Analysis with simple Lie groups and lattices

Virtual ICM 2022 Section 7 : Lie Theory and Generalizations Section 8 : Analysis

Mikael de la Salle, based on works by/with Uffe Haagerup, Tim de Laat, Vincent Lafforgue, Benben Liao, Masato Mimura, Javier Parcet, Éric Ricard... July 12 2022

1. An example of arithmetic group : $\mathrm{SL}_d(\boldsymbol{Z})$

2. Some analysis questions on $SL_d(\mathbf{Z})$

Fourier analysis

Approximation properties

Actions on low-dimensional manifolds : Zimmer's program

Group actions on Banach spaces and their geometry

3. A tool : rank o reduction

An example of arithmetic group : $SL_d(Z)$

 $SL_d(\mathbf{Z})$ = the group of all $d \times d$ matrices with determinant 1 and integer coefficients.

$$\label{eq:psl2} \begin{split} d &= \mathtt{2}: \mathrm{PSL}_\mathtt{2}(\mathtt{Z}) \simeq (\mathtt{Z}/\mathtt{3}\mathtt{Z}) * (\mathtt{Z}/\mathtt{2}\mathtt{Z}).\\ \text{Consequence}: \mathrm{SL}_\mathtt{2}(\mathtt{Z}) \text{ has many}\\ \text{actions.} \end{split}$$

 $d \ge 3$: (General expectation) $SL_d(\mathbf{Z})$ has very few actions.

Theorem (Kazhdan 67)

 $SL_{d\geq 3}(\mathbf{Z})$ has Kazhdan's property (T) : its trivial representation is isolated in its space of unitary representations.

The classical method to study arithmetic groups

- 1. Passing from $SL_d(\mathbf{Z})$ to $SL_d(\mathbf{R})$. Minkowski/Borel-Harish-Chandra : $SL_d(\mathbf{Z})$ is a **lattice** in $SL_d(\mathbf{R})$ (discrete subgroup with $Haar(SL_d(\mathbf{R})/SL_d(\mathbf{Z})) < \infty$).
- 2. SL_2 -reduction : study $SL_d(\mathbf{R})$ through the copies of $SL_2(\mathbf{R})$ contained in $SL_d(\mathbf{R})$.

Example (Jacobson-Morozov) every unipotent $u \in G$ (spectrum(u)= {1}) is the image of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ by a homomorphism $SL_2 \rightarrow G$.

Some analysis questions on $SL_d(Z)$

If Γ is a countable group, define $\mathcal{L}\Gamma \subset B(\ell_2(\Gamma))$ the algebra of bounded left-convolution operators on $\ell_2(\Gamma)$:

$$\lambda(a)\xi = a * \xi : s \mapsto \sum_{t \in \Gamma} a(t)\xi(t^{-1}s).$$

It is stable by adjoint, and w-* closed (von Neumann algebra of Γ).

Example : if $\Gamma = Z$, by Fourier transform, $\mathcal{L}Z \simeq L_{\infty}(\mathbb{R}/\mathbb{Z})$ $(f \in L_{\infty}(\mathbb{R}/\mathbb{Z}) \mapsto \lambda(\hat{f})).$

So $\mathcal{L}Z \simeq \mathcal{L}\Gamma$ for every countable infinite abelian group Γ .

Conjecture (Connes 80)

If $d \neq n$, $\mathcal{L}PSL_d(\mathbf{Z})$ and $\mathcal{L}PSL_n(\mathbf{Z})$ are not isomorphic.

Fourier series : *L^p* convergence

Very classical theorem (Riesz 24)

If $1 and <math>f \in L_p(\mathbf{R}/\mathbf{Z})$. Define $S_N f(t) = \sum_{n=-N}^N \hat{f}(n) e^{2i\pi nt}$. Then

$$\lim_{N} \|f - S_N f\|_p = 0.$$

Fourier series : L^p convergence

Very classical theorem (Riesz 24)

If $1 and <math>f \in L_p(\mathbf{R}/\mathbf{Z})$. Define $S_N f(t) = \sum_{n=-N}^N \hat{f}(n) e^{2i\pi nt}$. Then

$$\lim_{N} \|f - S_N f\|_p = 0.$$

False for $p = 1, \infty$, but there are more clever summation methods :

