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Abstract

The first named author has in [13] given a classification of all separable, nuclear C*-
algebras A that absorb the Cuntz algebra O,. (We say that A absorbs O if A is
isomorphic to AQ Ou.) Motivated by this classification we investigate here if one can
give an intrinsic characterization of C*-algebras that absorb Oy. This investigation
leads us to three different notions of pure infiniteness of a C*-algebra, all given in
terms of local, algebraic conditions on the C*-algebra.

The strongest of the three properties, strongly purely infinite, is shown to be
equivalent to absorbing O, for separable, nuclear C*-algebras that either are stable
or have an approximate unit consisting of projections. In a previous paper, [16], we
studied an intermediate, and perhaps more natural, condition: purely infinite, that
extends a well known property for simple C*-algebras. The weakest condition of the
three, weakly purely infinite, is shown to be equivalent to the absence of quasitraces
in an ultrapower of the C*-algebra. The three conditions may be equivalent for all
C*-algebras, and we prove this to be the case for C'*-algebras that are either simple,

of real rank zero, or approximately divisible.
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1 Introduction

It is well known that each von Neumann algebra is the direct sum of two von Neumann
algebras: one of which is finite and has a separating family of traces (the type I,, n < oo,
and type II; portions), and the other is properly infinite (the type I, 11, and III portions).
The properly infinite summand is again a direct sum of two von Neumann algebras: one of
which has an essential ideal admitting a separating family of (unbounded, densely defined)
traces (the type I, and I, portions), and one which is traceless and purely infinite (the
type III portion). We investigate here a C*-analog of the type III von Neumann algebras.
More generally, we look at the C*-analog of the quotient of a general von Neumann algebra
by the ideal generated by its finite projections.

Our motivation for studying purely infinite C*-algebras stems primarily from the pos-
sibility of classifying these C'*-algebras along the lines of Elliott’s classification program as
described in [10]. More specifically, the first named author has recently proved that if A
and B are nuclear, separable C*-algebras both with primitive ideal spectrum homeomor-
phic to some Tj-space X, then A ® Oy ® K is isomorphic to B ® O ® K if and only if
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A and B are KK x-equivalent, where K Kx is a version of K K-theory that respects the
primitive ideal spaces. As a step towards (and also a corollary of) this result, it is shown
that two nuclear, separable C*-algebras A and B satisfy AQ O, @ K &£ B® O, ® K if and
only if A and B have homeomorphic primitive ideal spaces.

The classification result raises some questions: Can one determine when A and B are
K K x-equivalent? Is there an intrinsic characterization of those C*-algebras that absorb
O.? We shall not address the first question here except to note that one should be
looking for a version of a universal coefficient theorem (UCT) for KKx. An example of
such a UCT was given in [21], where K K x-equivalence was determined by isomorphism of
six-term exact sequences in the case where X consists of two points.

The first named author proved (in a paper published in [15]) that for a simple, nuclear,
separable C*-algebra A one has A =2 A ® O if and only if A is purely infinite (in the
sense of J. Cuntz, [6]). The most optimistic generalization of this result to non-simple
C*-algebras would be as follows: For any (separable, nuclear) C*-algebra A the following

three conditions are equivalent:
(i) A2 A® O,
(ii) A is purely infinite (cf. Definition 3.4),

(iii) A is traceless in the sense that no algebraic ideal in A admits a non-zero — possibly

unbounded — quasitrace.

We shall here establish an equivalence similar to, but weaker than, this. Some of the
technical difficulties are solved by inventing three different notions of being purely infinite.
The strongest of the three, strongly purely infinite (defined in Section 5), is shown in
Section 8 to be equivalent to (i) above for nuclear, separable C*-algebras that are either
stable or have an approximate unit consisting of projections. In Section 4 we discuss weakly
purely infinite C*-algebras, and it is shown that a C*-algebra A is weakly purely infinite if
and only if its ultrapower A, is traceless. The intermediate condition was treated in detail
in an earlier paper [16], and a brief survey of the properties of purely infinite C*-algebras
is given in Section 3.

We show in Section 4 that every weakly purely infinite C*-algebra, that is either simple,
approximately divisible, or has real rank zero, is purely infinite. In Section 6 we show that
every purely infinite C*-algebra of real rank zero is strongly purely infinite. In particular,
each simple purely infinite C*-algebra is strongly purely infinite. We also show that each

approximately divisible, purely infinite C*-algebra is strongly purely infinite.



A more detailed summary of the main results of this paper is given in Section 9. This
section also contains a list of open problems related to this article.

The main result on O4-absorption is obtained via a local Weyl-von Neumann theorem
(Theorem 7.21) which says that every approximately inner, completely positive map from
a nuclear sub-C*-algebra of a strongly purely infinite C*-algebra can be approximated by
1-step inner completely positive maps. Most of Section 7 is devoted to the proof of that
result.

Both authors thank Etienne Blanchard for many useful discussions on the topic of
purely infinite C*-algebras, for pointing out several errors in an earlier version of this
paper, and for inviting us to Luminy, Marseilles, in the spring of 1999, where this work
was initiated.

This article was completed in the fall of 2000 while both authors visited the Mathema-
tical Sciences Research Institute (MSRI) in Berkeley, and we thank MSRI for its hospitality
and support.

2 Preliminaries

This section has two subsections containing some background material that will be used

frequently throughout this paper.

Cuntz comparison

The various notions of pure infiniteness we shall consider are defined in terms of compar-
ison theory for positive elements in a C*-algebra. This theory, invented by Cuntz in [5],
generalizes the comparison theory for projections in a von Neumann algebra. The reader

is referred to [2], [20], and [16] for more information about Cuntz’ comparison theory.

Definition 2.1 (Cuntz comparison) Let A be a C*-algebra and let a, b be positive el-
ements in A. Write a X b if there is a sequence {zj}72, of elements in A such that
xybry — a. Write a =~ bif a 2 b and b 3 a, and write a ~ b if ¢« = z*z and b = xz* for
some z in A.

More generally, if @ in M,,(A) and b in M,,(A) are positive matrices, then write a 2 b
if z3bx), — a for some sequence {xy}2, of rectangular matrices in M,, ,(A), and let a =~ b

and a ~ b have similar meanings as above.

With a in M, (A) and b in M,,(A) one has a ~ b if a ~ b (but not conversely). Let a @ b
denote the element diag(a,b) in M, ,(A), and let a ® 1,, denote the n-fold direct sum
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adad---Da.

To each positive element a in a C*-algebra A and for each € > 0 define (a — )4 to be
the positive part of the self-adjoint element a — £-1 in the unitization of A. We remark
that (a —€), actually belongs to A and that (a — &)y = he(a), where h.: R" — R" is the

continuous function given by h.(t) = max{t —,0}. Note also the frequently used facts:

(@a—e1—e2)y = ((a—e1)y —&2), (@ —¢€)+ —al <e¢, (2.1)
that hold for all ¢ in A" and all €,&1, g5 > 0.

The polar decomposition. Every element x in a C*-algebra A has a polar decomposition

r = u(z*z)'/?, where u is a partial isometry in the enveloping von Neumann algebra A**.

1/2

One also writes |z| for (z*x) One has © = u|z| = |z*|u. For all elements y in the

hereditary sub-C*-algebra z* Az, the elements uy, yu*, and uyu* belong to A. The mapping

y — uyu* defines an isomorphism from z* Az onto xAz*.

