

Superrigidity for group actions on the *n*-sphere and their skew products

Operator algebras, dynamics and groups – an ICM satellite conference Copenhagen, 1 - 4 July 2022

Stefaan Vaes - KU Leuven

Isometric actions on the hyperbolic plane

Consider the group of isometries $\mathsf{PSL}(2,\mathbb{R}) \curvearrowright \mathbb{H}^2 = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$ given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

Theorem (Drimbe - V, 2021)

Let S be a set of prime numbers and $G = PSL(2, \mathbb{Z}[S^{-1}])$. Consider the orbit equivalence (OE) relation $\mathcal{R} = \mathcal{R}(G \curvearrowright \mathbb{H}^2) = \{(z, g \cdot z) \mid z \in \mathbb{H}^2, g \in G\}.$

- (well known) If $|\mathcal{S}| = 0$, then \mathcal{R} admits a fundamental domain.
- If |S| = 1, then R is ergodic, nonamenable and treeable, so that R ≅ R(Λ ∩ Z) for uncountably many essentially different Λ ∩ Z.
- If |S| ≥ 2, we have OE superrigidity: if R ≅ R(∧ ∧ Z), we essentially have ∧ ≅ G and ∧ ∧ Y conjugate with G ∧ H².

Actions on the (n-1)-sphere

View $S^{n-1} = (\mathbb{R}^n \setminus \{0\})/\mathbb{R}^*_+$. In this way, S^{n-1} is a homogeneous space: $\mathsf{SL}(n,\mathbb{R}) \curvearrowright S^{n-1}$.

Theorem (Popa-V, 2008)

For $n \geq 5$, the action $SL(n, \mathbb{Z}) \curvearrowright S^{n-1}$ is OE superrigid.

Whenever $\mathcal{A} \subset \mathbb{R}$ is a countable subring, consider $SL(n, \mathcal{A}) \subset SL(n, \mathbb{R})$. Note that if $\mathcal{A} \neq \mathbb{Z}$, then $\mathcal{A} \subset \mathbb{R}$ is dense.

Theorem (Drimbe-V 2021 and V-Verjans 2022)

Let $\mathcal{A} \subset \mathbb{R}$ be any countable subring containing an algebraic number that is not an integer. Let $n \geq 3$. Then, $SL(n, \mathcal{A}) \curvearrowright S^{n-1}$ is OE superrigid.

 \sim Actions of type III₁. Nuances of OE superrigidity still to be clarified.

Skew product actions

Notation: $E(n, A) \subset SL(n, A)$ is the subgroup generated by the elementary matrices. In many cases, E(n, A) = SL(n, A), e.g. when $A = \mathbb{Z}[S^{-1}]$ or $A = \mathcal{O}_K$.

Theorem (V-Verjans, 2022)

Let $\mathcal{A} \subset \mathbb{R}$ be any countable subring containing an algebraic number that does not belong to \mathbb{Z} . Let $n \geq 3$ be an odd integer.

Whenever $\mathbb{R} \curvearrowright (Y, \eta)$ is a properly ergodic flow, consider $E(n, \mathcal{A}) \curvearrowright (\mathbb{R}^n \times Y)/\mathbb{R}$, where the quotient is by $t \cdot (x, y) = (e^{t/n}x, t \cdot y)$.

This action is OE superrigid and of type III_0 .

→ Again: nuances of OE superrigidity still to be clarified.

 \checkmark The associated flow is **not** $\mathbb{R} \curvearrowright (Y, \eta)$, but its **adjoint flow**, to be defined.

Orbit equivalence and stable orbit equivalence

Consider free, ergodic, nonsingular actions $G \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Z, \zeta)$.

- Orbit equivalence: there exists a nonsingular isomorphism Δ : (X, μ) → (Z, ζ) such that Δ(G ⋅ x) = Λ ⋅ Δ(x) for a.e. x ∈ X.
- Stable orbit equivalence: there exist nonnegligible U ⊂ X, V ⊂ Z and a nonsingular isomorphism Δ : U → V such that Δ(U ∩ G ⋅ x) = V ∩ Λ ⋅ Δ(x) for a.e. x ∈ U.
- The nuance is important in the probability measure preserving (pmp) setting, with $\zeta(\mathcal{V})/\mu(\mathcal{U})$ being the coupling constant.
- ✓ For actions of type III, both notions are the same.

 \checkmark (Stable) orbit equivalence implies (stable) isomorphism of $L^{\infty}(X) \rtimes G$ and $L^{\infty}(Z) \rtimes \Lambda$.

Krieger type and associated flow

Consider a free, ergodic, nonsingular action $G \curvearrowright (X, \mu)$, with μ nonatomic.

