THE CUNTZ SEMIGROUP AND COMPARISON OF OPEN PROJECTIONS
EDUARD ORTEGA, MIKAEL RORDAM AND HANNES THIEL

ABSTRACT. We show that a number of naturally occurring comparison relations on posi-
tive elements in a C*-algebra are equivalent to natural comparison properties of their corre-
sponding open projections in the bidual of the C*-algebra. In particular we show that Cuntz
comparison of positive elements corresponds to a comparison relation on open projections,
that we call Cuntz comparison, and which is defined in terms of—and is weaker than—a
comparison notion defined by Peligrad and Zsid6. The latter corresponds to a well-known
comparison relation on positive elements defined by Blackadar. We show that Murray-von
Neumann comparison of open projections corresponds to tracial comparison of the corre-
sponding positive elements of the C*-algebra. We use these findings to give a new picture
of the Cuntz semigroup.

1. INTRODUCTION

There is a well-known bijective correspondence between hereditary sub-C*-algebras of a
(C*-algebra and open projections in its bidual. Thus to every positive element a in a C*-
algebra A one can associate the open projection p, in A** corresponding to the hereditary
sub-C*-algebra A, = aAa. Any comparison relation between positive elements in a C*-
algebra that is invariant under the relation a = b, defined by a = b & A, = A, can in this
way be translated into a comparison relation between open projections in the bidual. Vice
versa, any comparison relation between open projections corresponds to a comparison
relation (which respects =) on positive elements of the underlying C*-algebra.

Peligrad and Zsid6 defined in [PZ00] an equivalence relation (and also a sub-equivalence
relation) on open projections in the bidual of a C*-algebra as Murray-von Neumann equiv-
alence with the extra assumption that the partial isometry that implements the equivalence
gives an isomorphism between the corresponding hereditary sub-C*-algebras of the given
C*-algebra. Very recently, Lin, [Lin10], noted that the Peligrad-Zsid6 (sub-)equivalence of
open projections corresponds to a comparison relation of positive elements considered by
Blackadar in [Bla06].
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The Blackadar comparison relation of positive elements is stronger than the Cuntz com-
parison relation of positive elements that is used to define the Cuntz semigroup of a C*-
algebra. The Cuntz semigroup has recently come to play an influential role in the classifi-
cation of C*-algebras. We show that Cuntz comparison of positive elements corresponds
to a natural relation on open projections, that we also call Cuntz comparison. It is defined
in terms of—and is weaker than—the Peligrad-Zsid6é comparison. It follows from results
of Coward, Elliott, and Ivanescu, [CEI08], and from our results, that the Blackadar compar-
ison relation is equivalent to Cuntz comparison of positive elements when the C*-algebra
is separable and has stable rank one, and consequently that Peligrad-Zsid6 comparison is
equivalent to our notion of Cuntz comparison of open projections in this case.

The best known and most natural comparison relation for projections in a von Neu-
mann algebra is the one introduced by Murray and von Neumann. It is weaker than the
Cuntz and the Peligrad-Zsid6 comparison relations. We show that Murray-von Neumann
(sub-)equivalence of open projections in the bidual in the separable case is equivalent to
tracial comparison of the corresponding positive elements of the C*-algebra. Tracial com-
parison is defined in terms of dimension functions arising from lower semicontinuous tra-
cial weights on the C*-algebra. The proof of this equivalence builds on two results on von
Neumann algebras that may have independent interest, and which probably are known to
experts: One says that Murray-von Neumann comparison of projections in any von Neu-
mann algebra which is not too big (in the sense of Tomiyama—see Section 5 for details) is
completely determined by normal tracial weights on the von Neumann algebra. The other
result states that every lower semicontinuous tracial weight on a C*-algebra extends (not
necessarily uniquely) to a normal tracial weight on the bidual of the C*-algebra.

We use results of Elliott, Robert, and Santiago, [ERS08], to show that tracial comparison
of positive elements in a C*-algebra is equivalent to Cuntz comparison if the C*-algebra
is separable and exact, its Cuntz semigroup is weakly unperforated, and the involved
positive elements are purely non-compact.

We also relate comparison of positive elements and of open projections to comparison of
the associated right Hilbert A-modules. The Hilbert A-module corresponding to a positive
element a in A is the right ideal aA. We show that Blackadar equivalence of positive
elements is equivalent to isomorphism of the corresponding Hilbert A-modules, and we
recall that Cuntz comparison of positive elements is equivalent to the notion of Cuntz
comparison of the corresponding Hilbert A-modules introduced in [CEI08].

2. COMPARISON OF POSITIVE ELEMENTS IN A C*-ALGEBRA

We remind the reader about some, mostly well-known, notions of comparison of positive
elements in a C*-algebra. If a is a positive element in a C*-algebra A, then let A, denote the
hereditary sub-C*-algebra generated by a, i.e., A, = aAa. The Pedersen equivalence relation
on positive elements in a C*-algebra A is defined by a ~ b if a = z*z and b = xz* for
some r € A, where a,b € A", and it was shown by Pedersen, that this indeed defines an
equivalence relation. Write a = b if A, = A,. The equivalence relation generated by these
two relations was considered by Blackadar in [Bla88, Definition 6.1.2]:
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Definition 2.1 (Blackadar comparison). Let a and b be positive elements in a C*-algebra A.
Write a ~ b if there exists x € A such that a = x*x and b = xz*, and write a 3, b if there exists
a € A witha ~ d'.

(It follows from Lemma 4.2 below that ~; is an equivalence relation.) Note that 3, is
not an order relation on A"/~ since in general a <, b X a does not imply a ~; b (see
[Lin90, Theorem 9]). If p and ¢ are projections, then p ~, ¢ agrees with the usual notion of
equivalence of projections defined by Murray and von Neumann, denoted by p ~ g.

The relation defining the Cuntz semigroup that currently is of importance in the classi-
fication program for C*-algebras is defined as follows:

Definition 2.2 (Cuntz comparison of positive elements). Let a and b be positive elements in a
C*-algebra A. Write a 3 b if there exists a sequence {x,} in A such that x}bx, — a. Write a = b
ifa Zband b 3 a.

2.3 (The Cuntz semigroup). Let us briefly remind the reader about the ordered Cuntz
semigroup W (A) associated to a C*-algebra A. Let M, (A)" denote the disjoint union
U, M, (A)*. Fora € M, (A)T and b € M,,(A)" set a ® b = diag (a,b) € M,+n(A)T, and
write a 3 b if there exists a sequence {z} in M,, ,,(A) such that zjbzy, — a. Write a =~ b
ifa Sband b 3 a. Put W(A) = M (A)"/~, and let (a) € W(A) be the equivalence class
containing a. Let us denote by Cu(A) the completion of W (A) with respect to countable
suprema, i.e., Cu(A) := W(A® K).

