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THESE KK COMPUTATIONS NEED J TO BE REASONABLY NICE

J is "separably stable": given a separable J0 Ă J, there is a stable
separable J1 with J0 Ă J1 Ă J
Get this from regularity hypotheses on B.

WHEN B HAS INFINITELY MANY EXTREMAL TRACES

Tempting to use pB˚˚fin q
ω in place of pπτ pBq2qω as one has

classification by traces
But the corresponding J is not separably stable - no chance of
pulling off the KK -computations.
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θ2 // . . . // pRX ,X q

with θn inducing αn.
3 Inductive limit in the category of tracially complete C˚-algebras:

§ Take C˚-algebra inductive limit
§ and tracially complete with respect to X

pRX ,X q IS INDEPENDENT OF ALL CHOICES

analogous to Murray and von Neumann’s existence and
uniqueness of R.
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