- **Type II**₁ : there exists a *G*-invariant probability measure $\nu \sim \mu$.
- **Type II**_{∞} : there exists a *G*-invariant infinite measure $\nu \sim \mu$.
- **Type III :** the others.

Denote $\omega(g, x) = \log \frac{d(g^{-1} \cdot \mu)}{d\mu}(x)$. Then $\omega : G \times X \to \mathbb{R}$ is a 1-cocycle.

Maharam extension: $G \curvearrowright X \times \mathbb{R} : g \cdot (x, s) = (g \cdot x, \omega(g, x) + s)$, which commutes with $\mathbb{R} \curvearrowright X \times \mathbb{R} : t \cdot (x, s) = (x, t + s)$.

 \longrightarrow Ergodic decomposition $\pi: X \times \mathbb{R} \to Y$ of the Maharam extension, with $\mathbb{R} \curvearrowright Y$.

Krieger's associated flow; also Connes-Takesaki flow of weights of $L^{\infty}(X) \rtimes G$.

Krieger type and associated flow

Consider a free, ergodic, nonsingular action $G \curvearrowright (X, \mu)$, with μ nonatomic. Let $\mathbb{R} \curvearrowright (Y, \eta)$ be the associated flow, which is ergodic.

- ▶ Type II₁ or type II_∞ iff the associated flow is $\mathbb{R} \frown \mathbb{R}$ by translation.
- Type III_1 iff **Y** is one point.
- ▶ Type III_{λ} with 0 < λ < 1 iff the associated flow is periodic: $\mathbb{R} \curvearrowright \mathbb{R}/\mathbb{Z} \log \lambda$.
- ▶ Type III₀ iff the associated flow is properly ergodic.
- The types and the associated flow are stable orbit equivalence invariants, and are invariants of the crossed product factors.
- Connes, Connes-Feldman-Weiss, Takesaki, Haagerup, Krieger: complete invariants if G is amenable.

Versions of OE superrigidity

Definition: OE superrigidity (v0) of a free ergodic nonsingular $G \sim (X, \mu)$

Any free, ergodic, nonsingular action $\Lambda \curvearrowright (Z, \zeta)$ that is orbit equivalent with $G \curvearrowright (X, \mu)$, must be conjugate to $G \curvearrowright (X, \mu)$.

Conjugacy: isomorphisms $\delta : G \to \Lambda$ and $\Delta : X \to Z$ with $\Delta(g \cdot x) = \delta(g) \cdot \Delta(x)$.

 \sim OE superrigidity (v0) can only hold in the pmp setting, because $G \curvearrowright X$ is OE with $G \times \Lambda_1 \curvearrowright X \times \Lambda_1$ in the infinite case.

Theorem (Popa, 2005)

Let *G* be an infinite group without nontrivial finite normal subgroups. Assume that *G* has property (T), or that $G = G_1 \times G_2$ is the product of an infinite and a nonamenable group. Then the Bernoulli action $G \curvearrowright [0,1]^G$ is OE superrigid (v0).

Versions of OE superrigidity

We say that $\Lambda \curvearrowright (Z, \zeta)$ is **induced** from $\Lambda_0 \curvearrowright Z_0$ if Z_0 is Λ_0 -invariant and if $(g \cdot Z_0)_{g \in \Lambda/\Lambda_0}$ is a partition of Z, up to measure zero.

 \longrightarrow By construction, $\Lambda \cap Z$ is stably orbit equivalent with $\Lambda_0 \cap Z_0$.

Definition: OE superrigidity (v1) of a free ergodic nonsingular $G \sim (X, \mu)$

Any free, ergodic, nonsingular action $\Lambda \curvearrowright (Z, \zeta)$ that is stably orbit equivalent with $G \curvearrowright (X, \mu)$, must be conjugate to an induction of $G \curvearrowright (X, \mu)$.

The following type III₁ actions are OE superrigid (v1)

- ▶ $SL(n,\mathbb{Z}) \curvearrowright S^{n-1}$ for $n \ge 5$ odd (Popa-V, 2008).
- SL(n, A) ~ Sⁿ⁻¹ for n ≥ 3 odd and A ⊂ ℝ a countable subring containing an algebraic number that does not belong to Z (Drimbe-V 2021, V-Verjans 2022).

Versions of OE superrigidity

 \sim (V-Verjans, 2022) An action of type III₀ will basically **never** be OE superrigid (v1).

We need another "trivial" stable orbit equivalence:

if $\Lambda \curvearrowright (Z, \zeta)$ and $\Sigma \triangleleft \Lambda$ is a normal subgroup whose action on Z admits a fundamental domain, then $\Lambda \curvearrowright Z$ is stably orbit equivalent with $\Lambda / \Sigma \curvearrowright Z / \Sigma$.