Theorem (Fejér 1900)

If $1 \le p \le \infty$ and $f \in L_p(\mathbf{R}/\mathbf{Z})$ (with f continuous if $p = \infty$), then

$$\lim_{N} \|f - W_N f\|_p = 0, \text{ where } W_N f(t) = \sum_{-N}^{N} \left(1 - \frac{|n|}{N}\right) \hat{f}(n) e^{2i\pi nt}.$$

Such clever summation methods exist for **Z** replaced by Γ countable abelian group, and **R**/**Z** by $\hat{\Gamma}$, its Pontryagin dual.

Fourier synthesis for other (non-abelian) groups?

Define $L_p(\mathcal{L}\Gamma)$ the completion of $\mathcal{L}\Gamma$ for the norm $\|f\|_p = (\tau(|f|^p))^{\frac{1}{p}}$, where $\tau(\lambda(a)) = a(\mathbf{1}_{\gamma})$.

Every $f \in L_p(\mathcal{L}\Gamma)$ has Fourier coefficients $f^{"} = \sum_{\gamma} \hat{f}(\gamma)\lambda(\gamma)$.

We say that Γ has an L_p -Fourier summation method if there is a sequence of finitely supported functions $\varphi_N : \Gamma \to \mathbf{C}$ such that $\forall f \in L_p(\mathcal{L}\Gamma)$,

$$\lim_{N} \|f - T_{\varphi_{N}}(f)\|_{p} = \mathsf{o}, \text{ where } T_{\varphi_{N}}(f) = \sum_{\gamma} \varphi_{N}(\gamma) \hat{f}(\gamma) \lambda(\gamma).$$

Open : let $p \neq 2$. Does there exist a group without L_p -Fourier summation method?

Fourier synthesis for other (non-abelian) groups?

Define $L_p(\mathcal{L}\Gamma)$ the completion of $\mathcal{L}\Gamma$ for the norm $\|f\|_p = (\tau(|f|^p))^{\frac{1}{p}}$, where $\tau(\lambda(a)) = a(\mathbf{1}_{\gamma})$.

Every $f \in L_p(\mathcal{L}\Gamma)$ has Fourier coefficients $f^{"} = {}^{"} \sum_{\gamma} \hat{f}(\gamma) \lambda(\gamma)$.

We say that Γ has an L_p -Fourier summation method if there is a sequence of finitely supported functions $\varphi_N : \Gamma \to \mathbf{C}$ such that $\forall f \in L_p(\mathcal{L}\Gamma)$,

$$\lim_{N} \|f - T_{\varphi_{N}}(f)\|_{p} = 0, \text{ where } T_{\varphi_{N}}(f) = \sum_{\gamma} \varphi_{N}(\gamma) \hat{f}(\gamma) \lambda(\gamma).$$

Open : let $p \neq 2$. Does there exist a group without L_p -Fourier summation method?

Conjecture

 $\operatorname{SL}_{d \geq 3}(\mathbf{Z})$ has no L_p -Fourier summation method for any p > 4.

Equivalently for $p < \frac{4}{3}$. Perhaps even $p \neq 2$?

Let S_p =Schatten p-class = { $T \in B(\ell_2) | Tr(|T|^p) < \infty$ }. Define $L_p(\mathcal{L}\Gamma; S_p)$ the completion of $S_p \otimes \mathcal{L}\Gamma \subset B(\ell_2(\mathbb{N} \times \Gamma))$ for the norm

$$\|f\|_p = (\mathrm{Tr} \otimes \tau(|f|^p))^{\frac{1}{p}}.$$

Again, every $f \in L_p(\mathcal{L}\Gamma; S_p)$ has a Fourier series $f = \sum_{\gamma} \hat{f}(\gamma) \otimes \lambda(\gamma)$ with $\hat{f}(\gamma) \in S_p$. Let S_p =Schatten p-class = { $T \in B(\ell_2) \mid Tr(|T|^p) < \infty$ }.