Lemma 2.2 Let A be a C*-algebra, let a,b be positive elements in A, and let € > ||a — b

be given. Then there is a contraction d in A such that dbd* = (a — €) ..

Proof: For each r > 1 define g,: R" — R by g,(¢t) = min{¢,¢"}. Observe that g,(b) — b
as 7 — 1. Choose r > 1 such that (e; =) |la — ¢,(b)|| < € and set by = g,(b). Then by < b,
by <", and a —e; < by. Find a positive contraction e in C*(a) with e(a —e1)e = (a —¢€) 4.
Then (a—¢); < ebge. Put z = b(l)/Qe and let z = v(z*z)'/? be the polar decomposition for z,
where v is a partial isometry in A**. As (a—¢); < ebpe = z*z, the element y = v(a — 5)1/2

belongs to A, y*y = (a — ¢) 4, and

yy* =v(a—e)v" < vzt = zxt = 63/2621)(1)/2 < b.
Now, following the proof of [18, Proposition 1.4.5], put d,, = y*(%+br)7l/2b(r_1)/2. Because
yy* < by < b", [18, Lemma 1.4.4] applies (with « = 1 and 8 = (r — 1)/r) and shows that
{d,}2, is a Cauchy sequence in A. Let d be the limit of this Cauchy sequence. As in the
proof of [18, Proposition 1.4.5], we have db'/? = y*, so that dbd* = y*y = (a — £)4. Since
yy* < by < b we get

—-1/2

did, < b(r—l)/Z(% + b’")_l/Qb(% T b'r') pr=1)/2 <1.

Hence ||d,|| <1 for each n which entails that d is a contraction. O



Lemma 2.3 ([20, Proposition 2.4]) Let A be a C*-algebra and let a,b be positive ele-

ments in A. The following conditions are equivalent:
(i) a3
(ii)) (a—¢€)y 2 b foralle >0,
(iii) for every e > 0 there is § > 0 and x in A such that z*(b—0)yz = (a — €)4.
(iv) for every e > 0 there is x in A such that x*x = (a — €)4 and xx* belongs to bAb.
In particular, if a is a positive element in the hereditary sub-C*-algebra bAb, then a 3 b.
Lemma 2.4 Let a,b be positive elements in a C*-algebra A and let § > 0.

(i) If a = z*(b — &), x for some x in A, then a = y*by for some y in A with ||y|| <
(5—1/2”&”1/2.

(i) If a 3 (b — )4, then for each r > 1 there exists y in A with a = y*by and with
lyll < r6=*/2||a]|*/>.

(i) If a < b, then for each € > 0 there is a contraction d in A with d*bd = (a — ).

Proof: We shall need some functions in the proof. For § > 0 and for « in the interval
[0,1/2] define fs4,95: Rt — R* by

=0 >4 1/t, t>6
fsalt) = ! T, e = o (2.2)
0, t<é 072, t<é

and put f; = f51/5. Then
Hsaltf = (=02, f5(t) = (t— 6)0s(t).
(). Put y = f5(b)z. Then
y'by = z*bf5(b)’r =" (b —8)1x =a,  y'y=2"f5(b)*x < |lgs(b)]|z*(b—6)sx <5 a.

The latter inequality yields the desired norm estimate for y.

(ii). Choose & > 0 such that & < 6 and 6,/ < r6~/2. If a X (b — 6),, then
a = z*(b — dg)4+x for some z in A by Lemma 2.3 (iii) and (2.1). Hence a = y*by for some
y in A with [|y|| < 8,"*[lal|'/* < r6="/|al|/* by (3).
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(iii). The system { fs(b)}s>o is an approximate unit for bAb, and so we can choose § > 0
with || fs(b)afs(b) — a|| < €. Observe that

aiilr;lz— ||f¢5,a(b)|| = ||f(5(b)|| = ((”b“ _ (5)+/||b||)1/2 <1

We can therefore choose a in the interval [0,1/2) such that ||a||'/?~%|| f54(b)|| < 1. Put
Y = f5.a(b), so that y*by = (b—6)3*. By Lemma 2.2 there is a contraction ¢ in A such that
(a—¢)y =t*fs(b)afs(b)t. We have

fs(b)afs(b) < fs(b)bfs(b) = (b—6).

Use [18, Proposition 1.4.5] to find u in A with u*(b — 6)3*u = f5(b)afs(b) and |u|| <
l|la||*/?~®. Put d = yut. Then d*bd = (a —¢) and ||d|| < |Jy|||]=||||t]| < 1. O

The proof of Lemma 2.4 (iii) actually yields an element d in A of norm slightly less than
1 with d*bd = (a — €) 4.

Limit algebras

A filter on a set €2 is an upwards directed collection of subsets of €2 which is closed under
finite intersections. To each filter w on N and to each C*-algebra A one defines the C*-
algebra A, to be the quotient £*°(A)/c,(A), where ¢,(A) is the closed two-sided ideal in
£>°(A) consisting of those sequences a = {a,}2, for which lim, ||a,|| = 0. Recall that
lim,, o, = «v if for each € > 0 there is a subset X in w such that |a — a,| < ¢ for all n in X.
(One also uses the symbol lim,,_,,, o, to express the limit lim,, a,.) The quotient mapping
¢>*(A) — A, is denoted by m,. For each (bounded) sequence {c,}22; of real numbers,
define

. . def .
limsup o, = limsupa,, = inf sup a,,

w n—w Xewnpex
and recall that ||7,(a)|| = limsup, ||a,]|-
There is a canonical embedding of A into A, given by a — 7,(a,a,...,). We shall

often view A as a sub-C*-algebra of A, using this embedding implicitly.

A filter w on N is called free if it contains all cofinite subsets of N, and w is called
an ultrafilter if it is a maximal filter. Each filter is contained in an ultrafilter. The set
of all cofinite subsets of N is a free filter, and any ultrafilter containing this filter is a
free ultrafilter. If w contains a finite set, then w is not free and there is a finite subset

Xo = {n1,...,nx} of N such that w is the collection of all subsets of N containing X,. In



this case, A, = AP A®---® A (with k summands), and 7, (a1, as,...) = (Any,- -, Cp,)-

There are filters on N that neither are free nor contain a finite set.

Lemma 2.5 Let A be a C*-algebra and let w be a free filter on N. Let {p;}ic1 be a finite
or countably infinite family of polynomials over A, in two non-commuting variables (cf.
the examples below). Suppose for some finite constant C' there is a sequence {d,}>, of
elements in A, such that ||d,|| < C for all n in N and

lim ||pi(dn, dy,)|| =0
n—r0Q
for all i € I. Then there is d in A, such that ||d|| < C and p;(d,d*) =0 for all i € L.
We shall typically apply the lemma in situations where the polynomials p; are of the form:

pi(d,d") = d"ad — b, pa(d, d*) = [d"ad, b], p3(d,d”) = [d*ad, d*bd]

for some a,b in A,.