Lastly we define comparison by traces. We shall here denote by 7T'(A) the set of (norm)
lower semicontinuous tracial weights on a C*-algebra A. We remind the reader that a
tracial weight on A is an additive function 7: AT — [0, 00| satisfying 7(Aa) = A7(a) and
T(z*x) = 7(zz*) for all a € AT, 2z € A, and A € R*. That 7 is lower semicontinuous
means that 7(a) = lim 7(a;) whenever {a;} is a norm-convergent increasing sequence (or
net) with limit a. Each 7 € T'(A) gives rise to a lower semicontinuous dimension function
d;: AT — [0,00] given by d,(a) = sup..,7(f:(a)), where f.: Rt — R* is the continuous
function thatis 0 on 0, 1 on [, 00), and linear on [0, ¢]. Any dimension function gives rise to
an additive order preserving state on the Cuntz semigroup, and in particular it preserves
the Cuntz relation =.

Definition 2.4 (Comparison by traces). Let a and b be positive elements in a C*-algebra A.
Write a ~, band a 2y, bif d.(a) = d.(b), respectively, d.(a) < d.(b), forall T € T(A).

Remark 2.5. Observe that
a3 = ab = alyb, a~sb = axb = a~yb
for all positive elements a and b in any C*-algebra A. In Section 6 we discuss under which
conditions these implications can be reversed.
3. OPEN PROJECTIONS

The bidual A** of a C*-algebra A can be identified with the von Neumann algebra arising
as the weak closure of the image of A under the universal representation 7,: A — B(H,)
of A. Following Akemann, [Ake69, Definition II.1], and Pedersen, [Ped79, Proposition
3.11.9, p.77]), a projection p in A** is said to be open if it is the strong limit of an increasing
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sequence of positive elements from A, or, equivalently, if it belongs to the strong closure
of the hereditary sub-C*-algebra pA™*p N A of A. We shall denote this hereditary sub-C*-
algebra of A by A,. (This agrees with the previous definition of A, if p is a projection in
A.) The map p — A, furnishes a bijective correspondence between open projections in A**
and hereditary sub-C*-algebras of A. The open projection corresponding to a hereditary
sub-C*-algebra B of A is the projection onto the closure of the subspace 7, (B)H, of H,.
Let P,(A*) denote the set of open projections in A**.

A projection in A** is closed if its complement is open.

For each positive element a in A we let p, denote the open projection in A** correspond-
ing to the hereditary sub-C*-algebra A, of A. Equivalently, p, is equal to the range projec-
tion of m,(a), and if a is a contraction, then p, is equal to the strong limit of the increasing
sequence {a'/"}. Notice that p, = p, if and only if A, = A, if and only ifa = b. If A
is separable, then each hereditary sub-C*-algebra of A contains a strictly positive element
and hence is of the form A, for some a. It follows that every open projection in A** is of the
form p, for some positive element a in A, whence there is a bijective correspondence be-
tween open projections in A** and positive elements in A modulo the equivalence relation

~

3.1 (Closure of a projection). If K C P,(A*) is a family of open projections, then their
supremum \/ K is again open. Dually, the infimum of a family of closed projections is
again closed. Therefore, if we are given any projection p, then we can define its closure p
as:

D= /\{q € P(A™) : qisclosed, p < ¢}.

We shall consider various notions of comparisons and equivalences of open projections
in A** that, via the correspondence a — p,, match the notions of comparison and equiv-
alences of positive elements in a C*-algebra considered in the previous section. First of
all we have Murray-von Neumann equivalence ~ and subequivalence 3 of projections
in any von Neumann algebra. We shall show in Section 5 that they correspond to tracial
comparison. Peligrad and Zsid6 made the following definition:

Definition 3.2 (PZ-equivalence, [PZ00, Definition 1.1]). Let A be a C*-algebra, and let p and
q be open projections in A**. Then p,q are equivalent in the sense of Peligrad and Zsidé (PZ-
equivalent, for short), denoted by p ~py q, if there exists a partial isometry v € A** such that

p=vv, q = vv¥, vA, C A, v'A, C A
Say that p Zpy, q if there exists p' € P,(A**) such that p ~py p’ < q.

PZ-equivalence is stronger than Murray-von Neumann equivalence. We will see in Section
6 that it is in general strictly stronger, but the two equivalences do agree for some C*-
algebras and for some classes of projections.

We will now turn to the question of PZ-equivalence of left and right support projections.
Peligrad and Zsid6 proved in [PZ00, Theorem 1.4] that p,,« ~pz py+, for every x € A (and
even for every z in the multiplier algebra of A). One can ask whether the converse is true.
The following result gives a satisfactory answer.
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Proposition 3.3. Let p,q € P,(A™) be two open projections with p ~py q. If p is the support
projection of some element in A, then so is q, and in this case p = py,« and q = Py, for some
x e A

Proof. There is a partial isometry v in A*™* with p = v*v, vv* = ¢, and v4, C A. This
implies that vA,v* C A, so the map z — vzv* defines a *-isomorphism from A, onto A,.
By assumption, p = p, for some positive element a in A. Upon replacing a by ||a||~'a we
can assume that a is a contraction. Put b := vav* € A*. Then

1/n 1/n, *

pp = sup (vav™)’™ = sup va/"v* = vpw* = q.

Hence ¢ is a support projection, and moreover for x := va'/? € A we have a = z*r and
xx* =b. g

Remark 3.4. As noted above, every open projection in the bidual of a separable C*-algebra
is realized as a support projection, so that PZ-equivalence of two open projections means
precisely that they are the left and right support projections of some element in A.

3.5 (Compact and closed projections). We define below an equivalence relation and an or-
der relation on open projections that we shall show to match Cuntz comparison of positive
elements (under the correspondence a — p,). To this end we need to define the concept of
compact containment, which is inspired by the notion of a compact (and closed) projection
developed by Akemann.

The idea first appeared in [Ake69], although it was not given a name there, and it was
later termed in the slightly different context of the atomic enveloping von Neumann al-
gebra in [Ake71, Definition II.1]. Later again, it was studied by Akemann, Anderson, and
Pedersen in the context of the universal enveloping von Neumann algebra (see [AAP89,
after Lemma 2.4]).

A closed projection p € A** is called compact if there exists a € A* of norm one such that
pa = p. See [AAP89, Lemma 2.4] for equivalent conditions. Note that a compact, closed
projection p € A** must be dominated by some positive element of A (since pa = p implies
p = apa < a®> € A). The converse also holds (this follows from the result [Ake71, Theorem
IL.5] transferred to the context of the universal enveloping von Neumann algebra).

