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THESE KK COMPUTATIONS NEED J TO BE REASONABLY NICE

e Jis "separably stable": given a separable J; c J, there is a stable
separable J; with Jy = J; = J

e Get this from regularity hypotheses on B.

WHEN B HAS INFINITELY MANY EXTREMAL TRACES
e Tempting to use (B;:¥)“ in place of (7-(B)”)“ as one has
classification by traces

e But the corresponding J is not separably stable - no chance of
pulling off the KK-computations.
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Given a metrisable Choquet simplex X
@ Write as an inverse limit of finite dimensional simplices

aq a2

Xi Xo X3 . X
(REX, Xp) 1 (R X) 2o —— (R, X)

with 6, inducing a,.

@ Inductive limit in the category of tracially complete C*-algebras:

» Take C*-algebra inductive limit
» and tracially complete with respect to X

(Rx, X) IS INDEPENDENT OF ALL CHOICES

e analogous to Murray and von Neumann'’s existence and
uniqueness of R.
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