Proof: Each coefficient of each p; is an element in A,. Upon lifting each such coefficient
to an element (of the same norm) in /*°(A) we obtain a sequence {p;,}>, of polynomials
over A in two non-commuting variables such that {p;,(en, €})}52, is a bounded sequence
for each bounded sequence {e,}2?; in A, and such that

pi(ea 6*) = Ww(pi,l(el,ef),pm(e% 6;),1%,3(63, efri,), .- ) when e = 7Tw(€1, €2,€3,... )

Observe that ||p;(e, e*)|| = limsup,,_,,, ||pin(exn, €)]|-

Write I as an increasing union of finite subsets {I;}$, of I. For each £ find dj in A,
such that ||dg|| < C and ||p;(dk, d})|| < 1/k for all i in I),. Write dy, = 7, (dk1, dg,2, dr 3, - - - ),
where each dj ,, is an element in A with ||d,|| < C. Then

limjup ||Pé,n (A, di ) || < 1/, keN, iel.
For each k find Y}, in w such that
1Pin (din, di) | < 1/k,  n €Yy, i€l (2.3)
Define X € w inductively by setting X; = Y7, and
Xy =YeN X, 1 N(N\{1,2,...,k})
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for £ > 2. (The set N\ {1,2,...,k} belongs to w by the assumption that w is free.) Then
(2.3) holds for all n in X and for all ¢ in Iy, the sequence {X;}52, is decreasing and
Ny Xi, = 0. We can now write N as a disjoint union:

Let {e,}52, in *°(A) be given by

/

0, if neN\X,
) dl,n: if ne Xl \ XQ,
dg’n, if ne X2 \ X3,

L -

and put d = 7, (e1, ez, e3,...) in A,. Then ||p;,(en,€})|| < 1/k for all n in X and for all
i in Ij. Hence ||p;i(d,d*)|| < 1/k for all ¢ in I. This holds for all k£, and so p;(d, d*) = 0 for
all ¢ in T as desired. 0

3 Purely infinite C*-algebras
We give here a brief review of some of the results on purely infinite C*-algebras from [16].

Definition 3.1 (Properly infinite elements) A positive element a in a C*-algebra A

is said to be properly infinite if a is non-zero and a ® a 3 a.

The condition a @ a < a means by definition that there is a sequence {d,}2, of elements

in M5(A) such that
e N, (")) —o. (3.1)
0 0 0 a

We note as a side remark that if there is a sequence {d,} such that (3.1) holds for all a

in A, and if A is separable, then A is isomorphic to A ® O by Proposition 8.4. (See also
Proposition 7.8.)
Some properties of properly infinite elements, established in [16, Proposition 3.3], in-

clude:



Lemma 3.2 The following conditions are equivalent when a is a non-zero positive element

in a C*-algebra A:
(i) a is properly infinite.

(ii) For each € > 0 there are positive elements ay,as in aAa such that ajay = 0 and

(a—e)y Zaj forj=1,2.

(iii) For each natural number n and for each ¢ > 0 there are elements dy,...,d, in aAa
such that djad; = 6;j(a — €)4.

The property that an element in a C*-algebra is properly infinite depends on the C*-alge-
bra to which the element belongs. However, as follows readily from Lemma 3.2 (iii), if a is
a positive element in a hereditary sub-C*-algebra B of a C*-algebra A, and if a is properly
infinite relatively to A, then a is also properly infinite relatively to B.

In the spirit of comparison theory for projections, a positive element a is called infinite
if a ® b X a for some non-zero positive element b in A; cf. Definition 2.1.

If op: A — B is a *~homomorphism between C*-algebras A and B, and if a is a properly
infinite element in A, then ¢(a) is properly infinite if non-zero. Moreover, a positive element
a is properly infinite if and only if ¢(a) is either infinite or zero for every *~homomorphism
@ on A; cf. [16, Proposition 3.14].

If a is a properly infinite element in A, then b 3 a for each positive element b in the
closed two-sided ideal, AaA, generated by a; cf. [16, Proposition 3.5].

The set of properly infinite positive elements in a C*-algebra A is not always a closed
subset of AT\ {0}. For example, no finite rank projection on a Hilbert space H is properly
infinite, but each positive element in B(H) can be approximated in norm by properly
infinite positive elements in B(H) (if T is a positive operator on H, then T + n~'I is
properly infinite for all n € N). However, we have the following (weaker) approximation

lemma;

Lemma 3.3 Let a be a positive element in a C*-algebra A and suppose that for each e > 0
there is a properly infinite element b in A with ||a — b|| < e and b 2 a. Then a is properly

infinite.

Proof: For each ¢ > 0 choose b, such that ||a — b.|| < € and b, T a. By Lemma 2.2 we
have (a — €)1 ® (a —e)y 3 b ® b. 2 b. 2 a, which by Lemma 2.3 (ii) implies that a is
properly infinite. O
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Definition 3.4 (Purely infinite C*-algebras) A C*-algebra A is said to be purely in-
finite if A has no non-zero abelian quotients and if for each pair of positive elements a, b
in A such that a belongs to AbA, the closed two-sided ideal generated by b, we have a 3 b.

It is shown in [16, Theorem 4.16] that A is purely infinite if and only if each non-zero
positive element in A is properly infinite. Other facts about purely infinite C*-algebras,

proved in [16], include:

Proposition 3.5 (Permanence properties)

(i) For each short exact sequence 0 — I — A — B — 0 one has that A is purely infinite
if and only if I and B are purely infinite.

(ii) If A and B are stably isomorphic and if A is purely infinite, then so is B.
(iii) Fach hereditary sub-C*-algebra of a purely infinite C*-algebra is purely infinite.

(iv) If A is a purely infinite C*-algebra and if w is a free filter on N, then A, is purely

infinite.
(v) Any inductive limit of a system of purely infinite C*-algebras is purely infinite.
(vi) A® O is purely infinite for every C*-algebra A.

A simple C*-algebra is purely infinite if and only if each of its non-zero hereditary sub-

C*-algebra s contain an infinite projection, in agreement with Cuntz’ original definition in

[6]-

4 Weakly purely infinite C*-algebras

One motivation for introducing the notion of weakly purely infinite C*-algebras is found in
[16, Theorem 5.9] which says that an approximately divisible C*-algebra is purely infinite
if and only if it is traceless. (The notions of being approximately divisible and traceless are
defined below.) We shall here characterize tracelessness in terms of being weakly purely

infinite (without assuming approximate divisibility).

Definition 4.1 (Approximate divisibility) A C*-algebra A is said to be approzimately

divisible if for every natural number n, for every finite subset F' of A, and for every ¢ > 0
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there is a unital *-homomorphism ¢: M, (C) & M, ,(C) — M(A), where M(A) denotes
the multiplier algebra of A, such that

le(z)a — ap(z)|| < el|z]

for all @ in F and all z in M, (C) & M,1(C).

As remarked in [16, Lemma 5.6], if A is approximately divisible and if B is any C*-alge-
bra, then A ® B is approximately divisible (where ® is any tensor product). As O is
approximately divisible (a consequence of [15], see also Corollary 8.3) we find that A® Oy
is approximately divisible for every C*-algebra A.

Definition 4.2 (Traceless C*-algebras) A C*-algebra A will be called traceless if no

algebraic ideal of A admits a non-zero quasitrace .

There is a one-to-one correspondence between quasitraces and lower semi-continuous di-
mension functions (established by Blackadar and Handelman in [3]), and so being traceless
is the same as having no non-zero lower semi-continuous dimension functions; cf. [16, The-
orem 5.9].

The C*-algebra B(H) of all bounded operators on an infinite dimensional Hilbert space
H is not traceless, since it has a non-zero trace defined on the trace class operators on H.
We do not require our traces (or quasitraces) to be bounded.

Definition 4.3 (Weakly purely infinite C*-algebras) A C*-algebra A will be said to
have property pi-n if the n-fold direct sum a ®a®---®a =a® 1, is properly infinite (cf.
Definition 3.1) for every non-zero positive element a in A. If A is pi-n for some n, then we

shall call A weakly purely infinite.