Definition 3.6 (Compact containment). Let A be a C*-algebra, and let p, q € P,(A™) be open
projections. We say that p is compactly contained in ¢ (denoted p C q) if p is a compact
projection in A,, i.e., if there exists a positive element a in A, with ||a|| = 1 and pa = p.

Further, let us say that an open projection p is compact if it is compactly contained in itself, i.e.,
ifp < p.
Proposition 3.7. An open projection in A** is compact if and only if it belongs to A.

Proof. Every projection in A is clearly compact.
If p is open and compact, then by definition there exists a € (A4,)" such that pa = p. This
implies that p <p < a < p, whencep =a € A. O

Remark 3.8. Note that compactness was originally defined only for closed projections in
A** (see 3.5). In Definition 3.6 above we also defined a notion of compactness for open
projections in A** by assuming it to be compactly contained in itself. This should cause
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no confusion since, by Proposition 3.7, a compact, open projection is automatically closed as
well as compact in the sense defined for closed projections in 3.5.

Now we can give a definition of (sub-)equivalence for open projections that we term
Cuntz (sub-)equivalence, and which in the next section will be shown to agree with Cuntz
(sub-)equivalence for positive elements and Hilbert modules in a C*-algebra. We warn the
reader that our definition of Cuntz equivalence (below) does not agree with the notion car-
rying the same name defined by Lin in [Lin10]. The latter was the one already studied by
Peligrad and Zsid¢6 that we (in Definition 3.2) have chosen to call Peligrad-Zsid6 equiva-
lence (or PZ-equivalence). Our definition below of Cuntz equivalence for open projections
turns out to match the notion of Cuntz equivalence for positive elements, also when the
(C*-algebra does not have stable rank one.

Definition 3.9 (Cuntz comparison of open projections). Let A be a C*-algebra, and let p and
q be open projections in A**. We say that p is Cuntz subequivalent to ¢, written p Zcy q, if for
every open projection p’ CC p there exists an open projection ¢’ with p' ~py ¢’ C q. If p Zcu g and
q Zcu p hold, then we say that p and g are Cuntz equivalent, which we write as p ~c, q.

4. COMPARISON OF POSITIVE ELEMENTS AND THE CORRESPONDING RELATION ON OPEN
PROJECTIONS

We show in this section that the Cuntz comparison relation on positive elements corre-
sponds to the Cuntz relation on the corresponding open projections. We also show that the
Blackadar relation on positive elements, the Peligrad-Zsido6 relation on their correspond-
ing open projections, and isometric isomorphism of the corresponding Hilbert modules
are equivalent.

4.1 (Hilbert modules). See [APT09] for a good introduction to Hilbert A-modules. Through-
out this note all Hilbert modules are assumed to be right modules and countably gener-
ated. Let A be a general C*-algebra. We will denote by #H(A) the set of isomorphism
classes of Hilbert A-modules. Every closed, right ideal in A is in a natural way a Hilbert
A-module. In particular, E, := aA is a Hilbert A-module for every element a in A. The
assignment a — E, defines a natural map from the set of positive elements of A to H(A).

If £ and F are Hilbert A-modules, then E is said to be compactly contained in F', written
E  F, if there exists a positive element = in IC(F'), the compact operators of L£(F'), such
that ze = eforalle € E.

For two Hilbert A-modules E, F' we say that £ Z¢, F (E is Cuntz subequivalent to F)
if for every Hilbert A-submodule £’ « E there exists F' « F with E’ = F’ (isometric
isomorphism). Further declare E ~ F' (Cuntz equivalence) if E Jc, F'and F JScy E.

Before relating the Blackadar relation with the Peligrad-Zsid6 relation we prove the fol-
lowing lemma restating the Blackadar relation:

Lemma 4.2. Let A be a C*-algebra, and let a and b be positive elements in A. The following
conditions are equivalent:
(i) a ~4 b,
(ii) there exist a',b/ € AT witha = a' ~V = b,
(iii) there exists x € A such that A, = A,+, and Ay = Ay,
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(iv) there exists b/ € AT witha ~ b = b,
(v) there exists a’ € AT witha = o ~ D.

Proof. (ii) is just a reformulation of (i), and (iii) is a reformulation of (ii) keeping in mind
that A, = A, if and only if ¢ = d.

(iv) = (ii) and (v) = (ii) are trivial.

(iif) = (v): Take = € A such that A, = A,-, and A, = A,,-. Let x = v|z| be the polar de-
composition for z (with v a partial isometry in A**). Then ¢ — v*cv defines an isomorphism
from A, = A, onto A,-, = A,. This isomorphism maps the strictly positive element b of
A, onto a strictly positive element o’ = v*bv of A, . Hence b ~ a’ = a as desired.

The proof of (iii) = (iv) is similar. O

The equivalence of (i) and (iv) in the proposition below was noted to hold in Lin’s recent
paper, [Lin10]. We include a short proof of this equivalence for completeness.

Proposition 4.3. Let A be a C*-algebra, and let a and b be positive elements in A. The following
conditions are equivalent:
(i) a ~4 b,
(ii) E, and E, are isomorphic as Hilbert A-modules,
(iii) there exists x € A such that E, = E,+, and E, = E,,-,
(iv) pa ~pz Db-

Proof. (i) = (iv): As remarked earlier, it was shown in [PZ00, Theorem 1.4] that p,«, ~pz
D2+ for all x € A. In other words, a ~ b implies p, ~pz pp. Recall also that p, = p, when
a = b. These facts prove the implication.

(iv) = (i): If p, ~pz P, then by Proposition 3.3, there exists positive elements a’ and b’ in
A such that p, = p., pp = py, and a’ ~ V'. Now, p, = p, and p, = py imply that a = o’ and
b = t/, whence (i) follows (see also Lemma 4.2 ).

(ii) = (iii): Let ¢: E, — E} be an isomorphism of Hilbert A-modules, i.e., a bijective
A-linear map preserving the inner product. Set = := ®(a) € E;. Then

1A =®(a)A = ®(ad) = Ep,
whence E}, = E, = E,,-. Since ® preserves the inner product,
a* = (a,a)p, = (®(a), P(a))p, = 2"

Hence £, = E,2» = E,«, and Ey = F, .

(iii) = (ii): Let z = v|z| be the polar decomposition of = in A**. Note that E|,| = E,+, and
Eyy+» = Ejg+|. Define an isomorphism Ej,| — Ej,« by z — vz.