Definition: OE superrigidity (v2) of a free ergodic nonsingular $G \sim (X, \mu)$

Any free, ergodic, nonsingular action $\Lambda \curvearrowright (Z, \zeta)$ that is stably orbit equivalent with $G \curvearrowright (X, \mu)$, must be induced from $\Lambda_0 \curvearrowright Z_0$ that admits a quotient $\Lambda_0 / \Sigma \curvearrowright Z_0 / \Sigma$ that is conjugate to $G \curvearrowright X$, for some $\Sigma \triangleleft \Lambda_0$ acting with fundamental domain.

Theorem (V-Verjans, 2022)

Given an ergodic flow $\mathbb{R} \curvearrowright (Y, \eta)$, for $n \ge 3$ odd and $\mathcal{A} \subset \mathbb{R}$ as before, the action $E(n, \mathcal{A}) \curvearrowright (\mathbb{R}^n \times Y)/\mathbb{R}$ is OE superrigid (v2).

Terminology: simple actions

We call a free nonsingular action $G \curvearrowright (X, \mu)$ simple if the action is ergodic, not induced and if no nontrivial normal subgroup $\Sigma \triangleleft G$ acts with fundamental domain.

These actions have "no trivially stably orbit equivalent actions".

Let $G \curvearrowright (X, \mu)$ be a free nonsingular simple action.

- Every version of OE superrigidity implies the following: if another free nonsingular simple action $\Lambda \curvearrowright (Z, \zeta)$ is stably orbit equivalent with $G \curvearrowright (X, \mu)$, then these actions are conjugate.
- ► V-Verjans, 2022:

a free nonsingular **simple** action of type III_0 is never OE superrigid (v1).

OE superrigidity (v1) for actions of type III $_\lambda$ when $0 < \lambda < 1$

Theorem (V-Verjans, 2022)

Let p be a prime number and $0 < \lambda < 1$.

Define $\mathcal{A} = \mathbb{Z}[p^{-1}, \lambda]$ and $G = \{A \in GL(n, \mathcal{A}) \mid \det A \in \lambda^{\mathbb{Z}}\}.$

For every $n \ge 3$, the affine action $G \ltimes \mathcal{A}^n \curvearrowright \mathbb{R}^n : (A, a) \cdot x = A(a + x)$ is simple, of type III_{λ} and OE superrigid (v1).

How to prove OE superrigidity

If $\Delta : X \to Z$ is an orbit equivalence between $G \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Z, \zeta)$, we have the **Zimmer 1-cocycle** $\omega : G \times X \to \Lambda$ defined by $\Delta(g \cdot x) = \omega(g, x) \cdot \Delta(x)$.

Similar for stable orbit equivalence.

► Two 1-cocycles ω and ω' are **cohomologous** if there exists $\varphi : X \to \Lambda$ such that $\omega'(g, x) = \varphi(g \cdot x)^{-1} \omega(g, x) \varphi(x)$.

• One says that $G \curvearrowright (X, \mu)$ is cocycle superrigid with countable targets if every 1-cocycle with values in a countable group Λ is cohomologous to a group homomorphism $\delta : G \to \Lambda$, viewed as the 1-cocycle $(g, x) \mapsto \delta(g)$.

Proposition (V-Verjans, 2022): a free nonsingular **simple** action $G \curvearrowright (X, \mu)$ is OE superrigid (v1) **if and only if** $G \curvearrowright (X, \mu)$ is cocycle superrigid with countable targets.

How to prove cocycle superrigidity

Popa's deformation/rigidity theory.

Illustration for the Bernoulli action $G \curvearrowright X = [0,1]^G$ and a 1-cocycle $\omega : G \times X \to \Lambda$.

- ▶ **Deformation, Popa's malleability:** one-parameter group $\alpha_t \in Aut(X \times X)$, commuting with the diagonal *G*-action $g \cdot (x, y) = (g \cdot x, g \cdot y)$, and $\alpha_0 = id$ and $\alpha_1 = flip$.
- Define $\omega_t : G \times (X \times X) \to \Lambda$, by $\omega_0(g, (x, y)) = \omega(g, x)$ and $\omega_t(g, (x, y)) = \omega_0(g, \alpha_t(x, y)).$
- **Rigidity:** property (T) for **G** or spectral gap. Then, $\omega_t \sim \omega_s$ when |t s| is small.
- Then $\omega_0 \sim \omega_1$ and we find that ω is cohomologous to a group homomorphism.

Cocycle superrigidity for dense subgroups

Definition (special case of Drimbe-V, 2021)

A dense subgroup Γ of a connected Lie group G is **essentially cocycle superrigid** if, using the universal cover $\pi : \tilde{G} \to G$, the translation action of $\pi^{-1}(\Gamma)$ on \tilde{G} is cocycle superrigid with countable targets.