By [16, Theorem 4.16], a C*-algebra is pi-1 if and only if it is purely infinite. By definition,
a ® 1, is properly infinite if and only if a ® 19, J a ® 1,,.

~Yy

Lemma 4.4 Let a be a non-zero positive element in a C*-algebra A and let n be a natural

number. The following conditions are equivalent:

(i) a® 1, is properly infinite,

!By a quasitrace we shall always mean a lower semi-continuous, positive 2-quasitrace. A 2-quasitrace
on a C*-algebra A is a quasitrace that extends (not necessarily in the obvious way) to a quasitrace on
M>(A). Haagerup proved in [11] that each quasitrace on a unital, exact C*-algebra extends to a trace
(and the first named author has extended this result to non-unital, exact C*-algebras in [14]). Thus an
exact C*-algebra A is traceless if and only if no algebraic ideal of A admits a non-zero trace.
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(ii)) a® 1, 3 a® 1, for all natural numbers m,
(i) a® 1, 2 a® 1, for all natural numbers r,m with r > n,
(iv) a® 11 3 a® 1,

(v) for each € > 0 and for each m in N there is x in My, ,(A) such that x*z belongs to
M,(aAa) and zz* = (a — €)4+ ® 1py,.

Proof: The implications (iii) = (ii) = (i) = (iv) are trivial, and (ii) and (v) are equivalent
by Lemma 2.3. Assume that (iv) holds. Then

a® 11 = (R 1,41) D (a®1kp) 2(a®1,) D (a® 1p_p) =a® 1
for all £ > n. By transitivity of the relation X and by induction we obtain (iii). O

Proposition 4.5 (Permanence properties)
(i) If A is pi-n, then A is pi-m for every m > n.
(ii) Every hereditary sub-C*-algebra of a pi-n C*-algebra is pi-n.
(iii) Ewvery mnon-zero quotient of a pi-n C*-algebra is again pi-n.

(iv) Let 0 > I — A — B — 0 be a short exact sequence. If I is pi-n and B is pi-m, then
A is pi-(n 4+ m).

(v) If A is an inductive limit of a system of C*-algebras, each of which is pi-n for the
same n, then A is pi-n.

(vi) If A and B are stably isomorphic C*-algebras and if A is pi-n, then B is pi-n®.

By (iv), an extension of two weakly purely infinite C*-algebras is again weakly purely
infinite. The given estimate on the degree of pure infiniteness is not optimal (cf. Proposi-

tion 3.5 (1)), but it suffices for our purposes.

Proof: (i) follows from Lemma 4.4.

(ii). This follows from the remark below Lemma 3.2 that being properly infinite is
preserved when passing to hereditary sub-C*-algebras.

(iii). This follows from the fact, remarked below Lemma 3.2, that a non-zero image

under a *-homomorphism of a properly infinite element is again properly infinite.
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(iv). Let a be a non-zero positive element in A and let ¢ > 0 be given. View I as an
ideal of A and let m denote the quotient mapping A — B. If a belongs to I, then a ® 1,,
is properly infinite because I is pi-n.

Assume now that 7(a) is non-zero. Then 7(a) ® 1,, is properly infinite in M,,(B). By
Lemma 3.2 we can find positive elements by, by in M,,(7(a)Br(a)) such that b;by = 0 and
m((a—¢€/3)+) ® 1, 3 b; for j =1,2. Since 7((a —¢/3)+) @ 1, is properly infinite we also
have

m((a —€/3)+) ® Ly 2 b;, j=12.

Lift b1, by to mutually orthogonal, positive elements a1, as in M,,(aAa). There are positive
elements ¢}, ¢} in My iq(ala) such that (a —/2)4 ® lpyn Z a; @ ¢ for j = 1,2; cf. [16,
Lemma 4.12]. There is ¢ > 0 such that

(@=€)s ®Lnin 3(a;—0)+®(;—0)+ Ja;®(c; =)y, =12 (4.1)

cf. Lemma 2.3. We show next that there are positive elements c;, ¢, in M, (ala) such that
c¢1c; = 0 and (¢ —6)4+ 3 ¢;. Find a positive element ¢y in afa and 7 > 0 such that (¢} — )+
and (¢, — 6)4 belong to My,4n(I(co —n)1). Since I is pi-n, (co — 1)+ ® 1, is properly
infinite, and so (¢; — &) 3 (co — 1)+ ® 1,. Because ¢y ® 1, also is properly infinite we
can use Lemma 3.2 to find ¢;, ¢p in the hereditary sub-C*-algebra of M, (I) generated by
co ® 1, such that cieo = 0 and (co — 1)+ ® 1, 3 ¢; for j = 1,2. Notice that ¢q, ¢, belong
to M,(aAa). Hence d; = diag(a;, c;) belongs to M, (aAa), didy = 0, and

(a_€)+®1m+n§aj®(cg_5)+rjaj@cj:dj'

It now follows from Lemma 3.2 that a ® 1,,,, is properly infinite, and this proves (iv).
(v). Assume that A is the inductive limit of a system {A;};c1 of C*-algebras each of
which is pi-n. By (iii) we can assume that each map A; — A is an inclusion mapping (so
that A is the closure of the directed union of the algebras A;). Let a be a non-zero positive
element in A and let ¢ > 0 be given. Use [16, Lemma 2.5] to find 7 in I and a non-zero

positive element b in A; such that (¢ —¢)+ 36 3 a. Then
(a—e)y @11 301,11 301, 2a®1,.
Since this holds for all € > 0, we get a ® 1,41 2 a® 1,, and so A is pi-n.

(vi). By (ii) and (v) it suffices to show that if A is pi-n, then M (A) is pi-n? for all

natural numbers k.
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We show first that b ® 1,2 is properly infinite for every non-zero positive element b in
M, (A). Indeed, let b;; € A be the matrix entries of b. Then b; X b 3 b1 @ --- D by, for

i=1,...,n (see Lemma 5.3 below) and by Lemma 4.4 this implies:
b®1n2—|—1 ,j (bll@"'@bnn)®1n2+1 ,5 (bll @@bnn)®1n ,5 b®]—n2

Take now a non-zero positive matrix a in My(A) and let € > 0 be given. Choose 1 > 0
such that if ||a — ¢|| < &1, then ||a —¢|| < /2 and ||[(a —€/2); — (¢ —€/2)4|| < €/2. Hence,
if ||a —¢|| < &1, then (a —¢)y 2 (¢c—¢/2); 2 a by Lemma 2.2. Find a positive contraction
ein A and 6 > 0 such that

lla — al/Q((e —0): ® 1k)al/2|| < €.

Since e ® 1, is properly infinite there is an element d in M, x(A) such that d*(e ® 1,))d =
(e —0)y ®1;. With t = (/2 ® 1,)da'/? in M,, ;(A) we have |la — t*t|| < &1 and tt* (= b)
is a positive element in M, (A). Now (tt* —¢/2); ® 1,2, and hence (t*t —¢/2); ® 1,2, are
properly infinite by the first part of the proof. By the choice of €; we therefore get

(@=€)4 @l It —¢/2)4 @ Loz 3 ('t —€/2)+ @12 Ta® L.
As € > 0 was arbitrary, this proves that a ® 1,2 is properly infinite. O

Proposition 4.6 The following conditions are equivalent for every C*-algebra A:
(i) A is pi-n.
(il) €°(A) is pi-n.
(iii) A, is pi-n for every filter w on N.
(iv) A, is pi-n for some filter w on N.