(i) © (iii): This follows from the one to one correspondence between hereditary sub-C*-
algebras and right ideals: A hereditary sub-C*-algebra B corresponds to the right ideal
BA, and, conversely, a right ideal R corresponds the hereditary algebra R*R. In particular,
E,=A,Aand A, = E*E,.

If (i) holds, then, by Lemma 4.2, A, = A, and A,,~ = A, for some z € A. This shows
that £, = A,A = A,z A = E,-, and, similarly, E}, = E,,-.

In the other direction, if £, = E,-, and E,,~ = E, for some z € A, then A, = EE, =
B FEypey = Ay, and, similarly, A, = A,,-, whence a ~; b. O
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4.4. It follows from the proof of (ii) = (iii) of the proposition above that if « is a positive
element in a C*-algebra A and if F' is a Hilbert A-module such that £, = F, then F' = E,,
for some positive element b in A. In fact, if ¢: £, — F'is an isometric isomorphism, then
we can take b to be ®(a) as in the before mentioned proof.

4.5. For any pair of positive elements a and b in a C*-algebra A we have the following
equivalences:

CLGA[) <~ AagAb <~ E,CE, — Pa < Db,
as well as the following equivalences:

acAyand be A, <= a=b <— A, = A, < E,=Ey, < pg=ps.

As a consequence of Proposition 4.3, Lemma 4.2, and the remark above we obtain the
following proposition:

Proposition 4.6. Let A be a C*-algebra, and let a and b be positive elements in A. The following
conditions are equivalent:
(i) a Zs b,
(ii) there exists a Hilbert A-module E' such that E, = E' C E,
(iii) there exists v € A with E, = E .« and E,,« C E,
(iv) pa Zpz Po-

Lemma 4.7. Let a and e be positive elements in a C*-algebra A and assume that e is a contraction.
Then the following equivalences hold:

ae = a4 <= P = Pg Tjae:}_?a'

Proof. The two ”<"-implications are trivial. Suppose that ae = a. Let x be indicator
function for the singleton {1}, and put ¢ = x(e) € A**. Then ge = g and ¢ is the largest
projection in A** with this property. Moreover, ¢ is the projection onto the kernel of 1 — e,
hence 1 — ¢ is the projection onto the range of 1 — ¢, i.e., 1 — ¢ = p;_.. This shows that g is a
closed projection. As a and 1 — e are orthogonal so are their range projections p, and p; .,
whence p, <1 —p;_. = q. Thus p, < q. This shows that p,e = p,. O
Lemma 4.8. Let A be a C*-algebra, and let e and a be positive elements in A. If ae = a, then
Pa < Pe-

Proof. Upon replacing e with f(e), where f: Rt — R* is given by f(t) = max{t,1}, we
may assume that e is a contraction. If ae = a, then p,e = p, by Lemma 4.7, and this implies
that p, < p.. O
We show below that the two previously defined notions of compact containment agree. To
do so we introduce a third notion of compact containment:

Definition 4.9. Let a and b be positive elements in a C*-algebra. Then a is said to be compactly
contained in b, written a C b, if and only if there exists a positive element e in Ay, such that ea = a.

Following the proof of Lemma 4.8 , the element e above can be assumed to be a contraction.

Proposition 4.10. Let A be a C*-algebra, let b be a positive element in A, and let a be a positive
element in A,. Then the following statements are equivalent:

(1) Ea « Eb/
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(il) a b,
(i) pa C po,
(iv) p, < py and p, is compact in A.

Proof. (i) < (ii): By definition, (i) holds if and only if there exists a positive element e in
K(E,), such that e acts as the identity on E,. We can identify K(E}) with A,, as elements
of the latter act on I, by left-multiplication. Thus (i) is equivalent to the existence of a
positive element e in A4, such that ex = z for all z € E, = aA. The latter condition is
tulfilled precisely if ea = a.

(ii) « (iii): (iii) holds if and only if there exists a positive element e in A, such that
D, = D, and (ii) holds if and only if there exists a positive element e in A4, such that
ae = a. In both cases e can be taken to be a contraction, cf. the proof of Lemma 4.8. The
bi-implication now follows from Lemma 4.7.

(ii) and (iii) = (iv): If a C b, then there is a positive contraction e in A; such that ae = a.
By Lemma 4.8 this implies that p, < p. < p;. From (iii) we have that p, is compact in 4,
which entails that p, also is compact in A.

(iv) = (iii): This is [AAP89, Lemma 2.5]. 4

Remark 4.11. In many cases it is automatic that p is compact, and then p @ ¢ is equivalent
to the condition p < ¢. For example, if A is unital, then all closed projections in A** are
compact. More generally, if a € AT sits in some corner ¢Aq for a projection ¢ € A, then p,
is compact.

Lemma 4.12. Let a be a positive element in a C*-algebra A.

(i) If E' is a Hilbert A-module that is compactly contained in E,, then E' C E._.), for some
positive element e € A, and some € > 0.

(ii) If q,q' are open projections in A** such that q' is compactly contained in q, then ¢’ <
P(e—c), for some positive element e € A, and some & > 0

Proof. (i): By definition there is a positive element e in I(E,) = A, such that ex = « for all
x € E'. This implies that (e — 1/2) .z = %x forall x € £/, whence E' C E(._1/3), -

(ii): If ¢’ is compactly contained in ¢, then there is a positive element e in A, such that
¢e = ¢ (in fact such that ¢e = ¢). It follows that ¢'(e — 1/2), = 3¢/, and hence that
q" < Ple-1/2), - O

Proposition 4.13. Let a and b be positive elements in a C*-algebra A. Then the following state-
ments are equivalent:
(i) a 2 b.
(11) E, qu E,.
(iii) pa Scu Pe-

Proof. The equivalence of (i) and (ii) was first shown in [CEI08, Appendix], see also [APT09,
Theorem 4.33].

