbe - V, 2021)

Let \(S \) be a set of prime numbers and \(G = \text{PSL}(2, \mathbb{Z}[S^{-1}]) \). Consider the orbit equivalence (OE) relation \(\mathcal{R} = \mathcal{R}(G \ltimes \mathbb{H}^2) = \{(z, g \cdot z) \mid z \in \mathbb{H}^2, g \in G\} \).

▶ (well known) If \(|S| = 0\), then \(\mathcal{R} \) admits a fundamental domain.

▶ If \(|S| = 1\), then \(\mathcal{R} \) is ergodic, nonamenable and treeable, so that \(\mathcal{R} \cong \mathcal{R}(\Lambda \ltimes \mathbb{Z}) \) for uncountably many essentially different \(\Lambda \ltimes \mathbb{Z} \).

▶ If \(|S| \geq 2\), we have OE superrigidity: if \(\mathcal{R} \cong \mathcal{R}(\Lambda \ltimes \mathbb{Z}) \), we essentially have \(\Lambda \cong G \) and \(\Lambda \ltimes \mathbb{Y} \) conjugate with \(G \ltimes \mathbb{H}^2 \).
Actions on the \((n - 1)\)-sphere

View \(S^{n-1} = (\mathbb{R}^n \setminus \{0\})/\mathbb{R}^*_+\). In this way, \(S^{n-1}\) is a homogeneous space: \(\text{SL}(n, \mathbb{R}) \curvearrowright S^{n-1}\).

Theorem (Popa-V, 2008)

For \(n \geq 5\), the action \(\text{SL}(n, \mathbb{Z}) \curvearrowright S^{n-1}\) is OE superrigid.

Whenever \(A \subset \mathbb{R}\) is a countable subring, consider \(\text{SL}(n, A) \subset \text{SL}(n, \mathbb{R})\).

Note that if \(A \neq \mathbb{Z}\), then \(A \subset \mathbb{R}\) is dense.

Theorem (Drimbe-V 2021 and V-Verjans 2022)

Let \(A \subset \mathbb{R}\) be any countable subring containing an algebraic number that is not an integer. Let \(n \geq 3\). Then, \(\text{SL}(n, A) \curvearrowright S^{n-1}\) is OE superrigid.

Actions of type \(\text{III}_1\). Nuances of OE superrigidity still to be clarified.
Skew product actions

Notation: $E(n, A) \subset SL(n, A)$ is the subgroup generated by the elementary matrices.

In many cases, $E(n, A) = SL(n, A)$, e.g. when $A = \mathbb{Z}[S^{-1}]$ or $A = O_K$.

Theorem (V-Verjans, 2022)

Let $A \subset \mathbb{R}$ be any countable subring containing an algebraic number that does not belong to \mathbb{Z}. Let $n \geq 3$ be an odd integer.

Whenever $\mathbb{R} \curvearrowright (Y, \eta)$ is a properly ergodic flow, consider $E(n, A) \curvearrowright (\mathbb{R}^n \times Y)/\mathbb{R}$, where the quotient is by $t \cdot (x, y) = (e^{t/n}x, t \cdot y)$.

This action is OE superrigid and of type III_0.

Again: nuances of OE superrigidity still to be clarified.

The associated flow is not $\mathbb{R} \curvearrowright (Y, \eta)$, but its adjoint flow, to be defined.
Orbit equivalence and stable orbit equivalence

Consider free, ergodic, nonsingular actions $G \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Z, \zeta)$.

- **Orbit equivalence:** there exists a nonsingular isomorphism $\Delta : (X, \mu) \to (Z, \zeta)$ such that $\Delta(G \cdot x) = \Lambda \cdot \Delta(x)$ for a.e. $x \in X$.

- **Stable orbit equivalence:** there exist nonnegligible $U \subset X$, $V \subset Z$ and a nonsingular isomorphism $\Delta : U \to V$ such that $\Delta(U \cap G \cdot x) = V \cap \Lambda \cdot \Delta(x)$ for a.e. $x \in U$.

The nuance is important in the probability measure preserving (pmp) setting, with $\zeta(V)/\mu(U)$ being the coupling constant.

For actions of type III, both notions are the same.

(Stable) orbit equivalence implies (stable) isomorphism of $L^\infty(X) \rtimes G$ and $L^\infty(Z) \rtimes \Lambda$.
Krieger type and associated flow

Consider a free, ergodic, nonsingular action $G \rhd (X, \mu)$, with μ nonatomic.

- **Type II$_1$**: there exists a G-invariant probability measure $\nu \sim \mu$.
- **Type II$_\infty$**: there exists a G-invariant infinite measure $\nu \sim \mu$.
- **Type III**: the others.