Proof: (i) = (ii). Let a = (a1, as,...) be a non-zero positive element in ¢>*°(A) and let
€ > 0 be given. We show that a®1,, is properly infinite. It is no loss of generality to assume
that ||a]| = 1. Since A is pi-n, (ax—€)+®1,41 3 (ax—€)+ ®1,, and hence (ap—¢); ®1,41 =
2} (ay ® 1,)zy, for some xy in My, n11(A) with [Jag|| < 267Y/2; of. Lemma 2.4 (ii). It follows
that © = (x1,Z2,...) belongs to £*°(A) and that (¢ — &), ® 1,41 = 2*(a ® 1,,)x. Since this
holds for all € > 0 we get a ® 1,41 2 a®1,. Hence a ® 1, is properly infinite, and (ii)

must hold.
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(ii) = (iii) follows from Proposition 4.5 (iii); and (iii) = (iv) is trivial.

(iv) = (i). Let a be a non-zero positive element in A and let ¢ > 0. Since A, is pi-n
there is © = m,(x1, T, ...) in M, n+1(A,) such that 2*(a®1,)r = (e —€/2)+ @ 1,41. Each
xy, belongs to M, ,+1(A) and

limsup ||z} (a ® 1,)7x — (@ — €/2) 4 ® 11| = 0.

w

Hence ||z} (a®1p)zk — (a—€/2)+ ®1n41|| < €/2 for some k. By Lemma 2.2 this entails that
(a—¢e)y ® 1,41 T a®1,. Since € > 0 was arbitrary we conclude that a ® 1,11 2 a® 1,,

and so A is pi-n. O

Lemma 4.7 Let A be a C*-algebra which is pi-n. Then for each pair of positive elements
a,b in A, where a belongs to AbA, and for each € > 0 there are elements xy,...,z, in A
such that

Zx;bxj =(a—¢);.
j=1

Proof: Let ¢ > 0 be given. By [16, Proposition 2.7 (v)] there is a natural number & such
that (a —e/2)y Sb® 1. By Lemma 4.4, 0@ 1, 2b®1,, and so (a —¢/2);, 2 bQ® 1,.
It follows that (a —¢)4 = z*(b ® 1,)z for some z in M, (A). With z4,...,z, being the

entries of x, we obtain the desired identity. O

Theorem 4.8 Let A be a C*-algebra.
(i) For each free filter w on N the following three conditions are equivalent:
(a) A, is traceless;

(b) A, is weakly purely infinite;
(c) A is weakly purely infinite.

(ii) If A is weakly purely infinite, then A is traceless.

Proof: (ii). If A is weakly purely infinite, then A is pi-n for some n. Arguing as in the
proof of [16, Proposition 5.1] we see that A admits no non-zero dimension function, and
hence no quasitrace: Indeed, if d were a dimension function with domain I (an algebraic
ideal of A) and if a is a non-zero positive element in I, then a ® 1,, is properly infinite, and
hence a ® 1,41 2 a® 1,. This implies (n + 1)d(a) < nd(a), and so d(a) = 0.
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(i). (c) = (b) follows from Proposition 4.6, and (b) = (a) follows from (ii). We proceed
to prove (a) = (c). We do so indirectly by assuming that A is not weakly purely infinite.

We construct below a positive element a in A, which satisfies
(a—1/4);®(a—1/4);) @1, F a® 1 (4.2)

for all natural numbers k. It then follows from [16, Proposition 5.7] that A, admits a
non-zero lower semi-continuous dimension functions, and hence that A is not traceless.

For each natural number £ there is a positive contraction a; in A such that
((ax —1/2)+ @ (ax — 1/2)4) @ 11 X ag, ® 1py, m=1,2,...,k. (4.3)

To see this, find for each k a non-zero positive element b, in A such that by ® 1 is not
properly infinite. Then b; ® 1,, is not properly infinite for m = 1,2, ..., k; cf. Lemma 4.4.
Hence by ® 1o, £ b ® 1,,, for m < k. By Lemma 2.3, (by — )+ ® Lo L b ® 1,,, for some
em > 0. Taking € to be the minimum of €, ..., ¢, we can assume that ¢, = ¢ for each m.
Define h: R™ — R* to be h(t) = min{t/(2¢), 1}, and set ay = h(by). Then ay is a positive
contraction in A, (by —¢e)y = (ax — 1/2), and ay =~ by, (see Definition 2.1). This shows
that (4.3) holds.

With 7, : £°(A) — A, denoting the quotient mapping, set a = m,(a,as,...). We
proceed to show that (4.2) holds. Assume the contrary. Then (¢ —1/4); ® 1oy 3 a ® 1
for some natural number &, and so ||[z*(a ® 1)z — (@ — 1/4); ® 19| < 1/4 for some z in
M 2k (Ay). Write z = 7, (21,22, ...). Then

lim sup ||z}, (an @ 1k)zn — (an — 1/4) 4+ ® Lok|| < 1/4.

n—w

Because w is a free filter there is an infinite subset X of N such that
|27 (an @ 1g)2n — (an — 1/4) 4 ® 1]| < 1/4, n e X.

Use Lemma 2.2 to deduce that (a, — 1/2); ® 1ox 3 a, @ 1 for all n in X. Because X is
infinite it contains an element n > k. But this contradicts (4.3). O

It is not known if the sum of two properly infinite elements is again properly infinite. We
do however have the following weaker result.

Lemma 4.9 Let aq,...,a, be properly infinite elements in a C*-algebra A, and put a =
ap +ag + -+ ay. Then:
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(i) a® 1, is properly infinite,
(ii) and if a1,...,a, are mutually orthogonal, then a is properly infinite.
Proof: (i) follows from the relations
a®1loy (1 Ba® - Pay)®ly, 3(01 P ®---Day) Ta®l,.
(ii) follows from [16, Lemma 3.9]. O

The next lemma is used in the proof of Proposition 4.11 which says that the multiplier
algebra of a weakly purely infinite C*-algebra is weakly purely infinite. The proof of the

lemma uses a technique of Elliott from [9].

Lemma 4.10 Let A be a o-unital weakly purely infinite C*-algebra, let T be a positive
element in M(A), and let ¢ > 0. Then there is an increasing, countable, approzrimate unit
{en}S2, for A consisting of positive contractions satisfying eni1€, = €, and ey = 0, such
that

=a-+ Z 21n/2 lT 217{2 1 Z 1/2T 21n/27 fn =€np — €p—1, (44)

where a is a (not necessarily positive) element in A with ||a|| < e.

We have f, L f,, whenever |n —m| > 2, so the summands in the two (strictly convergent)

sums in (4.4) are mutually orthogonal elements in A.

Proof: Take a countable approximate unit {e, }5°, for A consisting of positive contractions
satisfying e, 1€, = e, and ||e,T — Te,|| — 0; cf. [18, Theorem 3.12.14]. Upon passing to

a subsequence of {e, }°°, we may assume that

o0

D ll(en = enm)*T = Tlen — en-1)?[| <, (4-5)

n=1

(where eg = 0.) Put f,, = e, —€p_1, so that 1 =" f, (the sum is strictly convergent).
Then

a=T=Y fPTHP=N"Tf =Y fPTHZ=D (T £1°T) £,/
n=1 n=1 n=1 n=1
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By (4.5) we have |a|| < >, ||Tf,}/2 — f,%/QTH < €, and because a is a norm convergent
sum of elements from A we conclude that a belongs to A. O

Proposition 4.11 Let A be a o-unital, weakly purely infinite C*-algebra. Then its multi-
plier algebra M(A) is weakly purely infinite.