(ii) = (iii): Suppose that £, Zcu Ep, and let p’ be an arbitrary open projection in A**
which is compactly contained in p,. Then, by Lemma 4.12, p’ < p(._.), for some positive
element e in A, and some ¢ > 0. Notice that (e —¢); « a. It follows from Proposition
4.10 that E(._.), is compactly contained in E,. Accordingly, F(._.), = F’ for some Hilbert
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A-module F’ that is compactly contained in E;. By 4.4, F’ = E. for some positive element
cin A. It now follows from Proposition 4.10 and from Proposition 4.3 that

P < Ple—e), ~pz Pe C Do.
This shows that p, =cu pe-

(iii) = (ii): Suppose that p, Zcu b, and let E' be an arbitrary Hilbert A-module which is
compactly contained in F,. Then, by Lemma 4.12, £’ C E._.), for some positive element e
in A, and some € > 0. It follows from Proposition 4.10 that p(._.), is compactly contained
in p,. Accordingly, p_.), ~pz ¢ for some open projection ¢’ in A** that is compactly
contained in p. By Proposition 3.3, ¢ = p. for some positive element c in A. It now follows
from Proposition 4.10 and from Proposition 4.3 that

E' C E’(e,e)+ = F. C E.
This shows that £, Zcy Fp. O

By the definition of Cuntz equivalence of positive elements, Hilbert A-modules, and of
open projections, the proposition above immediately implies the following:

Corollary 4.14. For every pair of positive elements a and b in a C*-algebra A we have the following
equivalences:
axb < E,~E, <= pi~cuDb

We conclude this section by remarking that the pre-order Zpz on the open projections is
not algebraic (unlike the situation for Murray-von Neumann subequivalence). Indeed, if p
and ¢ are open projections A™* with p < ¢, then ¢—p need not be an open projection. For the
same reason, Jcy is not an algebraic order. However, Cuntz comparison is approximately
algebraic in the following sense.

Proposition 4.15. Let A be a C*-algebra, and let p,p’,q € A** be open projections with p'
P Zcu q- Then there exists an open projection r € A** such that p' ®r Jcu ¢ Scup® 1.

Proof. By Lemma 4.12 (ii) there exists an open projection p” with p’ @ p"”  p (take p” to be
D(a—c/2), in that lemma). By the definition of Cuntz sub-equivalence there exists an open
projection ¢” such that p"” ~py ¢" @ ¢. Since p” ~py ¢” implies p” ~c, ¢”, there exists an
open projection ¢’ with p' ~pyz ¢ C ¢". Then r := ¢ — ¢’ is an open projection.
Since ¢’ @ ¢" implies ¢’ < ¢”, and ¢’ < ¢/, we get
Per~ezd @rleq=q¢+7Zcud" ®reprp" ©rIpor
as desired. O

Translated, this result says that for positive elements a’, a,b in A with a’ @ a 3 b there
exists a positive element c such thata’ ®c 20 Ja®c.

To formulate the result in the ordered Cuntz semigroup, we recall that an element o €
Cu(A) is called way-below 3 € Cu(A), denoted @ < f3, if for every increasing sequence {3 }
in Cu(A) with 5 < sup, (i there exists [ € N such that already a < /5. Consequently, in the
Cuntz semigroup we get the following almost algebraic order:

Corollary 4.16 (Almost algebraic order in the Cuntz semigroup). Let A be a C*-algebra,
and let o/, o, f in Cu(A) be such that o/ < o < (. Then there exists v € Cu(A) such that
o +y<pB<aty.



THE CUNTZ SEMIGROUP AND COMPARISON OF OPEN PROJECTIONS 11

5. COMPARISON OF PROJECTIONS BY TRACES.

In this section we show that Murray-von Neumann (sub-)equivalence of open projections
in the bidual of a separable C*-algebra is equivalent to tracial comparison of the corre-
sponding positive elements of the C*-algebra. For the proof we need to show that every
lower semicontinuous tracial weight on a C*-algebra extends (not necessarily uniquely)
to a normal tracial weight on its bidual and that Murray-von Neumann comparison of
projections in any von Neumann algebra “that is not too big” is determined by tracial
weights. We expect those two results to be known to experts, but in lack of a reference and
for completeness we have included their proofs.

Recall that a weight ¢ on a C*-algebra A is an additive map p: AT — [0, 0] satisfying
o(Aa) = Ap(a) for all a € AT and all A € R*. We say that ¢ is densely defined if the set
{a € AT : ¢p(a) < oo} is dense in AT. Recall from Section 2 that the set of (norm) lower
semicontinuous tracial weights on A in this paper is denoted by T'(A).

If M is a von Neumann algebra, then let W (M) denote the set of normal weights on M,
and let W;, (M) denote the set of normal tracial weights on A/, i.e., weights ¢ for which
o(x*z) = p(xz*) for all x € M. The standard trace on B(H) is an example of a normal
tracial weight.

For the extension of weights on a C*-algebra to its universal enveloping von Neumann
algebra, we use the result below from [Com68, Proposition 4.1 and Proposition 4.4]. For

every f in the dual A* of a C*-algebra A4, let f denote the unique normal extension of f to
A**. (One can equivalently obtain f via the natural pairing: f(z) = (f, z) for z € A**.)

Proposition 5.1 (Combes, [Com68]). Let A be a C*-algebra, let p: AT — [0, 00| be a densely
defined lower semicontinuous weight. Define a map ¢: (A™)* — [0, oo] by:

P(z) =sup{f(z) : fEA, 0 f<gp},  ze€ (A7)

Then @ is a normal weight on A** extending ¢. Moreover, if ¢ is tracial, then ¢ is the unique
extension of o to a normal weight on A**.

Combes did not address the question whether the (unique) normal weight on A** that
extends a densely defined lower semicontinuous tracial weight on A is itself a trace. An
affirmative answer to this question is included in the proposition below.

Proposition 5.2. Let A be a C*-algebra, and let p be a lower semicontinuous tracial weight on A.
Then there exists a normal, tracial weight on A** that extends .

Proof. The closure of the linear span of the set {a € A" : ¢(a) < 0o} is a closed two-sided
ideal in A. Denote it by I,. The restriction of ¢ to I, is a densely defined tracial weight,
which therefore, by Combes’ extension result (Proposition 5.1), extends (uniquely) to a
normal weight » on I;*. The ideal /,, corresponds to an open central projection p in A** via
the identification I, = A*pN A, and I;* = A™p. In other words, I7* is a central summand
in A**. Extend ¢ to a normal weight ¢ on the positive elements in A** by the formula

- P(2), ifzely,
0, otherwise.
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It is easily checked that ¢ is a normal weight that extends ¢, and that ¢ is tracial if we
knew that ¢ is tracial. To show the latter, upon replacing A with I, we can assume that ¢
is densely defined.

We proceed to show that ¢ is tracial under the assumption that ¢ is densely defined.
To this end it suffices to show that ¢ is unitarily invariant, i.e., that (uzu*) = ¢(z) for all
unitaries u in A** and all positive elements z in A**. We first check this when the unitary

u lies in g, the unitization of A, which we view as a unital sub-C*-algebra of A**, and for
an arbitrary positive element z in A**. For each f in A* let u. f denote the functional in A*
given by (u.f)(a) = f(uau*) for a € A. By the trace property of ¢ we see that if f € A* is
such that 0 < f < ¢, then also 0 < u.f < ¢, and vice versa since f = u*.(u.f). It follows
that

Bluzu?) = sup{fluzu) : f € A, 0 < f <} = sup{uf(2): f € A", 0 < f < g}

=sup{f(z): fe A", 0< f <o} = @(2).
For the general case we use Kaplansky’s density theorem (see [Ped79, Theorem 2.3.3,
p-25]), which says that the unitary group U(A) is o-strongly dense in U(A**). Thus, given

uw in U(A™) we can find a net (uy) in U(A) converging o-strongly to . It follows that
(urzu}) converges o-strongly (and hence o-weakly) to uzu*. As ¢ is o-weakly lower semi-
continuous (see [Bla06, I11.2.2.18, p. 253]), we get

P(uzu*) = @(liinquuj) < liin Plurzuy) = @(2).

