Endomorphisms of \mathcal{O}_n which preserve the canonical UHF-subalgebra

Roberto Conti, Mikael Rørdam, Wojciech Szymański

5 October 2009

Abstract

Unital endomorphisms of the Cuntz algebra \mathcal{O}_n which preserve the canonical UHF-subalgebra $\mathcal{F}_n \subseteq \mathcal{O}_n$ are investigated. We give examples of such endomorphisms $\lambda = \lambda_u$ for which the associated unitary element u in \mathcal{O}_n (which satisfies $\lambda(S_j) = uS_j$ for all j) does not belong to \mathcal{F}_n. One such example, in the case where $n = 2$, arises from a construction of a unital endomorphism on \mathcal{O}_2 which preserves the canonical UHF-subalgebra and where the relative commutant of its image in \mathcal{O}_2 contains a copy of \mathcal{O}_2.

MSC 2000: 46L37, 46L05

Keywords: Cuntz algebra, endomorphism, automorphism, gauge action.
1 Introduction

The study of endomorphisms of Cuntz algebras continues to attract attention of researchers. On the one hand, such endomorphisms naturally arise in a number of contexts including index theory and subfactors, entropy, and classical dynamical systems on the Cantor set. On the other hand, they exhibit interesting and intriguing features while being concrete enough to allow explicit albeit sometimes binding computations.

It is a fundamental fact that there is a one-to-one correspondence between unitaries in \(O_n \) and unital endomorphisms on \(O_n \) whereby \(u \) in \(O_n \) corresponds to the endomorphism \(\lambda_u \) which maps the \(j \)th canonical generator \(S_j \) of \(O_n \) onto \(uS_j \) for \(j = 1, 2, \ldots, n \). In the groundbreaking paper by Cuntz on this subject, \([6]\), it is noted that \(\lambda_u \) maps the canonical UHF-subalgebra \(F_n \) of \(O_n \) into itself whenever \(u \) belongs to \(F_n \); and the question if the converse also holds is considered. This indeed is true in many cases (as one can deduce from \([6]\)), for example if one knows in advance that the range of the endomorphism \(\lambda_u \) is globally invariant under the gauge action of \(T \). This assumption is already sufficient to cover several interesting cases, e.g. if \(\lambda_u \) is an automorphism of \(O_n \).

We show in this paper that this converse statement is false in general, i.e., there is a unitary element \(u \) in \(O_n \) which does not belong to \(F_n \) but where \(\lambda_u \) maps \(F_n \) into itself.

The paper is organized in the following way. In section 2, after some preliminaries, we present a general framework for finding the announced counterexamples and we discuss a specific example in the case of \(O_2 \) that arises in a combinatorial way. In section 3, we exhibit a unitary \(u \) in the UHF-subalgebra of \(O_2 \) such that the image of the corresponding endomorphism \(\lambda_u \) has relative commutant containing a copy of \(O_2 \). One can then easily find another unitary \(v \) in \(O_2 \) such that \(v \) does not belong to \(F_2 \) but where \(\lambda_u \) agrees with \(\lambda_v \) on \(F_2 \), whence in particular \(\lambda_u \) maps \(F_2 \) into itself. From this construction one gets as a byproduct an embedding of \(O_2 \otimes O_2 \) into \(O_2 \) that maps \(F_2 \otimes F_2 \) into \(F_2 \).

It remains an interesting open problem if for every unital endomorphism \(\lambda \) on \(O_n \) which maps \(F_n \) into itself there exists a unitary element \(u \) in \(F_n \) such that \(\lambda \) and \(\lambda_u \) agree on \(F_n \).

In section 4, we expand our initial observations on endomorphisms preserving the canonical UHF-subalgebra in a more systematic manner. In section 5, we study a particularly interesting class of such endomorphisms.
related to certain elements in the normalizer of the canonical MASA.

Finally, we would like to mention that endomorphisms preserving the core AF-subalgebras of certain C^*-algebras corresponding to rank-2 graphs (generalizing the Cuntz algebras) have been very recently considered in [14].

Acknowledgements. The need for clarification of some of the issues considered in the present paper was raised in a discussion with Adam Skalski and Joachim Zacharias, who we warmly thank. The first mentioned author is grateful to Uffe Haagerup for supporting his visit to Odense in June 2009, where part of this work has been done.

2 A counterexample

If n is an integer greater than 1, then the Cuntz algebra O_n is a unital, simple C^*-algebra generated by n isometries S_1, \ldots, S_n, satisfying $\sum_{i=1}^n S_i S_i^* = I$, [5]. We denote by W_n^k the set of k-tuples $\alpha = (\alpha_1, \ldots, \alpha_k)$ with $\alpha_m \in \{1, \ldots, n\}$, and by W_n the union $\cup_{k=0}^\infty W_n^k$, where $W_n^0 = \{0\}$. We call elements of W_n multi-indices. If $\alpha = (\alpha_1, \ldots, \alpha_k) \in W_n$, then $S_\alpha = S_{\alpha_1} \ldots S_{\alpha_k}$ ($S_0 = I$ by convention) and $P_\alpha = S_{\alpha} S_\alpha^*$. Every word in $\{S_1, S_1^* | i = 1, \ldots, n\}$ can be uniquely expressed as $S_\alpha S_\beta^*$, for $\alpha, \beta \in W_n$ [5, Lemma 1.3]. If $\alpha \in W_n^k$ then $|\alpha| = k$ is the length of α.

F_n^k is the C^*-algebra generated by all words of the form $S_\alpha S_\beta^*$, $\alpha, \beta \in W_n^k$, and it is isomorphic to the matrix algebra $M_{n^k} (\mathbb{C})$. F_n, the norm closure of $\cup_{k=0}^\infty F_n^k$, is the UHF-algebra of type n^∞, called the core UHF-subalgebra of O_n, [5]. It is the fixed point algebra for the periodic gauge action of the reals: $\alpha : \mathbb{R} \to \text{Aut}(O_n)$ defined on generators as $\alpha_t(S_j) = e^{i t} S_j$, $t \in \mathbb{R}$.

We denote by S_n the group of those unitaries in O_n which can be written as finite sums of words, i.e., in the form $u = \sum_{j=1}^m S_{\alpha_j} S_{\beta_j}^*$ for some $\alpha_j, \beta_j \in W_n$. It turns out that S_n is isomorphic to the Higman-Thompson group $\Gamma_{n,1}$ [10]. We also denote $\mathcal{P}_n = S_n \cap \mathcal{U}(F_n)$. Then $\mathcal{P}_n = \cup_k \mathcal{P}_n^k$, where \mathcal{P}_n^k are permutation unitaries in $\mathcal{U}(F_n^k)$. That is, for each $u \in \mathcal{P}_n^k$ there is a unique permutation σ of multi-indices W_n^k such that $u = \sum_{\sigma(\alpha)} S_\alpha S_\alpha^*$.

For u a unitary in O_n, we denote by λ_u the unital endomorphism of O_n determined by $\lambda_u(S_i) = u S_i$, $i = 1, \ldots, n$. We denote by φ the canonical shift: $\varphi(x) = \sum_i S_i x S_i^*$, $x \in O_n$. Note that φ commutes with the action α. If $u \in \mathcal{U}(O_n)$ then for each positive integer k we denote

$$u_k = u \varphi(u) \cdots \varphi^{k-1}(u).$$
We agree that u_k^* stands for $(u_k)^*$. If α and β are multi-indices of length k and m, respectively, then $\lambda_u(S_\alpha S_\beta^*) = u_k S_\alpha S_\beta^* u_m^*$. This is established through a repeated application of the identity $S_a = \varphi(a)S_i$, valid for all $i = 1, \ldots, n$ and $a \in O_n$.

