TRACIALLY COMPLETE C^* -ALGEBRAS

Stuart White

University of Oxford

Joint work with: Carrión, Castillejos, Evington, Gabe, Schafhauser, Tikuisis.

(Murray & von Neumann): $\exists \ ! \ hyperfinite \ II_1 \ factor \mathcal{R}$

(Murray & von Neumann): $\exists ! hyperfinite II_1 factor \mathcal{R}$
(Connes): A separable injective II ₁ factor \mathcal{M} :

(Murray & von Neumann): $\exists \ ! \ hyperfinite \ II_1 \ factor \ \mathcal{R}$
(Connes): A separable injective II ₁ factor <i>M</i> : • has property Γ

(Murray & von Neumann): $\exists \ ! \ hyperfinite \ \ II_1 \ factor \ \mathcal{R}$
(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$

(Murray & von Neumann): $\exists \ ! \ hyperfinite \ II_1 \ factor \ \mathcal{R}$
(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Murray & von Neumann): $\exists \ ! \ injective \ II_1 \ factor \ \mathcal{R}$
(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Murray & von Neumann): $\exists \ ! \ injective \ II_1 \ factor \ \mathcal{R}$
 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

	(Murray & von Neumann): $\exists \ ! \ injective \ II_1 \ factor \ \mathcal{R}$
	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a simple separable unital nuclear non-elementary <i>C</i> *-algebra <i>A</i> , TFAE:	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

	(Murray & von Neumann): $\exists \ ! \ injective \ II_1 \ factor \ \mathcal{R}$
	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
 For a simple separable unital nuclear non-elementary C*-algebra A, TFAE: A has uniform Γ and strict comparison 	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

	(Murray & von Neumann): $\exists \ ! \ injective \ II_1 \ factor \ \mathcal{R}$
	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
 For a simple separable unital nuclear non-elementary <i>C</i>*-algebra <i>A</i>, TFAE: <i>A</i> has uniform Γ and strict comparison <i>A</i> is <i>Z</i>-stable 	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

	(Murray & von Neumann): $\exists \ ! \ injective \ II_1 \ factor \ \mathcal{R}$
	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
 For a simple separable unital nuclear non-elementary <i>C</i>*-algebra <i>A</i>, TFAE: <i>A</i> has uniform Γ and strict comparison <i>A</i> is <i>Z</i>-stable <i>A</i> has finite nuclear dimension 	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	(Murray & von Neumann): $\exists ! \text{ injective II}_1 \text{ factor } \mathcal{R}$
	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A , TFAE: • A has uniform Γ and strict comparison • A is \mathcal{Z} -stable • A has finite nuclear dimension	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	(Murray & von Neumann): $\exists ! \text{ injective II}_1 \text{ factor } \mathcal{R}$
• A separable exact UCT C*-algebra	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A , TFAE: • A has uniform Γ and strict comparison • A is \mathcal{Z} -stable • A has finite nuclear dimension	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	(Murray & von Neumann): $\exists ! \text{ injective II}_1 \text{ factor } \mathcal{R}$
 A separable exact UCT C*-algebra B Z-stable, QT(B) = T(B) compact, with comparison by bounded traces. 	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A , TFAE: • A has uniform Γ and strict comparison • A is \mathcal{Z} -stable • A has finite nuclear dimension	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	(Murray & von Neumann): $\exists ! \text{ injective II}_1 \text{ factor } \mathcal{R}$
 A separable exact UCT C*-algebra B Z-stable, QT(B) = T(B) compact, with comparison by bounded traces. Full unital nuclear maps A → B classified by K-theoretic and tracial data 	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A , TFAE: • A has uniform Γ and strict comparison • A is \mathcal{Z} -stable • A has finite nuclear dimension	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	(Murray & von Neumann): $\exists ! \text{ injective II}_1 \text{ factor } \mathcal{R}$
 A separable exact UCT C*-algebra B Z-stable, QT(B) = T(B) compact, with comparison by bounded traces. Full unital nuclear maps A → B classified by K-theoretic and tracial data 	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A , TFAE: • A has uniform Γ and strict comparison • A is \mathcal{Z} -stable • A has finite nuclear dimension	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	(Murray & von Neumann): $\exists ! injective II_1 factor R$
 A separable exact UCT C*-algebra B Z-stable, QT(B) = T(B) compact, with comparison by bounded traces. Full unital nuclear maps A → B classified by K-theoretic and tracial data 	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A, TFAE: • A has uniform Γ and strict comparison • A is \mathcal{Z} -stable • A has finite nuclear dimension	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	(Murray & von Neumann): $\exists ! injective II_1 factor R$
 A separable exact UCT C*-algebra B Z-stable, QT(B) = T(B) compact, with comparison by bounded traces. Full unital nuclear maps A → B classified by K-theoretic and tracial data 	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A, TFAE: • A has uniform Γ and strict comparison • A is \mathbb{Z} -stable • A has finite nuclear dimension	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	(Murray & von Neumann): $\exists ! injective II_1 factor R$
 A separable exact UCT C*-algebra B Z-stable, QT(B) = T(B) compact, with comparison by bounded traces. Full unital nuclear maps A → B classified by K-theoretic and tracial data 	• A separable C^* -algebra • \mathcal{M} finite vNa Weakly nuclear maps $A \rightarrow \mathcal{M}$ classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A , TFAE: • A has uniform Γ and strict comparison • A is \mathcal{Z} -stable • A has finite nuclear dimension	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