The same argument shows that ¢(z) = p(u*(uzu*)u) < p(uzu*). This proves that p(uzu*) =
©(z) as desired. O

The extension ¢ in Proposition 5.2 need not be unique if ¢ is not densely defined. Take for
example the trivial trace ¢ on the Cuntz algebra O, (that is zero on zero and infinite else-
where). Then every normal tracial weight on O3* that is infinite on every (non-zero) prop-
erly infinite element is an extension of ¢, and there are many such normal tracial weights
arising from the type I, and type Il representations of O,. On the other hand, every
densely defined lower semicontinuous tracial weight on a C'*-algebra extends uniquely to
a normal tracial weight on its bidual by Combes’ result (Proposition 5.1) and by Proposi-
tion 5.2.

Remark 5.3. Given a C*-algebra A equipped with a lower semicontinuous tracial weight
7 and a positive element a in A. Then we can associate to 7 a dimension function d, on A
(as above Definition 2.4). Let 7 be (any) extension of 7 to a normal tracial weight on A**
(cf. Proposition 5.2). Then d,(a) = 7(p,). To see this, assume without loss of generality that
a is a contraction. Then p, is the strong operator limit of the increasing sequence {a'/"},
whence

d.(a) = lim 7(a"") = lim 7(a*™) = 7(p,)

n—oo n—oo

by normality of 7.

Corollary 5.4. Let a and b be positive elements in a C*-algebra A. If p, X py in A™, then a Zi b
in A; and if p, ~ py in A**, then a ~, bin A.
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Proof. Suppose that p, 3 py in A**. Then w(p,) < w(py) for every tracial weight w on A**.
Now let 7 € T'(A) be any lower semicontinuous tracial weight, and let d, be the corre-
sponding dimension function. By Proposition 5.2, 7 extends to a tracial, normal weight 7
on A**. Using the remark above, it follows that d,(a) = 7(p,) < T(ps) = d-(b). This proves
that a Z, b. The second statement in the corollary follows from the first statement. O

We will now show that the converse of Corollary 5.4 is true for separable C*-algebras. First
we need to recall some facts about the dimension theory of (projections in) von Neumann
algebras. A good reference is the recent paper [She07] of David Sherman.

Definition 5.5 (Tomiyama [Tom58, Definition 1], see also [She07, Definition 2.3]). Let M
be a von Neumann algebra, p € P(M) a non-zero projection, and r a cardinal. Say that p is
k-homogeneous if p is the sum of x mutually equivalent projections, each of which is the sum of
centrally orthogonal o-finite projections. Set

kv = sup{k : M contains a k-homogeneous element}.

A projection can be k-homogeneous for at most one x > Ny; and if K > Ry, then two &-
homogeneous projections are equivalent if they have identical central support (see [Tom58]
and [She(7]). We shall use these facts in the proof of Proposition 5.7.

But first we show that the enveloping von Neumann algebra A** of a separable C*-
algebra A has r4+ < N, a property that has various equivalent formulations and con-
sequences (see [She07, Propositions 3.8 and 5.1]). This property is useful, since it means
that there are no issues about different “infinities”. For instance, the set of projections up
to Murray-von Neumann equivalence in an arbitrary Il factor M (not necessarily with
separable predual) can be identified with [0, co) U{x : Ry < k < k), }, see [She07, Corollary
2.8]. Thus, tracial weights on M need not separate projections up to equivalence. How-
ever, if k) < Ny, then normal, tracial weights on M do in fact separate projections up to
Murray-von Neumann equivalence.

Lemma 5.6. Let A be a separable C*-algebra. Then k4« < N.

Proof. We show the stronger statement that whenever {p; };c; is a family of non-zero pair-
wise equivalent and orthogonal projections in A**, then card(/) < ¥,. The universal rep-
resentation m, of A is given as m, = P54 Tp, Where S(A) denotes the set of states on 4,
and where 7,: A — B(H,) denotes the GNS-representation corresponding to the state .
It follows that
A" =7,(A)" € P B(H,).
peS(A)

The projections {p; };c; are non-zero in at least one summand B(H,); but then I must be
countable because each H,, is separable. O

Proposition 5.7. Let M be a von Neumann algebra with ky; < Xy, and let p,q € P(M) be two
projections. Then p 3 q if and only if w(p) < w(q) for all normal tracial weights w on M.

Proof. The ”only if” part is obvious. We prove the ”if” part and assume accordingly that
w(p) < w(q) for all normal tracial weights w on M, and we must show that p < g. We show
first that it suffices to consider the case where ¢ < p.
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There is a central projection 2z in M such that zp 3 zg and (1 — 2)p Z (1 — z)g. We are
done if we can show that (1 — z)p = (1 — 2)q. Every normal tracial weight on (1 — z)M
extends to a normal tracial weight on M (for example by setting it equal to zero on zM),
whence our assumptions imply that w((1 — z)p) < w((1 — z)q) for all tracial weights w on
(1—2)M. Upon replacing M by (1—2)M, and p and ¢ by (1 — z)p and (1 — z)q, respectively,
we can assume that p - ¢, i.e., that ¢ ~ ¢’ < p for some projection ¢’ in M. Upon replacing
q by ¢’ we can further assume that ¢ < p as desired.

There is a central projection z in M such that zq is finite and (1 — 2)q is properly infinite
(see [KR86, 6.3.7, p. 414]). Arguing as above it therefore suffices to consider the two cases
where ¢ is finite and where ¢ is properly infinite.