Proposition 2.1. Let u be a unitary in O_n and let v be a unitary in the relative commutant $\lambda_u(F_n)' \cap O_n$. Define $w := u\varphi(v)$. Then the restrictions of endomorphisms λ_u and λ_w coincide on F_n. Likewise, if $\tilde{w} = vu$ then the restrictions of endomorphisms λ_u and $\lambda_{\tilde{w}}$ coincide on F_n.

Proof. It is enough to compute the action of λ_w on all elements of the form $S_{\alpha_1} \cdots S_{\alpha_k} S_{\beta_k}^* \cdots S_{\beta_1}^*$ for every integer $k \geq 1$ and all α_i and β_j in $\{1, \ldots, n\}$ for all $1 \leq i, j \leq k$. To this end, we verify by induction on k that

$$\lambda_w(S_{\alpha_1} \cdots S_{\alpha_k} S_{\beta_k}^* \cdots S_{\beta_1}^*) = \lambda_u(S_{\alpha_1} \cdots S_{\alpha_k} S_{\beta_k}^* \cdots S_{\beta_1}^*).$$

Indeed, for $k = 1$ we have

$$\lambda_w(S_{\alpha_1} S_{\beta_1}^*) = w S_{\alpha_1} S_{\beta_1}^* w^* = u \varphi(v) S_{\alpha_1} S_{\beta_1}^* \varphi(v)^* u^* = u S_{\alpha_1} S_{\beta_1}^* u^* = \lambda_u(S_{\alpha_1} S_{\beta_1}^*),$$

since $\varphi(v)$ and $S_{\alpha_1} S_{\beta_1}^*$ commute. Now assuming the identity holds for $k - 1$, we have

$$\begin{align*}
\lambda_w(S_{\alpha_1} \cdots S_{\alpha_k} S_{\beta_k}^* \cdots S_{\beta_1}^*) &= \lambda_w(S_{\alpha_1}) \lambda_w(S_{\alpha_2} \cdots S_{\alpha_k} S_{\beta_k}^* \cdots S_{\beta_2}^*) \lambda_w(S_{\beta_k}^*) \\
&= u \varphi(v) S_{\alpha_1} \lambda_u(S_{\alpha_2} \cdots S_{\alpha_k} S_{\beta_k}^* \cdots S_{\beta_2}^*) \lambda_u(S_{\beta_k}^*) v^* S_{\beta_1}^* u^* \\
&= u S_{\alpha_1} \lambda_u(S_{\alpha_2} \cdots S_{\alpha_k} S_{\beta_k}^* \cdots S_{\beta_2}^*) S_{\beta_k}^* S_{\beta_1}^* u^* \\
&= \lambda_u(S_{\alpha_1} \cdots S_{\alpha_k} S_{\beta_k}^* \cdots S_{\beta_1}^*),
\end{align*}$$

since v is in the commutant of $\lambda_u(F_n)$. The proof of the remaining claim is similar. \hfill \Box

Corollary 2.2. Under the hypothesis of Proposition 2.1, assume further that $u \in F_n$. Then $\lambda_u(F_n) \subseteq F_n$ and thus $\lambda_w(F_n) \subseteq F_n$. However, w belongs to F_n if and only if v does.

The crucial role in the above construction is played by $\lambda_u(F_n)' \cap O_n$. It turns out that this relative commutant can be calculated as follows (compare [9, Proposition 3.1]).
Proposition 2.3. Let u be a unitary in \mathcal{O}_n, then

$$\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n = \bigcap_{k \geq 1} (\text{Ad} u \circ \varphi)^k(\mathcal{O}_n).$$

(1)

Proof. Clearly an element $x \in \mathcal{O}_n$ lies in $\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n$ if and only if, for all $k \geq 1$ and all $y \in \mathcal{F}_n^k$, x commutes with $\lambda_u(y) = u_k y u_k^*$, i.e.

$$u_k^* x u_k \in (\mathcal{F}_n^k)' \cap \mathcal{O}_n = \varphi^k(\mathcal{O}_n).$$

This means precisely that, for each $k \geq 1$, x lies in the range of $\text{Ad}(u_k) \varphi^k = (\text{Ad} u \circ \varphi)^k$.

It is also useful to observe that $\text{Ad} u \circ \varphi$ restricts to an automorphism of $\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n$. This follows from the following simple lemma.

Lemma 2.4. Let \mathcal{A} be a unital C^*-algebra and ρ an injective unital $*$-endomorphism of \mathcal{A}, then ρ restricts to a $*$-automorphism of

$$\mathcal{A}_\rho := \bigcap_{k \in \mathbb{N}} \rho^k(\mathcal{A}).$$

Proof. One has a descending tower of unital C^*-subalgebras of \mathcal{A},

$$\mathcal{A} \supset \rho(\mathcal{A}) \supset \rho^2(\mathcal{A}) \supset \ldots,$$

thus \mathcal{A}_ρ is a unital C^*-subalgebra of \mathcal{A}. An element $x \in \mathcal{A}_\rho$ satisfies

$$x = \rho(x_1) = \rho^2(x_2) = \cdots = \rho^k(x_k) = \ldots$$

for elements x_1, \ldots, x_k, \ldots in \mathcal{A}. It is then clear that ρ maps \mathcal{A}_ρ into itself, and moreover $x_1, \ldots, x_k, \ldots \in \mathcal{A}_\rho$ so that in particular $\rho(\mathcal{A}_\rho) = \mathcal{A}_\rho$. □

Endomorphisms ρ for which $\mathcal{A}_\rho = \mathbb{C}1$ are often called shifts.

Corollary 2.5 shows how to construct examples of unitaries w outside \mathcal{F}_n for which nevertheless $\lambda_w(\mathcal{F}_n) \subseteq \mathcal{F}_n$. To this end, it suffices to find a unitary $u \in \mathcal{F}_n$ such that the relative commutant $\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n$ is not contained in \mathcal{F}_n. This is possible. In fact, one can even find unitaries in a matrix algebra \mathcal{F}_n^k such that $\lambda_u(\mathcal{O}_n)' \cap \mathcal{O}_n$ is not contained in \mathcal{F}_n. The existence of such unitaries was demonstrated in [3]. The relative commutant $\lambda_u(\mathcal{O}_n)' \cap \mathcal{O}_n$ coincides with the space (λ_u, λ_u) of self-intertwiners of the endomorphism λ_u, which can be computed as

$$(\lambda_u, \lambda_u) = \{ x \in \mathcal{O}_n : x = (\text{Ad} u \circ \varphi)(x) \}.$$
Example 2.5. We give an explicit example of a permutation unitary \(u \in \mathcal{P}_2^4 \) and a unitary \(v \) in \(\mathcal{S}_2 \setminus \mathcal{P}_2 \) such that \(v \in (\lambda_u, \lambda_v) \). Indeed, one can check by a lengthy but straightforward computation that the pair:

\[
u = S_1 S_2 S_3 S_4 S_1^* S_2^* S_3^* S_4^* + S_1 S_2 S_3 S_4 S_1^* S_2^* S_3^* S_4^* + S_1 S_2 S_3 S_4 S_1^* S_2^* S_3^* S_4^* + S_1 S_2 S_3 S_4 S_1^* S_2^* S_3^* S_4^* \]

does the job.

The way the examples in this and the following section have been constructed leaves open the possibility that for each endomorphism of \(\mathcal{O}_n \) globally preserving the core UHF-subalgebra there exists another one, induced by a unitary in \(\mathcal{F}_n \), which restricts to the same endomorphism of \(\mathcal{F}_n \). So far, this question has not been settled in full generality and we would like to leave it as an open problem.