Proposition. If G is a connected Lie group and $P \subset G$ is a closed connected subgroup such that $\pi_1(P) \to \pi_1(G)$ is surjective, then essential cocycle superrigidity of $\Gamma \subset G$ implies plain cocycle superrigidity for $\Gamma \curvearrowright G/P$.

Example: the actions $\Gamma \curvearrowright \mathbb{R}^n$ and $\Gamma \curvearrowright S^{n-1}$ are cocycle superrigid whenever $\Gamma \subset SL(n,\mathbb{R})$ is essentially cocycle superrigid.

A cocycle superrigidity theorem for dense subgroups

Theorem (Drimbe-V, 2021)

Let G and H be lcsc groups with H compactly generated. Let $\Gamma \subset G \times H$ be a lattice.

Assume that either *H* has property (T), or that $H = H_1 \times H_2$ such that $H_1 \curvearrowright (G \times H)/\Gamma$ is **ergodic** and $H_2 \curvearrowright (G \times H)/\Gamma$ is **strongly ergodic**.

Then, the projection $\Gamma_0 \subset G$ of Γ is essentially cocycle superrigid.

- A 1-cocycle ω : Γ₀ × G → Λ can be viewed as a 1-cocycle for the left-right action ({e} × H) × Γ → G × H.
- ► It can thus be viewed as a 1-cocycle ω' for the action $\{e\} \times H \curvearrowright (G \times H)/\Gamma$.
- For every $g \in G$, we have a 1-cocycle $\omega'_g(h, (x, k)\Gamma) = \omega'(h, (gx, k)\Gamma)$.
- ▶ By rigidity, $\omega'_g \sim \omega'$ if g is close to e conclusion.

Examples

Drimbe-V, 2021

The following dense subgroups ${\ensuremath{\Gamma}}$ are essentially cocycle superrigid.

- ▶ $SL(n, \mathbb{Z}[S^{-1}]) \subset SL(n, \mathbb{R})$ if $(n-1)|S| \ge 2$. Here S is a set of prime numbers.
- ▶ $SL(n, \mathcal{O}_K) \subset SL(n, \mathbb{R})$ if $(n-1)(a+b-1) \geq 2$.

Here $\mathbb{Q} \subset K \subset \mathbb{R}$ is a real algebraic number field, with ring of integers \mathcal{O}_K , with *a* real embeddings and 2b complex embeddings.

On the other hand, the translation actions of $SL(2, \mathbb{Z}[1/p])$ and $SL(2, \mathbb{Z}[\sqrt{N}])$ on $SL(2, \mathbb{R})$ are **treeable** and therefore do not satisfy any cocycle superrigidity.

V-Verjans, 2022: $SL(n, A) \subset SL(n, \mathbb{R})$ is essentially cocycle superrigid whenever $n \ge 3$ and $A \subset \mathbb{R}$ contains an algebraic number that does not belong to \mathbb{Z} .

 \longrightarrow Each time: $\Gamma \cap \mathbb{R}^n$ and $\Gamma \cap S^{n-1}$ are cocycle superrigid.

OE superrigidity of type III₀

Input: an ergodic action $G \curvearrowright (X, \mu)$ of type III₁ whose Maharam extension is **simple** and **cocycle superrigid** with countable targets, with *G* finitely generated and trivial center.

Radon-Nikodym cocycle: $\omega : \mathbf{G} \times \mathbf{X} \to \mathbb{R}$.

Example: $E(n, \mathcal{A}) \frown S^{n-1}$ when $n \ge 3$ is odd and $\mathcal{A} \subset \mathbb{R}$ as before.

Theorem (V-Verjans, 2022)

Let $\mathbb{R} \curvearrowright (Y, \eta)$ be a properly ergodic flow. Put $G \curvearrowright X \times Y : g \cdot (x, y) = (g \cdot x, \omega(g, x) \cdot y)$. Then, $G \curvearrowright X \times Y$ is of type III₀ and OE superrigid (v2).

The associated flow is the **adjoint flow:** for any ergodic flow $\mathbb{R} \curvearrowright^{\alpha} Y$, there is a unique nonsingular action $\mathbb{R}^2 \curvearrowright (Z, \zeta)$ on an infinite measure space such that $\mathbb{R} \times \{0\}$ and $\{0\} \times \mathbb{R}$ scale the measure ζ and $\mathbb{R} \curvearrowright Y$ is given by $\mathbb{R} \curvearrowright Z/(\{0\} \times \mathbb{R})$. **Adjoint flow** $\hat{\alpha} : \mathbb{R} \curvearrowright Z/(\mathbb{R} \times \{0\})$.