Assume first that ¢ is finite. We show that p = ¢. Suppose, to reach a contradiction, that
p — q # 0. Then there would be a normal tracial weight w on M such that w(q) = 1 and
w(p—¢q) > 0. But that would entail that w(p) > w(q) in contradiction with our assumptions.
To see that w exists, consider first the case where ¢ and p — ¢ are not centrally orthogonal,
i.e., that c,c,_, # 0. Then there are non-zero projections ¢ < g and f < p — ¢ such that
e ~ f. Choose a normal tracial state 7 on the finite von Neumann algebra ¢ ¢ such that
7(e) > 0. Then 7 extends uniquely to a normal tracial weight w, on Mc, and further to
a normal tracial weight w on M by the recipe w(z) = wy(z¢,). Then w(q) = 7(¢) = 1 and
w(p—q) > wo(f) =wo(e) = 7(e) > 0. In the case where ¢ and p — ¢ are centrally orthogonal,
take a normal tracial weight wy (for example as above) such that wy(¢g) = 1 and extend
wp to a normal tracial weight w on M by the recipe w(z) = wy(z) for all positive elements
r € Mc, and w(z) = co whenever z is a positive element in M that does not belong to M¢,.
Then w(q) = 1 and w(p — ¢) = cc.

Assume next that ¢ is properly infinite. Every properly infinite projection can uniquely
be written as a central sum of homogeneous projections (see [Tom58, Theorem 1], see
also [She(7, Theorem 2.5] and the references cited there). By the assumption that x), <
N, we get that every properly infinite projection is Ry-homogeneous. Therefore g is ¥,-
homogeneous and hence equivalent to its central support projection ¢,. Let w be the nor-
mal tracial weight on M which is zero on M ¢, and equal to co on every positive element
that does not lie in Mc¢,. Then w(p) < w(q) = 0, which shows that p € M¢,, and hence
¢p < ¢4 It now follows that p < ¢, < ¢, ~ ¢, and so p 3 ¢ as desired. O

We can now show that Murray-von Neumann (sub-)equivalence of open projections in
the bidual of a C*-algebra is equivalent to tracial (sub-)equivalence of the corresponding
positive elements in the C*-algebra.

Theorem 5.8. Let a and b be positive elements in a separable C*-algebra A. Then p, 3 py in A™
if and only if a Zi bin A; and p, ~ p, in A if and only if a ~, bin A.

Proof. The “only if parts” have already been proved in Corollary 5.4. Suppose that a =4, b.
Let w be a normal tracial weight on A**, and denote by wj its restriction to A. Then wy is a
norm lower semicontinuous tracial weight on A, whence

W(Pa) = duy(a) < duy(b) = w(ps),
cf. Remark 5.3. As w was arbitrary we can now conclude from Lemma 5.6 and Proposition
5.7 that p, = pe.
The second part of the theorem follows easily from the first part. O
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Corollary 5.9. Let A be a separable C*-algebra, and p and q be two open projections in A**. Then:
pPIpzq = pPIcuq = PG Popnq = Pcnd = prg
The first implication in each of the two strings holds without assuming A to be separable.

Proof. Since A is separable there are positive elements a and b such that p = p, and ¢ =
po- The corollary now follows from Remark 2.5, Proposition 4.3, Proposition 4.13, and
Theorem 5.8. U

It should be remarked, that one can prove the corollary above more directly without in-
voking Remark 2.5.

Remark 5.10. There is a certain similarity of our main results with the following result
recently obtained by Robert in [Rob09, Theorem 1]: If a, b are positive elements of a C*-
algebra A, then the following are equivalent:

(i) 7(a) = 7(b) for all norm lower semicontinuous tracial weights on A,
(i) @ and b are Cuntz-Pedersen equivalent, i.e., there exists a sequence {z;} in A such
thata =) ,- zpzpand b = > ;7| zfx) (the sums are norm-convergent).
It is known that Cuntz-Pedersen equivalence and Murray-von Neumann equivalence
agree for projections in a von Neumann algebra (see [KP70, Theorem 4.1]), but they are
different for projections in a C*-algebra.

6. SUMMARY AND APPLICATIONS.

In the previous sections we have established equivalences and implications between dif-
ferent types of comparison of positive elements and their corresponding open projections
and Hilbert modules. The results we have obtained can be summarized as follows. Given
two positive elements a and b in a (separable) C*-algebra A with corresponding open pro-
jections p, and p, in A** and Hilbert A-modules E, and Ej, then:

aZs b <= p. Iprz Do ar~gb <<= Pa ~pPz Db —= L, = E,
(*) a’jb<:’>pa;\<,Cupb a%b<:>p‘1~cupb(:>EaNCuEb
a:jtrb<:>pa:jpb aNtrb@papr

We shall discuss below to what extend the reverse (upwards) implications hold. First we
remark how the middle bi-implications yield an isomorphism between the Cuntz semi-
group and a semigroup of open projections modulo Cuntz equivalence.

6.1 (The semigroup of open projections). Given a C*-algebra A. We wish to show that its
Cuntz semigroup Cu(A) can be identified with an ordered semigroup of open projections
in (A®K)**. More specifically, we show F,((A®K)**)/~cy is an ordered abelian semigroup
which is isomorphic to Cu(A).

First we note how addition is defined on the set P,((A ® K)**)/~c,. Note that

AQB(?) C M(ARK) C (A®K)™.
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Choose two isometries s; and s, in B(¢?) satisfying the Cuntz relation 1 = sy} + sys5, and
consider the isometries t; = 1 ® sy and ¢, = 1 ® 55 in M(A ® K) C (A ® K)**. For every
positive element a in A® K and for every isometry ¢ in M(A®K) we have a ~ tat* in AQK
and p, ~pyz tpat* = prar- in (AR K)*™*. We can therefore define addition in P,((A®QK)**)/~cu
by

(**) [p]Cu + [q]Cu = [tlpti + t2qt§]0ua b, q € PO((A ® ,C>**)

The relation 2, yields an order relation on F,((A ® K)**)/~cy, which thus becomes an
ordered abelian semigroup.

Proposition 4.13 and Corollary 4.14 applied to the C*-algebra A ® K yield that the map-
ping (a) — [pa)cu, fora € (A ® K)*, defines an isomorphism

Cu(4) 2 P,((A® K)™) /~cu

of ordered abelian semigroups whenever A is a separable C*-algebra. In more detail,
Proposition 4.13 and Corollary 4.14 imply that the map (a) — [ps]cu is well-defined, in-
jective, and order preserving. Surjectivity follows from the assumption that A (and hence
A ® K) are separable, whence all open projections in (A ® K)** are of the form p, for some
positive element a € A ® K. Additivity of the map follows from the definition of addition
defined in (**) above and the fact that (a) + (b) = (t;at] + t5bt5) in Cu(A).

6.2 (The stable rank one case). It was shown by Coward, Elliott, and Ivanescu in [CEIOS,
Theorem 3] that in the case when A is a separable C*-algebra with stable rank one, then
two Hilbert A-modules are isometrically isomorphic if and only if they are Cuntz equiva-
lent, and that the order structure given by Cuntz subequivalence is equivalent to the one
generated by inclusion of Hilbert modules together with isometric isomorphism (see also
[APT09, Theorem 4.29]). Combining those results with Proposition 4.3, Proposition 4.6,
Proposition 4.13 and Corollary 4.14 shows that the following holds for all a,b € A" and
for all p, g € P,(A*):

1) abesazsbandaxb<s an~yb.