3 An endomorphism on \(\mathcal{O}_2 \) with relative commutant containing \(\mathcal{O}_2 \)

As observed in the previous section, if \(u \) is a unitary element in a Cuntz algebra \(\mathcal{O}_n \) and \(v \) is a unitary element in the relative commutant \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \), then \(\lambda_u \) and \(\lambda_v \) will agree on the canonical UHF-algebra \(\mathcal{F}_n \) contained in \(\mathcal{O}_n \). Hence, if \(u \) belongs to \(\mathcal{F}_n \) and \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \) is not contained in \(\mathcal{F}_n \), then one can choose \(v \) as above such that \(v \) and hence \(vu \), do not belong to \(\mathcal{F}_n \); whereas \(\lambda_v \) will map \(\mathcal{F}_n \) into itself. We constructed an example of such a unitary element \(u \) in Example 2.5 above. In this section we shall construct another example, in the case where \(n = 2 \), where the relative commutant \(\lambda_u(\mathcal{F}_2)' \cap \mathcal{O}_2 \) contains \(\mathcal{O}_2 \) and therefore is not contained in \(\mathcal{F}_2 \).

It is well-known, [12], that \(\mathcal{O}_2 \) is isomorphic to \(\mathcal{O}_2 \otimes \mathcal{O}_2 \). In particular there is a unital embedding \(\mathcal{O}_2 \otimes \mathcal{O}_2 \rightarrow \mathcal{O}_2 \). If one composes that with
the embedding $\mathcal{O}_2 \to \mathcal{O}_2 \otimes \mathcal{O}_2$ given by $x \mapsto x \otimes 1$, then one obtains an endomorphism $\lambda: \mathcal{O}_2 \to \mathcal{O}_2$ such that $\lambda(\mathcal{O}_2)' \cap \mathcal{O}_2$ contains a unital copy of \mathcal{O}_2. We show that one can choose this endomorphism λ such that it is of the form $\lambda = \lambda_u$ for some unitary u in \mathcal{F}_2.

Let $\eta: \mathcal{O}_2 \to D$ be a unital $*$-homomorphsim. Let S_1, S_2 be the two canonical generators of \mathcal{O}_2. Define unital endomorphisms φ on \mathcal{O}_2 and ψ on D by

$$\varphi(x) = S_1xS_1^* + S_2xS_2^*, \quad \psi(y) = \eta(S_1)y\eta(S_1)^* + \eta(S_2)y\eta(S_2)^*, \quad (2)$$

for $x \in \mathcal{O}_2$ and $y \in D$. One has that $\psi \circ \eta = \eta \circ \varphi$. Close inspection of the proof of Theorem 3.6 from [11] shows that the following holds:

Theorem 3.1 (cf. [11]). Let D be a unital properly infinite C^*-algebra, let $\eta: \mathcal{O}_2 \to D$ be a unital $*$-homomorphism, and let D_0 be a unital sub-C^*-algebra of D such that

(i) D_0 is K_1-injective and has bounded exponential length,

(ii) D_0 is invariant under the endomorphism ψ on D associated with η (as defined in (2) above).

(iii) D_0 contains $\eta(\mathcal{F}_2)$.

It follows that $\{v\psi(v)^* \mid v \in \mathcal{U}(D_0)\}$ is dense in $\mathcal{U}(D_0)$.

Combining the theorem above with [12, Lemma 1] we get the following:

Proposition 3.2. There is a sequence $\{v_n\}$ of unitaries in \mathcal{F}_2 such that the corresponding sequence $\{\lambda_{v_n}\}$ of endomorphisms on \mathcal{O}_2 is asymptotically central.

Proof. As in the proof of [12, Lemma 1], if $\{v_n\}$ is a sequence of unitaries in \mathcal{O}_2, then $\{\lambda_{v_n}\}$ is asymptotically central if and only if

$$\varphi(v_n)^*v_n \to \sum_{i,j=1}^{2} S_i S_j S_i^* S_j^*.$$

The unitary on the right-hand side belongs to \mathcal{F}_2. The existence of the desired sequence $\{v_n\}$ of unitaries in \mathcal{F}_2 therefore follows from Theorem 3.1 with $D = \mathcal{O}_2$, $\eta = \text{Id}$, and with $D_0 = \mathcal{F}_2$. \qed
Proposition 3.3. In $\mathcal{O}_2 \otimes \mathcal{O}_2$ consider the unitary element

$$u_0 = S_1^* \otimes S_1 + S_2^* \otimes S_2,$$

and let B be the C^*-algebra generated by $\mathcal{F}_2 \otimes \mathcal{F}_2 \cup \{u_0\}$. Then

$$B = C^*(\mathcal{F}_2 \otimes \mathcal{F}_2, u_0) \cong \left(\bigotimes_{n \in \mathbb{Z}} M_2 \right) \rtimes_{\text{shift}} \mathbb{Z},$$

whence B is a simple \mathbb{AT}-algebra of real rank zero. In particular, B is K_1-injective and has finite exponential rank. Also, B is invariant under the endomorphism $\varphi \otimes \text{Id}$ on $\mathcal{O}_2 \otimes \mathcal{O}_2$ (where φ is as defined in (2)).

The “half flip” on $\mathcal{O}_2 \otimes \mathcal{O}_2$ is approximately inner with unitaries belonging to B, i.e., there is a sequence $\{z_n\}$ of unitaries in B such that $z_n(x \otimes 1)z_n^* \to 1 \otimes x$ for all $x \in \mathcal{O}_2$.

Proof. With φ as above, put

$$E^{(n)}_{ij} = \begin{cases}
\varphi^{(-n)}(S_i S_j^*) \otimes 1, & n \leq 0, \\
1 \otimes \varphi^{n-1}(S_i S_j^*), & n \geq 1,
\end{cases}$$

for $i, j = 1, 2$ and for $n \in \mathbb{Z}$. Then $C^*(E^{(n)}_{ij} \mid i, j = 1, 2), n \in \mathbb{Z}$, is a commuting family of C^*-algebras each isomorphic to M_2, and

$$\mathcal{F}_2 \otimes \mathcal{F}_2 = C^*(E^{(n)}_{ij} \mid i, j = 1, 2, n \in \mathbb{Z}).$$

Moreover, $u_0 E^{(n)}_{ij} u_0^* = E^{(n+1)}_{ij}$ for all $i, j = 1, 2$ and for all $n \in \mathbb{Z}$. This proves that

$$C^*(\mathcal{F}_2 \otimes \mathcal{F}_2, u_0) \cong \left(\bigotimes_{n \in \mathbb{Z}} M_2 \right) \rtimes_{\text{shift}} \mathbb{Z}.$$
Notice that z belongs to $\mathcal{F}_2 \otimes \mathcal{F}_2$. Therefore $\kappa(u_0)$ belongs to $C^*(\mathcal{F}_2 \otimes \mathcal{F}_2, u_0)$. As $\kappa^n(u_0) = \kappa^{n-1}(z) \kappa^{n-1}(u_0)$ it follows by induction that $\kappa^n(u_0)$ belongs to $C^*(\mathcal{F}_2 \otimes \mathcal{F}_2, u_0)$ for all n. This proves that $C^*(\mathcal{F}_2 \otimes \mathcal{F}_2, u_0)$ is invariant under κ.

It follows from Theorem 3.1, with $D = \mathcal{O}_2 \otimes \mathcal{O}_2$, with $D_0 = B$, and with $\eta: \mathcal{O}_2 \to \mathcal{O}_2 \otimes \mathcal{O}_2$ given by $\eta(x) = x \otimes 1$, that there is a sequence $\{z_n\}$ of unitaries in B such that $z_n \kappa(z_n)^* \to u_0$. It is straightforward to check that $z_n(S_j \otimes 1) z_n^* \to 1 \otimes S_j$ for $j = 1, 2$.