Proof: Assume that A is pi-r.

We show first that if {e,}°°, is an approximate unit as in Lemma 4.10 and if R is
non-zero and given by a (strictly convergent) sum R = ) 7 aj, where aj,as,... is a
bounded sequence of positive, mutually orthogonal elements of A such that a, L e,_; for
all k£, then R ® 1, is properly infinite. Let ¢ > 0 be given. Since A is pi-r there are
elements 7y, in M, (A) such that xiz, = (a — €)y ® 1o, and zz; € M, (arAay); cf.
Lemma 4.4. Now, ||zx|| = ||(ax — €)||*/? which shows that the sequence {z;}$2, is norm-
bounded. The (i, j)th entry, zx(i,7), of ; belongs to ayAag, and so x4(i,5) L ex_i. It
follows that X (¢, j) = > "2, 2 (4, j) is strictly convergent in M(A). The resulting matrix
X in M, 5. (M(A)), whose (i,j)th entry is X (7, ), satisfies X*X = (R — ¢); ® 1o, and
XX* € M,(RM(A)R). Since ¢ > 0 was arbitrary, we conclude that R ® 15, X R® 1,; cf.
Lemma 2.3.

The argument above and Lemma 4.10 show that each positive element 7" in M(A) can
be written as T = a + T} + Ty, where T3, T, are positive elements in M(A), 71 ® 1, and
T, ® 1, are properly infinite, and a belongs to A. With 7: M(A) — M(A)/A being the
quotient mapping we get 7(7T") = n(1T1) + n(73), and 7(T;) ® 1, is properly infinite (cf. the
remarks below Lemma 3.2). Hence 7(7") ® 1o, is properly infinite by Lemma 4.9 (i). This
proves that M(A)/A is pi-2r. By Proposition 4.5 we conclude that M(A) is pi-3r and
hence weakly purely infinite. O

We do not know if the multiplier algebra of a purely infinite C*-algebra is again purely
infinite.

We end this section by discussing a sufficient condition under which one can deduce
pure infiniteness from weak pure infiniteness.

It is a consequence of a lemma by Glimm that if n is a natural number and if A is
a C*-algebra that admits an irreducible representation on a Hilbert space of dimension
at least n, then there is a non-zero *-homomorphism from M, (Cy((0,1])) into A (see [16,
Proposition 4.10]).

Definition 4.12 (The global Glimm property) A C*-algebra A is said to have the

global Glimm property if for each natural number n, for each positive element a in A, and
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for each £ > 0 there is a *-homomorphism ¢: M, (Cy((0,1])) — aAa such that (a —¢)4
belongs to the closed two-sided ideal of A generated by the image of .

Equivalently, A has the global Glimm property if for each positive element a in A, for each
¢ > 0, and for each natural number n there are mutually orthogonal elements ¢4, ...,%, in
aAa such that t; ~ ty ~ --- ~t, (cf. Definition 2.1) and such that (a —¢), belongs to the
closed two-sided ideal generated by t =¢; + --- 4+ ¢,.

Lemma 4.13 Let a be a positive element in a C*-algebra A and suppose that there is a
full 2 *-homomorphism ¢: M,(C) — M(aAa). Then there are mutually orthogonal and
mutually equivalent positive elements t1,...,t, in aAa such that a belongs to the closed
two-sided ideal generated by t =1t + -+ + t,.

Proof: Let {e;;} denote the matrix units of M,(C). Put z; = ¢(e;1)a, note that
riz; = ap(en)a, and put t; = z;x7. Then t,...,t, are mutually orthogonal and mu-
tually equivalent positive elements in aAa. The element ag(e;;)a is full in aAa (because
¢(eq1) is full in M(aAa)) and therefore a belongs to the ideal generated by t = #; +- - - +1,,.

O

Lemma 4.14 Let A be a C*-algebra such that no non-zero hereditary sub-C*-algebra of
A has a finite dimensional representation. Then A has the global Glimm property if A is

either simple, approximately divisible, or purely infinite.

Proof: The local version of Glimm’s lemma (see [16, Proposition 4.10]) implies the global
Glimm property when A is simple.

Assume next that A is approximately divisible. Let a be a positive element in A and
let ¢ > 0 be given. Let B denote the algebra M, (C) & M, .,(C) and find a sequence of
unital *-homomorphisms ¢y : B — M(A) such that ¢x(z)a — apg(z) — 0 for all z € B
and all @ € A. Let p denote the Haar measure on the compact unitary group of B, and
define a conditional expectation Ex: A — AN ¢(B)' by

Ey(a) = / PR dno).

Then |la — Ex(a)|| — 0. Choose k large enough so that |[a — Ex(a)|| < ¢/2, and put
ap = (Ex(a) —¢/2),. Then aq is a positive element in A N ¢ (B)' and ||a — agl| < . By

2A *-homomorphism A — B is called full if its image is not contained in a proper closed two-sided
ideal in B.
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Lemma 2.2 there are elements d, e in A such that ay = d*ad and (a — €), = e*ape. Put

a1 = a'/?dd*a/?. There is an isomorphism

o: agAag — a1Aa; C ada

such that a(ag) = a1 (see [16, Lemma 2.4]). Being equivalent, aq and a; generate the same
closed two-sided ideal of A, and (a — €), belongs to this ideal.
The canonical isomorphism 3: B ® C(sp(ag)) — C*(pr(B), ap) restricts to a *-homo-
morphism
Bo: B ® Cy(sp(ao) \ {0}) — agAay,

and ag = Go(1 ® ¢), where ¢ in Cy(sp(ag) \ {0}) is given by «(¢t) = ¢. Take a full *-homo-
morphism M, (C) — B, a surjective *-homomorphism Cy((0,1]) — Co(sp(ao) \ {0}), and

obtain in this way a full *-homomorphism
M, (Co((O, 1])) = M, (C) ® Cy((0,1]) = B ® Cy(sp(ag) \ {0}) — apAay,

the image of which generates an ideal of A that contains ag and therefore (a — €).
Suppose finally that A is purely infinite. Let a be a positive element in A and let &€ > 0
and n in N be given. By Lemma 2.3 there is d in M ,(A) such that d*ad = (a —¢)4 ® 1,,.
Write d = (di,dy, ..., d,). Then djad; = §;;(a — )4 for all 4,j. Put t; = a'/?d;dja'/?.
Then ty,...,t, are mutually orthogonal elements in aAa each equivalent to (a —¢),, and

this shows that A has the global Glimm property. O

Proposition 4.15 A weakly purely infinite C*-algebra is purely infinite if and only if it
has the global Glimm property.

Proof: The “only if” part follows from Proposition 4.14. Assume next that A is weakly
purely infinite, say pi-n, with the global Glimm property. Let a be a non-zero positive
element in A and let € > 0 be given. Then aAa contains pairwise orthogonal and equivalent
positive elements ti,%s,...,t, such that (a — ), belongs to the closed two-sided ideal
generated by t =t; + 1t + -+ t,. Now,

1Rl ~t1 @t ®--- Bty ~t1+ta+---+1,=1.
Hence t is properly infinite. Since (a —¢), belongs to the ideal generated by ¢ we conclude

that (a —e) 2 t. Conversely, ¢ 3 a because ¢ belongs to aAa (see below Lemma 2.3).
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Using again that ¢ is properly infinite, we get
(a—¢e)r@(@—¢)y JtBt It Za

Since this holds for all € > 0 we conclude that a is properly infinite. This shows that A is
purely infinite because a was arbitrary. (|

Every hereditary sub-C*-algebra and every quotient of a weakly purely infinite is again
weakly purely infinite, and no weakly purely infinite C*-algebra can be finite dimensional
(e.g. by Theorem 4.8). Hence no hereditary sub-C*-algebra of a weakly purely infinite
C*-algebra admits a finite dimensional representation. Together with Proposition 4.14 and

Lemma 4.15 this proves:

Corollary 4.16 Any weakly purely infinite C*-algebra, which is either simple or approzi-

mately divisible, 1s purely infinite.