(1) pZcuqgepIrzqand p~cu g p~pz Q.

(2) IfaZsband b =25 a, then a ~; b.

(2)" If p Zpz qand g Zpz p, then p ~pz q.
Hence the vertical implications between the first and the second row of (x) can be reversed
when A is separable and of stable rank one.

The right-implications in (1) and (2) (and hence in (1)" and (2)") above do not hold in
general. Counterexamples were given by Lin in [Lin90, Theorem 9], by Perera in [Per97,
before Corollary 2.4], and by Brown and Ciuperca in [BC09, Section 4]. For one such
example take non-zero projections p and ¢ in a simple, purely infinite C*-algebra. Then,
automatically, p S ¢, p 25 ¢, ¢ Zs p,and p = ¢; but p ~ g and p ~; ¢ hold (if and) only if p
and ¢ define the same Kj-class (which they do not always do).

It is unknown whether (1)—(2)” hold for residually stably finite C*-algebras, and in par-
ticular whether they hold for stably finite simple C*-algebras.

6.3 (Almost unperforated Cuntz semigroup). We discuss here when the vertical implica-
tions between the second and the third row of (x) can be reversed. This requires both a
rather restrictive assumption on the C*-algebra A, and also an assumption on the positive
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elements a and b. To define the latter, we remind the reader of the notion of purely non-
compact elements from [ERS08, before Proposition 6.4]: The quotient map 7;: A — A/I
induces a morphism Cu(A) — Cu(A/I) whenever [ is an ideal in A. An element (a) in
Cu(A) is purely non-compact if whenever (7;(a)) is compact for some ideal I, it is properly
infinite, i.e., 2(m;(a)) = (m;(a)) in Cu(A/I). Recall that an element « in the Cuntz semi-
group Cu(B) of a C*-algebra B is called compact if it is way-below itself, i.e., o < « (see the
end of Section 4 for the definition).

It is shown in [ERS08, Theorem 6.6] that if Cu(A) is almost unperforated and if a« and b

e~~~

are positive elements in A® K such that (a) is purely non-compact in Cu(A), then (a) < (b)
implies that (a) < (b) in Cu(A). In the notation of [ERS08], and using [ERS08, Proposi-

tion 4.2], (a) < (b) means that d.(a) < d,(b) for every (lower semicontinuous, possibly
unbounded) 2-quasitrace on A. In the case where A is exact it is known that all such 2-
quasitraces are traces by Haagerup’s theorem, [Haa92], (extended to the non-unital case
by Kirchberg, [Kir97], and Blanchard and Kirchberg, [BK04, Remark 2.29(i)]) so it follows

that (a) < (b) if and only if a 3, b. We can thus rephrase [ERS08, Theorem 6.6] (see also
[Ror04, Corollary 4.6 and Corollary 4.7]) as follows: Suppose that A is an exact, separa-
ble C*-algebra with Cu(A) almost unperforated. Then the following holds for all positive
elements a,bin A ® K :

(3) If (a) € Cu(A) is purely non-compact, thena 3, b < a 2 b.
(4) If (a), (b) € Cu(A) are purely non-compact, then a ~, b < a =~ b.

We wish to rephrase (3) and (4) above for open projections. We must first deal with
the problem of choosing which kind of compactness of open projection to be invoked.
Compactness of an open projection p € A™ as in Definition 3.6 means that p € A (see
Proposition 3.7). On the other hand, compactness for an element of the Cuntz semigroup
Cu(A) is defined in terms of its ordering. Compactness of p, implies compactness of (a) €
Cu(A) for every positive element a in A ® K. Brown and Ciuperca have shown that the
converse holds in stably finite C*-algebras, [BC09, Corollary 3.3]. Recall that a C*-algebra
is called stably finite if its stabilization contains no infinite projections.

From now on, we restrict our attention to the residually stably finite case, which means
that all quotients of the C*-algebra are stably finite. We define an open projection p in A**
to be residually non-compact if there is no closed, central projection z € A** such that pz is a
non-zero, compact (open) projection in A**z. Here, we identify A**z with the bidual of the
quotient A/I, where [ is the ideal corresponding to the open, central projection 1 — z, i.e.,
I=A_,=(1-2)A"1-2)NA.

It follows from Proposition 3.7 that an open projection p € A** is residually non-compact
if and only if there is no closed, central projection z € A** such that pz is non-zero and
belongs to Az. Applying [BC09, Corollary 3.3] to each quotient of A, we get that (a) €
Cu(A) is purely non-compact if and only if p, is residually non-compact whenever a is a
positive element in A ® K.

Thus, for open projections p, ¢ in the bidual of a separable, exact, residually stably finite
C*-algebra A with Cu(A) almost unperforated, the following hold:

(3)" If pis residually non-compact, then p X ¢ < p Zcu ¢
(4)" If p and q are residually non-compact, then p ~ g < p ~¢, ¢.
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If, in addition, A is assumed to be simple, then an open projection p in A** is residually
non-compact if and only if it is not compact, i.e., if and only if p ¢ A, thus:

(3) Ifp ¢ A thenp 3 g < p Jou ¢

(4" Ifp,q ¢ A thenp ~q < p~oug.

If A is stably finite, and p, ¢ are two Cuntz equivalent open projections in A**, then p is
compact if and only if ¢ is compact (see [BC09, Corollary 3.4]). Together with (3)” and (4)”
this gives the following new picture of the Cuntz semigroup: Let A be a separable, simple,
exact, stably finite C*-algebra with Cu(A) almost unperforated. Then

Cu(4) =V(4) JT (R((A®K)™")\P(ARK))/~.

In other words, the Cuntz semigroup can be decomposed into the monoid V' (A) (of Murray-
von Neumann equivalence classes of projections in A ® K) and the non-compact open
projections modulo Murray-von Neumann equivalence in (4 ® K)**.

In conclusion, let us note that the vertical implications between the second and the third
row of (x) cannot be reversed in general. Actually, these implications will fail whenever
Cu(A) is not almost unperforated, which tends to happen when A has "high dimension”.
These implications can also fail for projections in very nice C*-algebras. Indeed, if p and ¢
are projections, then p ~i, ¢ simply means that 7(p) = 7(¢) for all traces 7. It is well-known
that the latter does not imply Murray-von Neumann or Cuntz equivalence even for simple
AF-algebras, if their K, groups have non-zero infinitesimal elements.
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