Corollary 3.4. Let D be a unital C^*-algebra, and suppose that $\eta_1, \eta_2: \mathcal{O}_2 \to D$ are unital $*$-homomorphisms with commuting images. There is a sequence $\{w_n\}$ of unitaries in the sub-C^*-algebra $D_0 = C^*(\eta_1(\mathcal{F}_2), u)$, where

$$u = \eta_2(S_1) \eta_1(S_1)^* + \eta_2(S_2) \eta_1(S_2)^*,$$

such that $w_n \eta_1(x) w_n^* \to \eta_2(x)$ for all $x \in \mathcal{O}_2$.

Proof. The $*$-homomorphisms η_1 and η_2 induce a $*$-homomorphism $\eta: \mathcal{O}_2 \otimes \mathcal{O}_2 \to D$ given by

$$\eta(x \otimes y) = \eta_1(x) \eta_2(y), \quad x, y \in \mathcal{O}_2.$$

In the notation of Proposition 3.3 we have

$$\eta(u_0) = u, \quad \eta(\mathcal{F}_2 \otimes 1) = \eta_1(\mathcal{F}_2), \quad \eta(1 \otimes \mathcal{F}_2) = \eta_2(\mathcal{F}_2).$$

It follows from Proposition 3.3 and its proof that $1 \otimes \mathcal{F}_2$ is contained in the C^*-algebra generated by $\{E^{(0)}_{ij}\}$ and u_0 and hence is contained in $C^*(\mathcal{F}_2 \otimes 1, u_0)$. The C^*-algebra B from that proposition is therefore generated by $\mathcal{F}_2 \otimes 1$ and u_0, which shows that $\eta(B) = D_0$.

Let $\{z_n\}$ be as in Proposition 3.3 and put $w_n = \eta(z_n) \in D_0$. Then

$$w_n \eta_1(x) w_n^* = \eta(z_n(x \otimes 1) z_n^*) \to \eta(1 \otimes x) = \eta_2(x)$$

for all $x \in \mathcal{O}_2$. \qed

Proposition 3.5. There are sequences $\{v_n\}$ and $\{w_n\}$ of unitaries in \mathcal{F}_2 such that

(i) $\{\lambda w_n\}$ is asymptotically central in \mathcal{O}_2,
Let us proceed to show that this will lead to a contradiction.

\[\| w_n \lambda_{n+1} (S_j) w_n^* - \lambda_{n} (S_j) \| < 2^{-n} \text{ for all } n \in \mathbb{N} \text{ and for } j = 1, 2, \]

(iii) \[\| w_n S_j w_n^* - S_j \| < 2^{-n} \text{ for all } n \in \mathbb{N} \text{ and for } j = 1, 2. \]

Proof. Let \(\{v_n\} \) be as in Proposition 3.2. Then \(\{v_n\} \) and any subsequence thereof will satisfy (i). Upon passing to a subsequence we can assume that

\[\| \lambda_{v_n+1} (S_j) \lambda_{v_n} (S_j) - \lambda_{v_n} (S_j) \lambda_{v_n} (S_j) \| < 1/n, \]

for all \(m > n \geq 1 \) and for all \(i, j = 1, 2 \). We claim that one can find a sequence \(\{w_n\} \) of unitaries in \(\mathcal{F}_2 \) satisfying (ii) and (iii) above—provided that we again pass to a subsequence of \(\{v_n\} \). It suffices to show that for each \(\delta > 0 \) there exists a natural number \(n \) such that for each natural number \(m > n \) there is a unitary \(w \in \mathcal{F}_2 \) for which

\[\| w \lambda_{v_m} (S_j) w^* - \lambda_{v_n} (S_j) \| < \delta, \quad \| w S_j w^* - S_j \| < \delta \]

for \(j = 1, 2 \). We give an indirect proof of the latter statement. If it were false, then there would exist \(\delta > 0 \) and a sequence \(1 \leq n_1 < n_2 < n_3 < \cdots \) such that one of

\[\| w \lambda_{v_{n_k+1}} (S_i) w^* - \lambda_{v_{n_k}} (S_i) \|, \quad \| w S_i w^* - S_i \|, \]

\(i = 1, 2 \), is greater than \(\delta \) for every \(k \) and for all unitaries \(w \) in \(\mathcal{F}_2 \). We proceed to show that this will lead to a contradiction.

Choose a free ultrafilter \(\omega \) on \(\mathbb{N} \) and consider the relative commutant \(\mathcal{O}'_2 \cap (\mathcal{O}_2)_\omega \) inside the ultrapower \((\mathcal{O}_2)_\omega \). This \(C^* \)-algebra is purely infinite and simple (see [7, Proposition 3.4]). Consider the unital \(* \)-homomorphisms \(\eta_1, \eta_2 : \mathcal{O}_2 \to \mathcal{O}'_2 \cap (\mathcal{O}_2)_\omega \) given by

\[\eta_1 (x) = \pi_\omega (\lambda_{v_{n_1}} (x), \lambda_{v_{n_2}} (x), \lambda_{v_{n_3}} (x), \ldots), \quad \eta_2 (x) = \pi_\omega (\lambda_{v_{n_1}} (x), \lambda_{v_{n_2}} (x), \lambda_{v_{n_3}} (x), \ldots), \]

\(x \in \mathcal{O}_2 \), where \(\pi_\omega : \ell^\infty (\mathcal{O}_2) \to (\mathcal{O}_2)_\omega \) is the quotient mapping. The images of \(\eta_1 \) and \(\eta_2 \) commute by (3). Put

\[u = \eta_2 (S_1) \eta_1 (S_1)^* + \eta_2 (S_2) \eta_1 (S_2)^* = \pi_\omega (v_{n_1} v_{n_2}^*, v_{n_2} v_{n_3}^*, v_{n_3} v_{n_4}^*, \ldots), \]

and notice that \(u \) is a unitary element in \(\mathcal{O}'_2 \cap (\mathcal{F}_2)_\omega \subseteq \mathcal{O}'_2 \cap (\mathcal{O}_2)_\omega \). Use Corollary 3.4 to obtain a sequence \(\{w_n\} \) of unitaries in \(C^* (\eta_1 (\mathcal{F}_2), u) \subseteq \mathcal{O}'_2 \cap \)
There is a unitary element \(\rho \) and Corollary 3.7. Whenever \(w \) for \(j \)
for \(x \), for all \(x \in \mathcal{O}_2 \).

Each unitary element in the ultrapower \((\mathcal{F}_2)_\omega \) lifts to a unitary element
in \(\ell^\infty(\mathcal{F}_2) \), so we can write

\[
w = \pi_\omega(w_1, w_2, w_3, \ldots),
\]

where each \(w_n \) is a unitary element in \(\mathcal{F}_2 \). This establishes the desired

\[
\lim_{n \to \omega} \| S_j w_n - w_n S_j \| = 0, \quad \lim_{n \to \omega} \| w_n \lambda_{v_{nk+1}}(S_j) w_n^* - \lambda_{v_{nk}}(S_j) \| = 0,
\]

for \(j = 1, 2 \) and for all \(k \).