$$((\pi_{\tau})(\boldsymbol{B})'')^{\omega}$$

Proof steps in Abstract classification of MAPS $A \rightarrow B$.

$$((\pi_{\tau})(\boldsymbol{B})'')^{\omega}$$

PROOF STEPS IN ABSTRACT CLASSIFICATION OF MAPS $A \rightarrow B$.

RECALL

$$((\pi_{ au})(B)'')^{\omega}$$

PROOF STEPS IN ABSTRACT CLASSIFICATION OF MAPS $A \rightarrow B$.

• Classify weakly nuclear θ by traces.

RECALL

PROOF STEPS IN ABSTRACT CLASSIFICATION OF MAPS $A \rightarrow B$. • Classify weakly nuclear θ by traces.

RECALL

PROOF STEPS IN ABSTRACT CLASSIFICATION OF MAPS $A \rightarrow B$. • Classify weakly nuclear θ by traces.

RECALL

PROOF STEPS IN ABSTRACT CLASSIFICATION OF MAPS $A \rightarrow B$.

- Classify weakly nuclear θ by traces.
- **2** Classify lifts to ϕ by *KK*.

These KK computations need J to be reasonably nice

- J is "separably stable": given a separable J₀ ⊂ J, there is a stable separable J₁ with J₀ ⊂ J₁ ⊂ J
- Get this from regularity hypotheses on *B*.

PROOF STEPS IN ABSTRACT CLASSIFICATION OF MAPS $A \rightarrow B$.

- Classify weakly nuclear θ by traces.
- **2** Classify lifts to ϕ by *KK*.
- Sompute the relevant KK using the UCT.

These KK computations need J to be reasonably nice

- *J* is "separably stable": given a separable *J*₀ ⊂ *J*, there is a stable separable *J*₁ with *J*₀ ⊂ *J*₁ ⊂ *J*
- Get this from regularity hypotheses on *B*.

These KK computations need J to be reasonably nice

- J is "separably stable": given a separable J₀ ⊂ J, there is a stable separable J₁ with J₀ ⊂ J₁ ⊂ J
- Get this from regularity hypotheses on *B*.

These KK computations need J to be reasonably nice

- J is "separably stable": given a separable J₀ ⊂ J, there is a stable separable J₁ with J₀ ⊂ J₁ ⊂ J
- Get this from regularity hypotheses on *B*.

When B has infinitely many extremal traces

- Tempting to use $(B_{\rm fin}^{**})^{\omega}$ in place of $(\pi_{\tau}(B)'')^{\omega}$ as one has classification by traces
- But the corresponding J is not separably stable no chance of pulling off the KK-computations.

Constructing (\mathcal{R}_X, X)

Given a metrisable Choquet simplex *X*

• Write as an inverse limit of finite dimensional simplices

$$X_1 \stackrel{\alpha_1}{\longleftarrow} X_2 \stackrel{\alpha_2}{\longleftarrow} X_3 \stackrel{\ldots}{\longleftarrow} X_k$$

Constructing (\mathcal{R}_X, X)

Given a metrisable Choquet simplex X

• Write as an inverse limit of finite dimensional simplices

$$X_1 \stackrel{\alpha_1}{\longleftarrow} X_2 \stackrel{\alpha_2}{\longleftarrow} X_3 \stackrel{\ldots}{\longleftarrow} X$$

2

$$(\mathcal{R}^{\oplus \partial_{\mathcal{C}} X_1}, X_1) \xrightarrow{\theta_1} (\mathcal{R}^{\oplus \partial_{\mathcal{C}} X_2}, X_2) \xrightarrow{\theta_2} \dots$$

with θ_n inducing α_n .