A C*-algebra A is said to have property (SP) (“small projections”) if every non-zero here-

ditary sub-C*-algebra of A contains a non-zero projection.

Proposition 4.17 FEvery non-zero projection in a weakly purely infinite C*-algebra with

property (SP) is infinite.

Proof: Let A be a weakly purely infinite C*-algebra with property (SP) and let p be a
non-zero projection in A. Upon replacing A with pAp (which again is weakly purely infinite
by Proposition 4.5 (ii) and which has property (SP)), it suffices to show that the unit is
infinite in a unital, weakly purely infinite C*-algebra A with property (SP).

Since A is weakly purely infinite it admits no finite dimensional representations. Hence
Glimm’s lemma applies (cf. [16, Proposition 4.10]), and there is a non-zero *-homomor-
phism from M, (Cy((0,1])) into A. It follows that A contains mutually orthogonal positive
elements t,%9,...,%, and elements zo,...,x, such that z;z; = t; and zjr; = {;. Find a
non-zero projection p; in ¢; At;. Let ; = v;|z;| be the polar decomposition for z; where v;
is a partial isometry in A**. Then u; = v;p; belongs to A, uju; = p1, and p; = u;uj belongs
to t;At;. In particular, pi,ps,...,p, are mutually orthogonal and mutually equivalent

projections. Consequently,
p=prit+pt- AP~ Op® - Bpa v ® 1,

is properly infinite. As A contains a non-zero properly infinite projection, the unit of A

must be infinite. O
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Proposition 4.18 FEvery weakly purely infinite C*-algebra of real rank zero is purely infi-
nite.

Proof: We check that if B is a non-zero hereditary sub-C*-algebra of a quotient of a weakly
purely infinite C*-algebra A, then B contains an infinite projection. By [16, Proposition
4.7], this will ensure that A is purely infinite. By Proposition 4.5 (ii), B is weakly purely
infinite. Any C*-algebra of real rank zero has property (SP). Proposition 4.17 therefore

yields that every non-zero projection in B is infinite. ]

One can relax the real rank zero condition in Proposition 4.18 to the weaker condition that
every quotient of the C*-algebra has property (SP).
We conclude this section with some re-formulations of the open problem, if weak pure

infiniteness implies pure infiniteness:

Proposition 4.19 The following six conditions are equivalent:
(i) All weakly purely infinite C*-algebras are purely infinite.
(ii) All non-zero projections in any weakly purely infinite C*-algebra are properly infinite.
(iii) All non-zero projections in any weakly purely infinite C*-algebra are infinite.
(iv) Every unital weakly purely infinite C*-algebra is infinite.
(v) Ewvery unital weakly purely infinite C*-algebra is properly infinite.

(vi) The multiplier algebra of any o-unital weakly purely infinite C*-algebra is properly

infinite.

Proof: The implications (ii) = (iii) = (iv) are trivial, and (v) = (vi) follows from
Proposition 4.11.

(iv) = (v). Let A be a unital weakly purely infinite C*-algebra. If A is not properly
infinite, then A has a non-zero finite quotient A/I (by [16, Corollary 3.15]). But A/I is
weakly purely infinite by Proposition 4.5 (iii), thus contradicting (iv).

(i) = (ii). All non-zero projections in a purely infinite C*-algebra are properly infinite
by [16, Theorem 4.16].

(vi) = (i). Let A be a weakly purely infinite C*-algebra. To show that A is purely
infinite it suffices to show that all non-zero positive elements a in A are properly infinite,
and this will be the case if a.Aa is purely infinite.
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Recall from Lemma 4.5 (ii) that aAa is weakly purely infinite. If (vi) holds, then
M(aAa) is properly infinite, and so there is a full (possibly non-unital) embedding of
M, (C) into M(aAa) for every natural number n. Lemma 4.13 therefore implies that aAa
has the global Glimm property, and by Proposition 4.15 we conclude that aAa is purely

infinite as desired. O

5 Strongly purely infinite C*-algebras

Our third notion of pure infiniteness is perhaps not very intuitive, but the definition is still
local and algebraic like the definitions of being purely infinite and weakly purely infinite. It
turns out that this notion is precisely what is required to obtain an O4.-absorption theorem
(Theorem 8.6) and a Weyl-von Neumann type result such as Theorem 7.21.

Definition 5.1 A C*-algebra A is said to be strongly purely infinite if for every

7]

and for every € > 0 there exist di, dy in A such that

(06l

The matrix diagonalization appearing in this definition can be rephrased in a number of

ways (see also Remark 5.10 below):

Lemma 5.2 For each element (&% ) in My(A)T, the following conditions are equivalent:

(i) For each e > 0 there exist dy,dy in M(A) such that ||diady —al| <e, ||d5bds —b|| < ¢,
and ||dyzd || < €.

(ii) For each e > 0 there exist dy,dy in A such that

(E2E6 -6

(iii) For each ¢ > 0 and § > 0 there exist d; in aAa and dy in bAb such that dtad, =
(@ —¢€)4, dibdy = (b—¢)4, and ||dszdi]| < 0.
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Proof: The implications (iii) = (ii) = (i) are obvious.

Assume that (i) holds. Let € > 0 and § > 0 be given, and find e;, e in M(A) such that
letaer — al| < €/2, ||esbes — b]| < /2, and ||eszeq]| < 6/2. Set f; = gjl-/ergjl-/z, j =12
where g; and g, are positive contractions (approximate units) in aAa, respectively in bAb,
chosen such that || ffafi —al| <e, ||f30f2 —b|| < ¢, and ||fsz f1]| < . By Lemma 2.2 there
are contractions h; and hy in aAa, respectively in bAb, such that hiffafihy = (a —¢)4

and h3f3bfohy = (b —€);. We can therefore take d; to be f;h;, j =1,2. O
ail ai12

In a strongly purely infinite (or in a purely infinite) C*-algebra A, if a = (g1 as2) is a

positive element in Ms(A), then diag(ai1, ass) 3 a. The converse holds in any C*-algebra:

Lemma 5.3 Let A be any C*-algebra, let n be a positive integer, and let a = (a;;) be a

positive element in M,(A). Then a 3 diag(aiy, .- -, anp)-

Proof: This follows from the fact that a belongs to the hereditary sub-C*-algebra gene-
rated by diag(ai1,...,0n,) (and from the comment below Lemma 2.3). Alternatively, the

lemma can be obtained from the inequality a < n-diag(aiy,- .., tnn)- O
Proposition 5.4 Fvery strongly purely infinite C*-algebra is purely infinite.

Proof: If A is strongly purely infinite and if a is a positive element in A, then

0
a@az(a )j(a a):w*wr*r:Qaza
0 a a a

(see Definition 2.1), when r is the column matrix in M,;(A) with both entries equal to
42 0

The following definition is convenient for the formulation of some of our next lemmas.