Theorem 3.6. There is a unitary element \(u \in \mathcal{F}_2 \) such that the relative

\[
\lambda_u(\mathcal{O}_2)' \cap \mathcal{O}_2 \text{ contains a unital copy of } \mathcal{O}_2.\]

Proof. Let \(\{v_n\} \) and \(\{w_n\} \) be as in Proposition 3.5 and define endomorphisms

on \(\mathcal{O}_2 \) by

\[
\lambda_n(x) = w_1 w_2 \cdots w_n \lambda_{v_{n+1}}(x) w_n^* \cdots w_2^* w_1^*, \quad \rho_n(x) = w_1 w_2 \cdots w_n x w_n^* \cdots w_2^* w_1^*.
\]

for \(x \in \mathcal{O}_2 \). Then

\[
\| \lambda_n(S_j) - \lambda_{n-1}(S_j) \| < 2^{-n}, \quad \| \rho_n(S_j) - \rho_{n-1}(S_j) \| < 2^{-n}
\]

for \(j = 1, 2 \), and \(\lambda_n(x) \rho_n(y) - \rho_n(y) \lambda_n(x) \to 0 \) for all \(x, y \in \mathcal{O}_2 \). Using that

\[
w \lambda_n(x) w^* = \lambda_{w_n \varphi}(w^*)(x)
\]

whenever \(w \) is a unitary in \(\mathcal{O}_2 \) and \(x \in \mathcal{O}_3 \), we see that \(\lambda_n = \lambda_{u_n} \) for some

unitary \(u_n \) in \(\mathcal{F}_2 \). It follows from the estimates above that the sequences

\(\{\lambda_n(S_j)\} \) and \(\{\rho_n(S_j)\} \), \(j = 1, 2 \), and hence also the sequence \(\{u_n\} \), are

Cauchy and therefore convergent. Let \(\lambda: \mathcal{O}_2 \to \mathcal{O}_2 \) and \(\rho: \mathcal{O}_2 \to \mathcal{O}_2 \) be the

(pointwise-norm) limits of the sequences \(\{\lambda_n\} \) and \(\{\rho_n\} \), respectively, and let \(u \in \mathcal{F}_2 \) be the limit of the sequence \(\{u_n\} \). Then \(\lambda = \lambda_u \) and the images of \(\lambda \)
and \(\rho \) commute. \(\square \)

Corollary 3.7. There is a unitary \(v \in \mathcal{O}_2 \) such that \(\lambda_u(\mathcal{F}_2) \subseteq \mathcal{F}_2 \) but \(v \notin F_2 \).
Proof. Let $u \in O_2$ be as in Theorem 3.6 and take a unitary element z in $\lambda_u(O_2)' \cap O_2$ that does not belong to F_2. Put $v = zu$. Then v does not belong to F_2, and λ_u and λ_v coincide on F_2 by Proposition 2.1, whence λ_v maps F_2 into itself.

Corollary 3.8. There is a unital $*$-homomorphism $\sigma: O_2 \otimes O_2 \rightarrow O_2$ such that $\sigma(F_2 \otimes F_2) \subseteq F_2$.

Proof. Take $\lambda: O_2 \rightarrow O_2$ and $\rho: O_2 \rightarrow O_2$ as in the proof of Theorem 3.6. Recall that λ and ρ have commuting images and that $\lambda(F_2) \subseteq F_2$ and $\rho(F_2) \subseteq F_2$. We can therefore define a $*$-homomorphism $\sigma: O_2 \otimes O_2 \rightarrow O_2$ by

$$\sigma(x \otimes y) = \lambda(x)\rho(y), \quad x, y \in O_2.$$

Then

$$\sigma(F_2 \otimes F_2) = \lambda(F_2)\rho(F_2) \subseteq F_2.$$

We know that $O_2 \otimes O_2$ and O_2 are isomorphic, but we do not know if one can find an isomorphism $\sigma: O_2 \otimes O_2 \rightarrow O_2$ such that $\sigma(F_2 \otimes F_2)$ is contained in (or better, equal to) F_2.

4 Endomorphisms preserving the canonical UHF-subalgebra

Below, ϕ denotes the standard left inverse of φ, i.e., the unital, completely positive map given by $\phi(x) := \frac{1}{n} \sum S_i^* x S_i$, $x \in O_n$.

Lemma 4.1. Let $u \in U(O_n)$, then the following conditions are equivalent:

(i) $\phi(u) \in U(O_n)$;
(ii) $u \in \varphi(O_n)$;
(iii) $S_i^* u S_i = S_j^* u S_j \in U(O_n)$, for all $i, j \in \{1, \ldots, n\}$.

Proof. (i) ⇒ (ii): it follows from (i) that u lies in the multiplicative domain of ϕ and therefore, by Choi’s theorem, $\phi(S_i u) = \phi(S_i)\phi(u)$, that is $u S_i = S_i \phi(u)$ for all $i = 1, \ldots, n$. Thus, $u = \varphi(\phi(u))$.

The implications (ii) ⇒ (iii) and (iii) ⇒ (i) are obvious.

12
Lemma 4.2. For $v, w \in U(O_n)$ the following three conditions are equivalent.

(i) Endomorphisms λ_v and λ_w coincide on F_n.

(ii) For each $k \geq 1$ we have $w_k^*v_k \in \varphi^k(O_n)$.

(iii) There exists a sequence of unitaries $z_k \in U(O_n)$ such that $z_1 = \phi(w^*v)$ and $z_{k+1} = \phi(w^*z_kv)$ for all $k \geq 1$.

Proof. The endomorphisms λ_v and λ_w coincide on F_n if and only if they coincide on each F_n^k. Now if α and β are two multi-indices of length k then $\lambda_v(S_\alpha S_\beta^*) = v_k S_\alpha S_\beta^* v_k^*$ and $\lambda_w(S_\alpha S_\beta^*) = w_k S_\alpha S_\beta^* w_k^*$. Thus $\lambda_v(S_\alpha S_\beta^*) = \lambda_w(S_\alpha S_\beta^*)$ for all such α, β if and only if $w_k^*v_k$ is in the commutant of F_n^k.

Proposition 4.3. If $w \in U(O_n)$ then $\lambda_w(F_n) \subseteq F_n$ if and only if λ_w and $\lambda_{\alpha_t(w)}$ coincide on F_n for all $t \in \mathbb{R}$. This in turn takes place if and only if one can inductively define unitaries $z_t^{(k)}$, $k \geq 1$, $t \in \mathbb{R}$ by

$$\varphi(z_t^{(1)}) = w^* \alpha_t(w), \quad (\text{Ad}_w \circ \varphi)(z_t^{(k+1)}) = z_t^{(k)}.$$

Moreover, in that case $t \mapsto z_t^{(1)}$ ($t \in \mathbb{R}$) is a unitary α-cocycle in $\lambda_w(F_n)' \cap O_n$. Finally, if $\lambda_w(F_n) \subseteq F_n$ then $w \in F_n$ if and only if λ_w and $\lambda_{\alpha_t(w)}$ have the same range for all $t \in \mathbb{R}$.

Proof. Given a unitary w in O_n one has, by a direct computation,

$$\lambda_{\alpha_t(w)} = \alpha_t \circ \lambda_w \circ \alpha_t^{-1},$$

for all $t \in \mathbb{R}$. Since F_n is precisely the fixed point algebra under the gauge action, the first claim is now clear. The second equivalence in terms of the existence of the unitaries $z_t^{(k)}$ is then deduced from Lemma 4.2 (see also Remark 4.4, below). Now notice that if such unitaries exist one has, for any $s, t \in \mathbb{R}$,

$$\varphi(z_t^{(1)}) = w^* \alpha_{t+s}(w) = w^* \alpha_t(\alpha_s(w)) = w^* \alpha_t(ww^* \alpha_s(w)) = w^* \alpha_t(w) \alpha_t(ww^* \alpha_s(w)) = \varphi(z_t^{(1)}) \alpha_t(\varphi(z_s^{(1)})),$$

from which the cocycle equation for $z^{(1)}$ follows immediately, since α and φ commute. Moreover, $z_t^{(1)} \in \lambda_w(F_n)' \cap O_n$ for all $t \in \mathbb{R}$ by identity (1).