Define $L_p(\mathcal{L}\Gamma; S_p)$ the completion of $S_p \otimes \mathcal{L}\Gamma \subset B(\ell_2(\mathbb{N} \times \Gamma))$ for the norm

$$\|f\|_p = (\mathrm{Tr} \otimes \tau(|f|^p))^{\frac{1}{p}}.$$

Again, every $f \in L_p(\mathcal{L}\Gamma; S_p)$ has a Fourier series $f = \sum_{\gamma} \hat{f}(\gamma) \otimes \lambda(\gamma)$ with $\hat{f}(\gamma) \in S_p$.

We say that Γ has a **completely bounded** L_p -Fourier summation **method** if there is a sequence of finitely supported functions $\varphi_N : \Gamma \to \mathbf{C}$ such that $\forall f \in L_p(\mathcal{L}\Gamma; S_p)$,

$$\lim_{N} \|f - \mathsf{T}_{\varphi_{\mathsf{N}}}(f)\|_{\mathsf{p}} = \mathsf{o}, \,\, \text{where} \,\, \mathsf{T}_{\varphi_{\mathsf{N}}}(f) = \sum_{\gamma} \varphi_{\mathsf{N}}(\gamma) \hat{f}(\gamma) \otimes \lambda(\gamma).$$

Theorem (Lafforgue-dlS 11, de Laat-dlS 16)

Let $\Gamma = \operatorname{SL}_3(\mathbf{Z})$. For every $4 or <math>1 \le p < \frac{4}{3}$, there is $f \in L_p(\mathcal{L}\Gamma; S_p)$ such that, for every finitely supported $\varphi : \Gamma \to \mathbf{C}$,

$$\|f - T_{\varphi}(f)\|_{p} \geq 1, ext{ where } T_{\varphi}(f) = \sum_{\gamma} \varphi(\gamma) \hat{f}(\gamma) \otimes \lambda(\gamma).$$

If $\Gamma = \operatorname{SL}_{d \ge 3}(\mathbf{Z})$, the same holds for $|\frac{1}{p} - \frac{1}{2}| > \frac{c}{d-2}$.

Definition

A Banach space X has the approximation property if $id : X \rightarrow X$ belongs to the closure of finite rank operator for the topology of uniform convergence on compact subsets of X.

- Equivalently : X has AP if $\forall Y, F(Y, X)$ is dense in K(Y, X).
- (Grothendieck's thesis 55) Conjecture : every X has AP.
- (Grothendieck's *résumé* 53) Conjecture : ∃X without AP.
- Only one natural example without AP : $B(\ell_2)$ (Szankowski 81).

Conjecture

For $\Gamma = SL_3(\mathbf{Z})$, $C^*_{\lambda}(\Gamma)$ does not have the AP;

 $L_p(\mathcal{L}\Gamma)$ does not have the AP for p > 4.

Theorem (Lafforgue-dlS 11, de Laat-dlS 16)

Assume either

- $\Gamma = \operatorname{SL}_3(\mathbf{Z})$ and $4 or <math>1 \le p < \frac{4}{3}$,
- (more general) $\Gamma = \operatorname{SL}_{d \geq 3}(\mathbf{Z})$ and $|\frac{1}{p} \frac{1}{2}| > \frac{c}{d-2}$.

Then $L_p(\mathcal{L}\Gamma)$ ($C^*_{\lambda}\Gamma$ if $p = \infty$) does not have the operator space approximation property.

Remark : if the condition $|\frac{1}{p} - \frac{1}{2}| > \frac{c}{d-2}$ was also necessary (open), this would settle Connes' conjecture.

Theorem (Brown-Fisher-Hurtado 2020)

If $\alpha : SL_d(\mathbf{Z}) \to Diff(M)$ is an action by C^{∞} -diffeomorphisms on a compact manifold M of dimension < d - 1, then α has finite image.

The proof has several parts. One of them is :

Theorem (combine BFH 2020+dlS 2019)

If $\alpha : \operatorname{SL}_d(Z) \to \operatorname{Diff}(M)$ has subexponential growth of derivatives :

$$\lim_{|\gamma|\to\infty}\frac{1}{|\gamma|}\sum_{x\in X}\log\|D_x\alpha(\gamma)\|=0,$$

then there is a Riemanian metric on ${\rm M}$ for which α acts by isometries.