Constructing (\mathcal{R}_{X}, X)

Given a metrisable Choquet simplex X

• Write as an inverse limit of finite dimensional simplices

$$X_1 \stackrel{\alpha_1}{\longleftarrow} X_2 \stackrel{\alpha_2}{\longleftarrow} X_3 \stackrel{\ldots}{\longleftarrow} X$$

2

$$(\mathcal{R}^{\oplus \partial_{\mathcal{O}} X_1}, X_1) \xrightarrow{\theta_1} (\mathcal{R}^{\oplus \partial_{\mathcal{O}} X_2}, X_2) \xrightarrow{\theta_2} \dots \longrightarrow (\mathcal{R}_X, X)$$

with θ_n inducing α_n .

Inductive limit in the category of tracially complete C*-algebras:

- Take C*-algebra inductive limit
- and tracially complete with respect to X

Constructing (\mathcal{R}_{X}, X)

Given a metrisable Choquet simplex X

• Write as an inverse limit of finite dimensional simplices

$$X_1 \stackrel{\alpha_1}{\longleftarrow} X_2 \stackrel{\alpha_2}{\longleftarrow} X_3 \stackrel{\ldots}{\longleftarrow} X$$

2

$$(\mathcal{R}^{\oplus \partial_{\mathcal{O}} X_1}, X_1) \xrightarrow{\theta_1} (\mathcal{R}^{\oplus \partial_{\mathcal{O}} X_2}, X_2) \xrightarrow{\theta_2} \dots \longrightarrow (\mathcal{R}_X, X)$$

with θ_n inducing α_n .

Inductive limit in the category of tracially complete C*-algebras:

- Take C*-algebra inductive limit
- and tracially complete with respect to X

(\mathcal{R}_X, X) is independent of all choices

• analogous to Murray and von Neumann's existence and uniqueness of \mathcal{R} .

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	(Murray & von Neumann): $\exists ! injective II_1 factor \mathcal{R}$
 A separable exact UCT C*-algebra B Z-stable, QT(B) = T(B) compact, with comparison by bounded traces Full unital nuclear maps A → B classified by K-theoretic and tracial data 	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A, TFAE: • A has uniform Γ and strict comparison • A is \mathbb{Z} -stable • A has finite nuclear dimension	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

Classification of factorial separable amenable tracially complete C^* -algebras with property Γ by traces	(Murray & von Neumann): $\exists ! injective II_1 factor \mathcal{R}$
 A separable C*-algebra (M, X) factorial tracially complete with property Γ Unital tracially nuclear maps A → B classified by traces 	 A separable C*-algebra M finite vNa Weakly nuclear maps A → M classified by traces
For a factorial separable amenable tracially complete (\mathcal{M}, X) , TFAE: • (\mathcal{M}, X) has property Γ • (\mathcal{M}, X) is McDuff • (\mathcal{M}, X) has hyperfinite	(Connes): A separable injective II ₁ factor \mathcal{M} : • has property Γ • is McDuff: $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ • is hyperfinite.

(Many hands): Classification of simple separable unital nuclear \mathcal{Z} -stable UCT C^* -algebras by K -theory and traces	Classification of factorial separable tracially complete with property Γ by traces
 A separable exact UCT C*-algebra B Z-stable, QT(B) = T(B) compact, with comparison by bounded traces Full unital nuclear maps A → B classified by K-theoretic and tracial data 	 A separable C*-algebra (M, X) tracially complete factorial with property Γ Unital tracially nuclear A → M classified by traces
For a simple separable unital nuclear non-elementary C^* -algebra A , TFAE: • A has uniform Γ and strict comparison • A is \mathbb{Z} -stable • A has finite nuclear dimension	Separable factorial tracially complete (\mathcal{M}, X) TFAE: • (\mathcal{M}, X) has property Γ • (\mathcal{M}, X) is McDuff • (\mathcal{M}, X) is hyperfinite.