13
Finally, suppose that \(\lambda_w(\mathcal{F}_n) \subseteq \mathcal{F}_n \) and \(\lambda_w(\mathcal{O}_n) = \lambda_{\alpha_t(w)}(\mathcal{O}_n) \). Then, for each \(t \), define a map \(\beta_t \) from \(\mathcal{O}_n \) into itself via \(\lambda_{\alpha_t(w)}(x) = \lambda_w(\beta_t(x)), \) \(x \in \mathcal{O}_n \).

It must necessarily be that \(\beta_t \in \text{Aut}_{\mathcal{F}_n}(\mathcal{O}_n) \) and the argument in the proof of [6, Proposition 2.1(b)] goes through.

In particular, if \(\lambda_w \in \text{Aut}(\mathcal{O}_n) \) or, more generally, \(\lambda_w(\mathcal{F}_n)' \cap \mathcal{O}_n = \mathbb{C}1 \) then \(\lambda_w(\mathcal{F}_n) \subseteq \mathcal{F}_n \) if and only if \(w \in \mathcal{F}_n \).

Remark 4.4. Existence of unitaries \(z_t^{(k)} \), as defined in Proposition 4.3, is easily seen to be equivalent to existence of unitaries \(\tilde{z}_t^{(k)} \), \(k \geq 1, \ t \in \mathbb{R} \), defined inductively by

\[
\varphi(\tilde{z}_t^{(1)}) = w^*\alpha_t(w), \quad \varphi(\tilde{z}_t^{(k+1)}) = w^*\tilde{z}_t^{(k)}\alpha_t(w).
\]

Proposition 4.5. Let \(w \in U(\mathcal{O}_n) \) be such that \(\lambda_w(\mathcal{F}_n^1) \subseteq \mathcal{F}_n \). Then the unitary \(\alpha \)-cocycle \(z_t^{(1)} := \phi(w^*\alpha_t(w)) \) is a coboundary, i.e. there exists a unitary \(z \) such that \(z_t^{(1)} = z\alpha_t(z^*) \) for all \(t \in \mathbb{R} \).

Proof. Indeed, since \(\lambda_w(\mathcal{F}_n^1) \subseteq \mathcal{F}_n \) there exists a unitary \(u \in \mathcal{F}_n \) such that \(\lambda_w \) and \(\lambda_u \) coincide on \(\mathcal{F}_n^1 \). In fact, we could take as \(\lambda_u \) an inner automorphism implemented by a unitary in \(\mathcal{F}_n \). Then \(w^*u \) commutes with \(\mathcal{F}_n^1 \), and thus there exists a unitary \(z \) such that \(w^*u = \varphi(z) \). Now we have \(\varphi(z\alpha_t(z^*)) = w^*u\alpha_t(u^*)\alpha_t(w) = w^*\alpha_t(w) \), since \(\alpha_t(u^*) = u^* \).

Proposition 4.6. If \(w \) is a unitary in \(\mathcal{O}_n \) such that \(w\mathcal{D}_nw^* \subseteq \mathcal{F}_n \) then \(w^*\alpha_t(w) \in \mathcal{D}_n \) for all \(t \in \mathbb{R} \). If, in addition, \(\lambda_w(\mathcal{F}_n) \subseteq \mathcal{F}_n \) then \(t \mapsto z_t^{(1)} \) is a one-parameter unitary group in \(\lambda_w(\mathcal{F}_n)' \cap \mathcal{D}_n \).

Proof. By assumption, for any \(x \in \mathcal{D}_n \) one has \(wxw^* = \alpha_t(wxw^*) \) for all \(t \in \mathbb{R} \). Therefore, \(\mathcal{D}_n \) being a MASA in \(\mathcal{O}_n \), \(w^*\alpha_t(w) \in \mathcal{D}_n' \cap \mathcal{O}_n = \mathcal{D}_n \). Now, notice that \(\mathcal{D}_n' \cap \varphi(\mathcal{O}_n) = \varphi(\mathcal{D}_n) \), so that indeed if \(\lambda_w(\mathcal{F}_n) \subseteq \mathcal{F}_n \) the cocycle given by Proposition 4.3 lies in \(\mathcal{D}_n \subseteq \mathcal{F}_n \), and the conclusion follows at once from the cocycle equation and Proposition 4.3.

Of course, the first part of the preceding proposition applies to all elements of the group \(\mathcal{S}_n \), as they normalize \(\mathcal{D}_n \).

The following result is a slight reformulation of Proposition 2.1, enhanced for our needs, put in a more symmetric form and taking also into account Proposition 2.3 and Lemma 2.4.
Proposition 4.7. Let \(u \) and \(w \) be two unitaries in \(\mathcal{O}_n \). If \(\lambda_u \) and \(\lambda_w \) coincide on \(\mathcal{F}_n \) then, for every nonnegative integer \(h \),

\[
(\text{Ad} u \circ \varphi)^h(wu^*) \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n .
\]

Conversely, if \(wu^* \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \) then \(\lambda_u(x) = \lambda_w(x) \) for any \(x \in \mathcal{F}_n \).

Proof. Concerning the first implication, by the above it clearly suffices to show only the case \(h = 0 \). Indeed, for every \(k \geq 1 \) one has

\[
w^*\lambda_u(S_{\alpha_1} \ldots S_{\alpha_k} S_{\beta_k}^* \ldots S_{\beta_1}^*)uw^* = w^*uS_{\alpha_1} \ldots uS_{\alpha_k} S_{\beta_k}^* \ldots S_{\beta_1}^* u^*uw^* \\
= wS_{\alpha_1}uS_{\alpha_2} \ldots uS_{\alpha_k} S_{\beta_k}^* \ldots S_{\beta_1}^* u^*S_{\beta_k}^*w^* \\
= wS_{\alpha_1}\lambda_u(S_{\alpha_2} \ldots S_{\alpha_k} S_{\beta_k}^* \ldots S_{\beta_2}^*)S_{\beta_1}^*w^* \\
= wS_{\alpha_1}\lambda_w(S_{\alpha_2} \ldots S_{\alpha_k} S_{\beta_k}^* \ldots S_{\beta_2}^*)S_{\beta_1}^*w^* \\
= \lambda_w(S_{\alpha_1} \ldots S_{\alpha_k} S_{\beta_k}^* \ldots S_{\beta_1}^*)w^* .
\]

The opposite implication can be easily checked by induction on \(k \), just repeating the argument in Proposition 2.1 after noticing that if \(wu^* \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \) then, by Lemma 2.4, \(wu^* = u\varphi(z)u^* \) for some unitary \(z \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \), that is \(w = u\varphi(z) \).

In particular, it follows that if \(w \in \mathcal{U}(\mathcal{O}_n) \setminus \mathcal{F}_n \) and there exists some \(u \in \mathcal{U}(\mathcal{F}_n) \) such that \(\lambda_w \) and \(\lambda_u \) coincide on \(\mathcal{F}_n \) then \(w \) must necessarily be of the form \(w = u\varphi(z) \) for some unitary \(z \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \), which is exactly the situation discussed in section 2.

Corollary 4.8. Let \(w \) be a unitary in \(\mathcal{O}_n \) and suppose that \(\lambda_w(\mathcal{F}_n) = \mathcal{F}_n \). Then \(w \in \mathcal{F}_n \) and \(\lambda_w \in \text{Aut}(\mathcal{O}_n) \).