Conjecture (Bader-Furman-Gelander-Monod 08)

Every action by isometries of $SL_{d\geq 3}(\mathbf{Z})$ on a uniformly convex Banach space has a fixed point.

True for :

- Hilbert spaces (Kazhdan 67, Delorme 77),
- L_p spaces (BFGM 08),
- $SL_d(\mathbf{Z})$ replaced by $SL_d(\mathbf{F}_q[T])$ (Lafforgue 09),
- all *d* large enough, if X is a Banach space and ∃C > 0, β < ¹/₂ such that every finite-dimensional subspace of X is
 ≤ Cdim(E)^β-isomorphic to a Euclidean space (de Laat-Mimura-dlS 16).

A tool : rank \circ reduction

For all the previous questions, we start by translating the question to $SL_d(\mathbf{R})$ (induction).

Then the usual techniques of SL_2 -reduction are not effective. All the results mentionned are proved with a same new method, which originates from Vincent Lafforgue's work on strong property (T).

This method proceeds in two steps :

- do analysis on compact subgroups.
- Exploit how compact subgroups are distorted.

Denote
$$K = SO(3)$$
 and $U \simeq SO(2) \subset K : U = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \right\} \cap K.$

Step 1 : Hölder $\frac{1}{2}$ -continuity of *U*-biinvariant matrix coefficients of unitary representations of *K*.

Step 2, from $U \subset K$ to $K \subset G$: promote this Hölder $\frac{1}{2}$ -continuity to *K*-biinvariant matrix coefficients of unitary representations of *G*, with **exponentially decaying** Hölder constants.

Conclusion : *K*-biinvariant matrix coefficients converge exponentially fast, property (T) follows.

Matrix coefficients of K = SO(3)

Proposition

Let (π, \mathcal{H}) be unitary representation of K, and $\xi, \eta \in \mathcal{H}$ be $\pi(U)$ -invariant unit vectors.

For every $k, k' \in K$ with $k'_{1,1} = 0$,

$$|\langle \pi(\mathbf{k})\xi,\eta
angle-\langle \pi(\mathbf{k}')\xi,\eta
angle|\leq 2|\mathbf{k}_{\mathsf{1},\mathsf{1}}|^{rac{1}{2}}$$

Equivalent formulation, in terms of Harmonic analysis on the unit sphere $\bm{S}^2 \subset \bm{R}^3.$

For $\delta \in [-1, 1]$, define an operator T_{δ} on $L_2(\mathbf{S}^2)$

$$T_{\delta}f(\mathbf{x}) = \text{average of } f \text{ on } \{\mathbf{y} \in \mathbf{S}^2 \mid \langle \mathbf{x}, \mathbf{y} \rangle = \delta \}.$$

The Proposition is equivalent to $\|T_{\delta} - T_0\|_{L_2(\mathbf{S}^2) \to L_2(\mathbf{S}^2)} \leq 2|\delta|^{\frac{1}{2}}$.

To summarize :

Step 1 : analysis on compact groups.

Step 2 : combinatorics/geometry of the Weyl chambers.

When we change the setting, the challenge comes from the first part : understanding analysis with compact groups. Often very easy.

Beyond : a few examples

- No L_∞-Fourier summation method for SL₃(**R**).
 Ingredient : L_∞-completely bounded Fourier multipliers of a compact group coincides with matrix coefficients of unitary representations.
- No L_p -Fourier summation method if p > 4. Ingredient : $\delta \mapsto T_{\delta} \in S_p(L_2 S^2)$ is Hölder-continuous if p > 4.
- Strong (T): Form of property (T) for non-unitary representations on Hilbert spaces.
 Ingredient: every representation of a compact group on a Hilbert space is similar to a unitary representation.
- Banach-space representations. Ingredient/challenge : understand regularity properties of $\delta \mapsto T_{\delta} \in B(L_2(\mathbf{S}^2; X))$ in terms of the geometry of X.