Denote $\omega(g, x) = \log \frac{d(g^{-1} \cdot \mu)}{d\mu}(x)$. Then $\omega : G \times X \to \mathbb{R}$ is a 1-cocycle.

Maharam extension: $G \rhd X \times \mathbb{R} : g \cdot (x, s) = (g \cdot x, \omega(g, x) + s)$, which commutes with $\mathbb{R} \rhd X \times \mathbb{R} : t \cdot (x, s) = (x, t + s)$.

Ergodic decomposition $\pi : X \times \mathbb{R} \to Y$ of the Maharam extension, with $\mathbb{R} \rhd Y$.

Krieger’s associated flow; also Connes-Takesaki flow of weights of $L^\infty(X) \rtimes G$.
Krieger type and associated flow

Consider a free, ergodic, nonsingular action $G \curvearrowright (X, \mu)$, with μ nonatomic.

Let $\mathbb{R} \curvearrowright (Y, \eta)$ be the associated flow, which is ergodic.

- Type II_1 or type II_∞ iff the associated flow is $\mathbb{R} \curvearrowright \mathbb{R}$ by translation.
- Type III_1 iff Y is one point.
- Type III_λ with $0 < \lambda < 1$ iff the associated flow is periodic: $\mathbb{R} \curvearrowright \mathbb{R}/\mathbb{Z} \log \lambda$.
- Type III_0 iff the associated flow is properly ergodic.

The types and the associated flow are stable orbit equivalence invariants, and are invariants of the crossed product factors.

Connes, Connes-Feldman-Weiss, Takesaki, Haagerup, Krieger: complete invariants if G is amenable.
Versions of OE superrigidity

Definition: OE superrigidity (v0) of a free ergodic nonsingular $G \rtimes (X, \mu)$

Any free, ergodic, nonsingular action $\Lambda \rtimes (Z, \zeta)$ that is orbit equivalent with $G \rtimes (X, \mu)$, must be conjugate to $G \rtimes (X, \mu)$.

Conjugacy: isomorphisms $\delta : G \to \Lambda$ and $\Delta : X \to Z$ with $\Delta(g \cdot x) = \delta(g) \cdot \Delta(x)$.

OE superrigidity (v0) can only hold in the pmp setting, because $G \rtimes X$ is OE with $G \times \Lambda_1 \rtimes X \times \Lambda_1$ in the infinite case.

Theorem (Popa, 2005)

Let G be an infinite group without nontrivial finite normal subgroups. Assume that G has property (T), or that $G = G_1 \times G_2$ is the product of an infinite and a nonamenable group.

Then the Bernoulli action $G \rtimes [0, 1]^G$ is OE superrigid (v0).
Versions of OE superrigidity

We say that $\Lambda \curvearrowright (Z, \zeta)$ is induced from $\Lambda_0 \curvearrowright Z_0$ if Z_0 is Λ_0-invariant and if $(g \cdot Z_0)_{g \in \Lambda/\Lambda_0}$ is a partition of Z, up to measure zero.

By construction, $\Lambda \curvearrowright Z$ is stably orbit equivalent with $\Lambda_0 \curvearrowright Z_0$.

Definition: OE superrigidity (v1) of a free ergodic nonsingular $G \curvearrowright (X, \mu)$

Any free, ergodic, nonsingular action $\Lambda \curvearrowright (Z, \zeta)$ that is stably orbit equivalent with $G \curvearrowright (X, \mu)$, must be conjugate to an induction of $G \curvearrowright (X, \mu)$.

The following type III_1 actions are OE superrigid (v1)

- $\text{SL}(n, \mathbb{Z}) \curvearrowright S^{n-1}$ for $n \geq 5$ odd (Popa-V, 2008).
- $\text{SL}(n, \mathcal{A}) \curvearrowright S^{n-1}$ for $n \geq 3$ odd and $\mathcal{A} \subset \mathbb{R}$ a countable subring containing an algebraic number that does not belong to \mathbb{Z} (Drimbe-V 2021, V-Verjans 2022).
Versions of OE superrigidity

(V-Verjans, 2022) An action of type III₀ will basically never be OE superrigid (v1).

We need another “trivial” stable orbit equivalence:

if $\Lambda \curvearrowright (\mathbb{Z}, \zeta)$ and $\Sigma \triangleleft \Lambda$ is a normal subgroup whose action on \mathbb{Z} admits a fundamental domain, then $\Lambda \curvearrowright \mathbb{Z}$ is stably orbit equivalent with $\Lambda/\Sigma \curvearrowright \mathbb{Z}/\Sigma$.