Proof. By Proposition 4.3, \(\lambda_w \) and \(\lambda_w(\mathcal{F}_n) \) coincide on \(\mathcal{F}_n \). Therefore, by Proposition 4.7 one has \(w\alpha(w^*) \in \mathcal{U}(\mathcal{F}_n \cap \mathcal{O}_n) = \mathbb{T} \) and thus \(w \) is an eigenvector for \(\alpha \). Hence \(w \) belongs to \(\mathcal{F}_n \) and the conclusion follows from [2, Proposition 1.1 (a)].

Combining [2, Proposition 1.1 (a)], Proposition 4.3 and Corollary 4.8, we obtain the following.

Corollary 4.9. For a unitary \(w \in \mathcal{O}_n \), the following three conditions are equivalent:
(i) $\lambda_w(\mathcal{F}_n) = \mathcal{F}_n$;

(ii) $\lambda_w \in \text{Aut}(\mathcal{O}_n)$ and $w \in \mathcal{F}_n$;

(iii) $\lambda_w \in \text{Aut}(\mathcal{O}_n)$ and $\lambda_w(\mathcal{F}_n) \subseteq \mathcal{F}_n$.

Corollary 4.10. Assume that λ_w is an endomorphism of \mathcal{O}_n that restricts to the identity on \mathcal{F}_n. Then λ_w is a gauge automorphism.

Proof. By Corollary 4.8, $\lambda_w \in \text{Aut}_{\mathcal{F}_n}(\mathcal{O}_n) = \{\alpha_t : t \in \mathbb{R}\}$.

Corollary 4.11. Let w be a unitary in \mathcal{O}_n such that $w^* \mathcal{D}_n w \subseteq \mathcal{F}_n$. If $\lambda_w(\mathcal{F}_n) \subseteq \mathcal{F}_n$ then $w_\alpha(w^*) \in \lambda_w(\mathcal{F}_n)' \cap \mathcal{D}_n$ so that, in particular, $w \in \mathcal{F}_n$ whenever λ_w is irreducible in restriction to \mathcal{F}_n.

Proof. This readily follows from Propositions 4.3, 4.6 and 4.7.

Corollary 4.12. Let $w \in \mathcal{S}_n$ be such that $\lambda_w(\mathcal{D}_n) = \mathcal{D}_n$ or, more generally, such that $\mathcal{D}_n \subseteq \lambda_w(\mathcal{F}_n)$. Then $\lambda_w(\mathcal{F}_n) \subseteq \mathcal{F}_n$ if and only if $w \in \mathcal{P}_n$.

Proof. An element of \mathcal{S}_n normalizes \mathcal{D}_n and thus satisfies the first assumption in the previous corollary. Then the only nontrivial assertion follows from the fact that an endomorphism λ_w of \mathcal{O}_n such that $\lambda_w(\mathcal{F}_n) \supseteq \mathcal{D}_n$ is necessarily irreducible in restriction to \mathcal{F}_n by an argument similar to the one in [2, Proposition 1.1], using the facts that \mathcal{D}_n is a MASA in \mathcal{F}_n and \mathcal{F}_n is simple.

Example 4.13. In order to provide a simple example, we consider the following situation. Let $w' \in \mathcal{P}_n$ be such that $\lambda_{w'}(\mathcal{D}_n) = \mathcal{D}_n$ but $\lambda_{w'} \notin \text{Aut}(\mathcal{O}_n)$ (many examples of such permutation unitaries were provided in [4]). Let $w'' \in \mathcal{S}_n \setminus \mathcal{P}_n$ be such that $\lambda_{w''} \in \text{Aut}(\mathcal{O}_n)$ (e.g., an inner one), so that $\lambda_{w''}(\mathcal{D}_n) = \mathcal{D}_n$. Set $\lambda_w := \lambda_{w'} \lambda_{w''}$, then $w = \lambda_w(w'')w' \in \mathcal{S}_n \setminus \mathcal{P}_n$ and $\lambda_w(\mathcal{D}_n) = \mathcal{D}_n$. Such λ_w is irreducible on \mathcal{O}_n and $\lambda_w(\mathcal{F}_n) \not\subseteq \mathcal{F}_n$.

Remark 4.14. In view of the above, it would also be very useful to have a general criterion for $w \in \mathcal{S}_n$ to satisfy

(i) $\lambda_w(\mathcal{D}_n) = \mathcal{D}_n$, or

(ii) $\lambda_w \in \text{Aut}(\mathcal{O}_n)$.

Such criteria for $w \in \mathcal{P}_n$ were given in [4, 13].
5 Analysis of cocycles for unitaries in S_n

Let $w \in S_n$. Then w is of the form

$$w = \sum_{(\alpha, \beta)} S_\alpha S_\beta^*,$$

where the sum runs over a certain family \mathcal{J} of pairs of multi-indices (α, β). For convenience, we also introduce a set $\mathcal{J}_2 := \{ \beta \mid (\alpha, \beta) \in \mathcal{J} \}$, which is in bijective correspondence with \mathcal{J} via $(\alpha, \beta) \leftrightarrow \beta$. The fact that w as above is unitary is equivalent to that both collections of the P_α’s and of the P_β’s form partitions of unity, i.e.

$$\sum_{(\alpha, \beta)} P_\alpha = \sum_{(\alpha, \beta)} P_\beta = 1.$$

Then, for each $i = 1, \ldots, n$, one has $S_i^* \sum_{(\alpha, \beta)} P_\alpha S_i = 1$ and similarly for the P_β’s and therefore, after summing over all i’s,

$$\sum_{i=1}^n S_i^* \left(\sum_{(\alpha, \beta)} P_\alpha \right) S_i = \sum_{i=1}^n S_i^* \left(\sum_{(\alpha, \beta)} P_\beta \right) S_i = n1.$$

Consequently, denoting by $\tilde{\alpha}$ (resp. $\tilde{\beta}$) the multi-index obtained from α (resp. β) after deleting the first entry, we have

$$\sum_{(\alpha, \beta)} P_{\tilde{\alpha}} = \sum_{(\alpha, \beta)} P_{\tilde{\beta}} = n1.$$

In other words, both collections of projections $\{P_{\tilde{\alpha}}\}$ and $\{P_{\tilde{\beta}}\}$ form an n-covering of unity.

In the sequel, we repeatedly make use of Proposition 4.3 without further mention. We compute for $t \in \mathbb{R}$

$$w^* \alpha_t(w) = \left(\sum_{(\alpha, \beta)} S_\beta S_\alpha^* \right) \left(\sum_{(\alpha', \beta')} e^{i t |\alpha'|-|\beta'|} S_{\alpha'} S_{\beta'}^* \right)$$

$$= \sum_{(\alpha, \beta)} e^{i t |\alpha|-|\beta|} P_\beta \in \mathcal{U}(D_n)$$

by orthogonality of the ranges of S_α’s. Throughout the reminder of this section, we assume that $\lambda_w(\mathcal{F}_n) \subseteq \mathcal{F}_n$. Therefore, $w^* \alpha_t(w)$ must be a unitary
in $\mathcal{D}_n \cap \varphi(O_n) = \varphi(D_n)$ and hence $z^{(1)}_t := \phi(w^*\alpha_t(w))$ must be a unitary in \mathcal{D}_n. We have

$$z^{(1)}_t = \frac{1}{n} \sum_{i=1}^n S^*_i \left(\sum_{(\alpha, \beta)} e^{it(|\alpha| - |\beta|)} P_{\beta} \right) S_i = \frac{1}{n} \sum_{(\alpha, \beta)} e^{it(|\alpha| - |\beta|)} P_{\beta}.$$

The last expression turns out to be unitary precisely when $|\alpha| - |\beta|$ is constant over the classes of J_2 with respect to the equivalence relation “generated by nontrivial overlaps of the P_{β}’s”. Namely, for $\beta, \beta' \in J_2$, define

$$\beta \sim \beta' \iff \exists \beta_1 = \beta, \ldots, \beta_r = \beta' \in J_2, \quad P_{\beta_s} P_{\beta_{s+1}} \neq 0, \quad \forall s = 1, \ldots, r - 1.$$

Thus, $z^{(1)}_t$ is unitary if and only if the function $\psi_1 : J_2 \to \mathbb{Z}$ such that $\psi_1(\beta) = |\alpha| - |\beta|$ is constant on the equivalence classes of relation \sim. Unfortunately, such combinatorial analysis of “higher cocycles” $z^{(k)}_t$ quickly becomes rather cumbersome. Thus from now on we make a simplifying assumption that for all $(\alpha, \beta) \in J$ we have $|\alpha| - |\beta| \in \{-1, 0, +1\}$.

Proposition 5.1. Let $w = \sum_{(\alpha, \beta) \in J} S_\alpha S^*_\beta \in S_n$ be such that $|\alpha| - |\beta| \in \{-1, 0, +1\}$ for all $(\alpha, \beta) \in J$. Then $\lambda_w(F_n) \subseteq F_n$ if and only if there exists a sequence of functions $\psi_k : J_2 \to \mathbb{Z}, k = 1, 2, \ldots$, such that

1. ψ_k is constant on the equivalence classes of relation \sim.

2. $\psi_1(\beta) = |\alpha| - |\beta|$ and $\psi_{k+1}(\beta) = \psi_k(\beta')$, where $(\alpha, \beta) \in J$ and β' is any element of J_2 such that β' is an initial segment of α.

If such functions exist then

$$z^{(k)}_t = \frac{1}{n} \sum_{(\alpha, \beta) \in J} e^{it\psi_k(\beta)} P_{\beta}$$

are unitary for all $k = 1, 2, \ldots$.

Proof. By Proposition 4.3, $\lambda_w(F_n) \subseteq F_n$ if and only if all “higher cocycles” $z^{(k)}_t, k = 1, 2, \ldots$, are unitary. We show by induction on k then under our hypothesis on w there exist functions $\psi_k, k = 1, \ldots, m$ satisfying conditions (1) and (2) above if and only if cocycles $z^{(k)}_t, k = 1, \ldots, m$ are unitary and
given by formula (4). Case \(k = 1 \) is established just above this lemma. So assume the inductive hypothesis holds for \(k \). Then a direct calculation yields

\[
z_t^{(k+1)} = \phi(w^* z_t^{(k)} w) = \frac{1}{n} \sum_{(\alpha, \beta) \in J} e^{i \psi_k(\beta')} P_{\beta'},
\]

where \(\beta' \) is an element of \(J_2 \) such that \(\tilde{\beta}' \) is an initial segment of \(\alpha \). Note that for another such element \(\beta'' \) we have \(\psi_k(\beta') = \psi_k(\beta'') \), since function \(\psi_k \) is constant on equivalence classes of relation \(\sim \). Thus we can define \(\psi_{k+1}(\beta) = \psi_k(\beta') \). Formula (5) yields a unitary if and only if function \(\psi_{k+1} \) is constant on equivalence classes of \(\sim \). This ends the proof of the inductive step and the lemma.

The conditions of Proposition 5.1 can be given the following graphical interpretation. Let \(w = \sum_{(\alpha, \beta) \in J} S_{\alpha} S_{\beta}^* \in S_n \) be such that \(|\alpha| - |\beta| \in \{-1, 0, +1\} \) for all \((\alpha, \beta) \in J \). We associate with \(w \) a finite directed graph \(E_w \) as follows. Vertices of \(E_w \) are the equivalence classes of relation \(\sim \). Given two vertices \(a_1, a_2 \), there is a single edge from \(a_1 \) to \(a_2 \) if and only if there exist \((\alpha, \beta) \in J \) with \(\beta \) in the equivalence class \(a_1 \) and \(\beta' \in J_2 \) in the equivalence class \(a_2 \) such that \(\tilde{\beta}' \) is an initial segment of \(\alpha \). We denote by \(E_w^k \) the collection of all directed paths in \(E_w \) of length \(k \), and by \(E_w^k(a) \) the collection of those such paths which begin at vertex \(a \).

If the function \(\psi_1 \) (corresponding to \(w \)) is constant on the equivalence classes of \(\sim \) then we can assign labels from \(\{-1, 0, +1\} \) to vertices of \(E_w \) in such a way that the label of \(a \) is \(\psi_1(\beta) \) for \(\beta \) in the equivalence class \(a \). Now the remaining conditions of Lemma 5.1 are equivalent to the following path condition:

For each vertex \(a \) and for each \(k \in \mathbb{N} \) the ranges of all directed paths in \(E_w^k(a) \) have the same labels.

Since the graph \(E_w \) is finite, we obtain the following:

Corollary 5.2. Let \(w = \sum_{(\alpha, \beta) \in J} S_{\alpha} S_{\beta}^* \in S_n \) be such that \(|\alpha| - |\beta| \in \{-1, 0, +1\} \) for all \((\alpha, \beta) \in J \). Then there exists \(r \in \mathbb{N} \) such that

\[
\lambda_w(F_n^r) \subseteq F_n \Rightarrow \lambda_w(F_n) \subseteq F_n.
\]

Example 5.3. Let \(u \in P^d_2 \) and \(v \in S_2 \) be as given in Example 2.5. Set \(w = vu \). Then the corresponding graph \(E_w \) looks as follows.
We denote by A_w the smallest $(\text{Ad}_w \circ \varphi)$-invariant C^*-subalgebra of D_n that contains $\{z_t^{(1)} : t \in \mathbb{R}\}$.

Proposition 5.4. Let $w = \sum_{(\alpha, \beta) \in \mathcal{J}} S_\alpha S_\beta^* \in S_n$ be such that $|\alpha| - |\beta| \in \{-1, 0, +1\}$ for all $(\alpha, \beta) \in \mathcal{J}$. Then $\lambda_w(F_n) \subseteq F_n$ if and only if $z_t^{(1)}$ is a unitary cocycle and the algebra A_w is finite dimensional. In that case, A_w is the C^*-algebra generated by all cocycles $\{z_t^{(k)} : k \in \mathbb{N}\}$.

Proof. If A_w is finite dimensional then $\text{Ad}w \circ \varphi$ is its automorphism. If, in addition, $z_t^{(1)}$ is unitary then this immediately implies existence of unitary cocycles $z_t^{(k)}$ for all $k \in \mathbb{N}$.

Conversely, if $\lambda_w(F_n) \subseteq F_n$ then the C^*-algebra generated by all cocycles $\{z_t^{(k)} : k \in \mathbb{N}\}$ is finite dimensional, since it is contained in $C^*(\{P_\beta : \beta \in J_2\})$. It follows that $\text{Ad}w \circ \varphi$ is an automorphism of this algebra. \qed

References

Roberto Conti
Department of Mathematics
University of Rome 2 Tor Vergata
Via della Ricerca Scientifica, 00133 Rome, Italy
E-mail: conti@mat.uniroma2.it

Mikael Rørdam
Department of Mathematical Sciences
The University of Copenhagen
Universitetspark 5, DK–2100 Copenhagen, Denmark
E-mail: rordam@math.ku.dk

Wojciech Szymański
Department of Mathematics and Computer Science
The University of Southern Denmark
Campusvej 55, DK-5230 Odense M, Denmark
E-mail: szymanski@imada.sdu.dk