Definition: OE superrigidity (v2) of a free ergodic nonsingular $G \curvearrowright (X, \mu)$

Any free, ergodic, nonsingular action $\Lambda \curvearrowright (\mathbb{Z}, \zeta)$ that is stably orbit equivalent with $G \curvearrowright (X, \mu)$, must be induced from $\Lambda_0 \curvearrowright \mathbb{Z}_0$ that admits a quotient $\Lambda_0/\Sigma \curvearrowright \mathbb{Z}_0/\Sigma$ that is conjugate to $G \curvearrowright X$, for some $\Sigma \triangleleft \Lambda_0$ acting with fundamental domain.

Theorem (V-Verjans, 2022)

Given an ergodic flow $\mathbb{R} \curvearrowright (Y, \eta)$, for $n \geq 3$ odd and $\mathcal{A} \subset \mathbb{R}$ as before, the action $E(n, \mathcal{A}) \curvearrowright (\mathbb{R}^n \times Y)/\mathbb{R}$ is OE superrigid (v2).
Terminology: simple actions

We call a free nonsingular action $G \actson (X, \mu)$ simple if the action is ergodic, not induced and if no nontrivial normal subgroup $\Sigma \triangleleft G$ acts with fundamental domain.

These actions have “no trivially stably orbit equivalent actions”.

Let $G \actson (X, \mu)$ be a free nonsingular simple action.

- Every version of OE superrigidity implies the following: if another free nonsingular simple action $\Lambda \actson (Z, \zeta)$ is stably orbit equivalent with $G \actson (X, \mu)$, then these actions are conjugate.

- V-Verjans, 2022: a free nonsingular simple action of type III$_0$ is never OE superrigid (v1).
OE superrigidity (v1) for actions of type III_λ when $0 < \lambda < 1$

Theorem (V-Verjans, 2022)

Let p be a prime number and $0 < \lambda < 1$.

Define $\mathcal{A} = \mathbb{Z}[p^{-1}, \lambda]$ and $G = \{ A \in \text{GL}(n, \mathcal{A}) \mid \det A \in \lambda \mathbb{Z} \}$.

For every $n \geq 3$, the affine action $G \ltimes \mathcal{A}^n \ltimes \mathbb{R}^n : (A, a) \cdot x = A(a + x)$ is simple, of type III_λ and OE superrigid (v1).
How to prove OE superrigidity

If $\Delta : X \to Z$ is an orbit equivalence between $G \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Z, \zeta)$, we have the Zimmer 1-cocycle $\omega : G \times X \to \Lambda$ defined by $\Delta(g \cdot x) = \omega(g, x) \cdot \Delta(x)$.

- Similar for stable orbit equivalence.

- Two 1-cocycles ω and ω' are **cohomologous** if there exists $\varphi : X \to \Lambda$ such that $\omega'(g, x) = \varphi(g \cdot x)^{-1} \omega(g, x) \varphi(x)$.

- One says that $G \curvearrowright (X, \mu)$ is **cocycle superrigid with countable targets** if every 1-cocycle with values in a countable group Λ is cohomologous to a group homomorphism $\delta : G \to \Lambda$, viewed as the 1-cocycle $(g, x) \mapsto \delta(g)$.

Proposition (V-Verjans, 2022): a free nonsingular **simple** action $G \curvearrowright (X, \mu)$ is OE superrigid (v1) if and only if $G \curvearrowright (X, \mu)$ is cocycle superrigid with countable targets.
How to prove cocycle superrigidity

Popa’s deformation/rigidity theory.

Illustration for the Bernoulli action $G \curvearrowright X = [0, 1]^G$ and a 1-cocycle $\omega : G \times X \to \Lambda$.

- **Deformation, Popa’s malleability:** one-parameter group $\alpha_t \in \text{Aut}(X \times X)$, commuting with the diagonal G-action $g \cdot (x, y) = (g \cdot x, g \cdot y)$, and $\alpha_0 = \text{id}$ and $\alpha_1 = \text{flip}$.

- Define $\omega_t : G \times (X \times X) \to \Lambda$, by $\omega_0(g, (x, y)) = \omega(g, x)$ and $\omega_t(g, (x, y)) = \omega_0(g, \alpha_t(x, y))$.

- **Rigidity:** property (T) for G or spectral gap. Then, $\omega_t \sim \omega_s$ when $|t - s|$ is small.

- Then $\omega_0 \sim \omega_1$ and we find that ω is cohomologous to a group homomorphism.
Cocycle superrigidity for dense subgroups

Definition (special case of Drimbe-V, 2021)

A dense subgroup Γ of a connected Lie group G is **essentially cocycle superrigid** if, using the universal cover $\pi : \tilde{G} \to G$, the translation action of $\pi^{-1}(\Gamma)$ on \tilde{G} is cocycle superrigid with countable targets.

Proposition. If G is a connected Lie group and $P \subset G$ is a closed connected subgroup such that $\pi_1(P) \to \pi_1(G)$ is surjective, then essential cocycle superrigidity of $\Gamma \subset G$ implies plain cocycle superrigidity for $\Gamma \curvearrowright G/P$.

Example: the actions $\Gamma \curvearrowright \mathbb{R}^n$ and $\Gamma \curvearrowright S^{n-1}$ are cocycle superrigid whenever $\Gamma \subset \text{SL}(n, \mathbb{R})$ is essentially cocycle superrigid.
A cocycle superrigidity theorem for dense subgroups

Theorem (Drimbe-V, 2021)

Let G and H be lcsc groups with H compactly generated. Let $\Gamma \subset G \times H$ be a lattice.

Assume that either H has property (T), or that $H = H_1 \times H_2$ such that $H_1 \curvearrowright (G \times H)/\Gamma$ is ergodic and $H_2 \curvearrowright (G \times H)/\Gamma$ is strongly ergodic.

Then, the projection $\Gamma_0 \subset G$ of Γ is essentially cocycle superrigid.

- A 1-cocycle $\omega : \Gamma_0 \times G \to \Lambda$ can be viewed as a 1-cocycle for the left-right action $\left(\{e\} \times H\right) \times \Gamma \curvearrowright G \times H$.

- It can thus be viewed as a 1-cocycle ω' for the action $\{e\} \times H \curvearrowright (G \times H)/\Gamma$.

- For every $g \in G$, we have a 1-cocycle $\omega'_g(h, (x, k)\Gamma) = \omega'(h, (gx, k)\Gamma)$.

- By rigidity, $\omega'_g \sim \omega'$ if g is close to e conclusion.
The following dense subgroups Γ are essentially cocycle superrigid.

- $\text{SL}(n, \mathbb{Z}[S^{-1}]) \subset \text{SL}(n, \mathbb{R})$ if $(n - 1)|S| \geq 2$. Here S is a set of prime numbers.
- $\text{SL}(n, \mathcal{O}_K) \subset \text{SL}(n, \mathbb{R})$ if $(n - 1)(a + b - 1) \geq 2$.

 Here $\mathbb{Q} \subset K \subset \mathbb{R}$ is a real algebraic number field, with ring of integers \mathcal{O}_K, with a real embeddings and $2b$ complex embeddings.

On the other hand, the translation actions of $\text{SL}(2, \mathbb{Z}[1/p])$ and $\text{SL}(2, \mathbb{Z}[\sqrt{N}])$ on $\text{SL}(2, \mathbb{R})$ are treeable and therefore do not satisfy any cocycle superrigidity.

V-Verjans, 2022: $\text{SL}(n, \mathcal{A}) \subset \text{SL}(n, \mathbb{R})$ is essentially cocycle superrigid whenever $n \geq 3$ and $\mathcal{A} \subset \mathbb{R}$ contains an algebraic number that does not belong to \mathbb{Z}.

Each time: $\Gamma \curvearrowright \mathbb{R}^n$ and $\Gamma \curvearrowright S^{n-1}$ are cocycle superrigid.
OE superrigidity of type III

Input: an ergodic action $G \curvearrowright (X, \mu)$ of type III$_1$ whose Maharam extension is **simple** and **cocycle superrigid** with countable targets, with G finitely generated and trivial center.

Radon-Nikodym cocycle: $\omega : G \times X \to \mathbb{R}$.

Example: $E(n, A) \curvearrowright S^{n-1}$ when $n \geq 3$ is odd and $A \subset \mathbb{R}$ as before.

Theorem (V-Verjans, 2022)

Let $\mathbb{R} \curvearrowright (Y, \eta)$ be a properly ergodic flow. Put $G \curvearrowright X \times Y : g \cdot (x, y) = (g \cdot x, \omega(g, x) \cdot y)$.

Then, $G \curvearrowright X \times Y$ is of type III$_0$ and OE superrigid (v2).

The associated flow is the **adjoint flow:** for any ergodic flow $\mathbb{R} \curvearrowright^\alpha Y$, there is a unique nonsingular action $\mathbb{R}^2 \curvearrowright (Z, \zeta)$ on an infinite measure space such that $\mathbb{R} \times \{0\}$ and $\{0\} \times \mathbb{R}$ scale the measure ζ and $\mathbb{R} \curvearrowright Y$ is given by $\mathbb{R} \curvearrowright Z/(\{0\} \times \mathbb{R})$.

Adjoint flow $\hat{\alpha} : \mathbb{R} \curvearrowright Z/(\mathbb{R} \times \{0\})$.