Definition 5.5 (The matrix diagonalization property) An n-tuple (a1,...,a,) in a
C*-algebra A is said to have the matriz diagonalization property if for every positive matrix
a = (aij) in M,(A) with a;; = a;, and for every ¢; > 0,...,e, > 0 and every § > 0 there
are elements di, ..., d, in A with

diajid; = (aj; — €5)+, |d; aizd;]| <6 for i # j. (5.1)

The norm estimate on the elements d; in the next lemma will be improved later in Corol-
lary 7.22, where it is shown that we can take di,...,d, to be contractions if A is strongly

purely infinite.
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Lemma 5.6 Let aq,...,a, be positive elements in a C*-algebra A, let e1 > 0,...,e, >0,
and suppose that the n-tuple ((a1 —TE1) 1y ny (A — rsn)+) has the matriz diagonalization
property for some r in (0,1). Then for each positive matriz a = (a;;) in M,(A), with
aj; = aj, and for each 6 > 0 there are elements dy,...,d, in A such that (5.1) holds and
such that ;12 < (re;)~" ]l

Proof: Let f.: Rt — [0, 1] be the continuous function given by

iy < | VETTI 2

0, t<re.

Then
(a —re)y = fe(a)’a > ref.(a)?

for all positive a in A. Put b;; = f.,(a:)ai;fe;(a;). Then b = (by) is a positive matrix in
M, (A) and b;; = (a; — re;)4+. By assumption, and because re; < ¢, there are elements
€1, .., en in Asuch that ejb;je; = (a;—¢;)+ and |lefb;;e;]| < 6 fori # j. Put d; = [, (a;)e;,
so that dfa;;jd; = e;b;je;. Then (5.1) holds, and

. 1, ., 1 1
Id;1I* = lle; fe; (a)"e;ll < Ejllejfg,-(a]-)ajfg,-(aj)ejﬂ = Ej”(%‘ — &)+l < Ej”%‘”
as desired. 0
Lemma 5.7 Let aq,...,a, be positive elements in a C*-algebras A, and suppose that each

pair ((ai — i)+, (a; —77j)+); i # j, has the matriz diagonalization property for every choice

of ng > 0. Then the n-tuple (ay,...,a,) has the matriz diagonalization property.

Proof: The lemma is proved by induction on n. For n = 2 there is nothing to prove.
Suppose that n > 3 and that the lemma has been verified for n — 1. Let a = (a;;) be
a positive matrix in M,(A) with a;; = a;, and let ¢; > 0 and 6 > 0 be given. We find
di,...,d, in A with dja;;d; = (aj; —€;)+ and ||d}a;;ds]| < 6 for i # j. The proof has three
steps: First we diagonalize the lower n — 1 by n — 1 sub-matrix of a, then we diagonalize
the resulting upper n — 1 by n — 1 sub-matrix, and at the end we take care of the entries
at the positions (1,n) and (n, 1).

Take dp > 0 and 0; > 0 (to be determined later). By the induction hypothesis there
are elements fy, ..., f, in A such that ffa;;f; = (a;;—¢;/2)+ and || fia; f;|| < 0o for i # j.
Set f; =1 and put b;; = fa;;f;, making b = (b;;) a positive matrix in M, (A). Use the
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induction hypothesis and Lemma 5.6 (with » = 1/2) to find elements g;,...,g, 1 in A
such that

lgill < 2¢5 agsll,  g7bii95 = (bjs —€5/2)4,  llgibijgsll < 61 for i # j.

Set g, = 1 and set ¢;; = ¢;b;;9;. Then

i i (51’ Z#]alglajgn_la
(ajj - 6]'/2)+, j=1,J=n, ) )
Cjj = lesll < 9 llgilldo, i=mn, 2<j<n-—1,

(aj; — )y, 2<j<n-1,
v loll6o, j=m 2<i<n_1.

Use again the induction assumption and Lemma 5.6 (with » = 1/2) to find hy and A, in
A with ||hj|| < 2¢7"|a ;]| and

[hicinhnll = [[Ancaihnll <0, hicjihy = (cj5 — €5/2)+ = (a5 — ;)4 for j=1,n,

and put h; =1 for j =2,...,n. Then d; = f;g;h; satisfies dja;;d; = (aj; — €5)4, and if &
and d; have been chosen small enough, then also ||d}a;;d;|| < § whenever i # j. O

As each pair of positive elements in a strongly purely infinite has the matrix diagonalization

property, Lemma 5.7 and Lemma 5.6 imply:

Lemma 5.8 Let A be a strongly purely infinite C*-algebra. Then for each positive matriz
a = (ai;) in M,(A), for each choice of e; >0, j =1,...,n, and for each 6 > 0 there are
elements di, . ..,d, in A such that

drajid; = (aj; — €)1, ldjagdsl| <6 for i# 4, |d]l> <25 |agll.  (5.2)
Lemma 5.9 Let A be a C*-algebra, and let aq,as, ..., a, and by, by, ..., b, be two families
of positive elements in A such that the (n+m)-tuple (a1, ...,a,,b1,...,bn) has the matriz

diagonalization property. Then the pair (Z?Zl a;, Z;nzl bj) has the matriz diagonalization
property.

Proof: We may assume that m = n (otherwise take for example by,.; = --- = b, = 0).
Puta =) a;and b=  b;, and let z in A be such that (22’) is a positive matrix
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in M5(A). Let ¢ > 0 be given. Put

a2 pL/2
s = : , t= :
oL/ b2

Then s*s = a and t*t = b. Write s = ua'/? and t = vb*/? for some partial isometries
u,v in M, 1(A**). Recall that uc, respectively, vc, belongs to M, 1(A) for every c in aAa,
respectively, in bAb. Also,

a . ai/Qa}/Q b, .. 51/2()&/2
uau® = ss* = : : , vbv* = t* =

a}zﬂa%ﬂ Qn b}/2b}/2 e bn,

It follows that
(uau: um*?i*) € Mo, (A)",

and that the diagonal entries of this matrix are (ai,...,a,,b1,...,b,), and this 2n-tuple
has the matrix diagonalization property by assumption. Arguing as in the proof of Propo-
sition 5.11 (iii) we find matrices fi, fo in M,,(A) such that

| fruau® fi — uau™|| < e, | f5vbv* fo — vbv™|| < €, | fovzu® fi|| < e.

Replacing f; by e;f;e;, where e; and e, are suitable approximate units in the hereditary
sub-C*-algebras generated by uau*, respectively, vbv*, we can assume that f; and f> belong
to these respective hereditary sub-C*-algebras. This will ensure that d; = u*fiu and
dy = v* fov belong to A. Finally,

ldiad, —a|| = |udjadiu® —uau®|| = || fiueu” fi — uau®|| < e,
ld5bdy — b|| = |lvdsbdav™ — vbv*|| = || fovbv™ fo —vbV*|| < ¢,
ldyzdi|| = lvdszdiu’|| = ||fveu™fi]] <e,
as desired. U

Remark 5.10 (Matrix diagonalization revisited) A C*-algebra A is strongly purely
infinite if and only if for each pair of positive element a,b in A and for each € > 0 there
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are elements d;,d, in A such that
|diad, —al| <&,  ||dibdy —b|| <&,  ||d5b'?a'?dy|| < e. (5.3)

To see this, note first that

a a2\ fa? 0 1 1\ [a? 0 Mol A
preae 5 ) (o ) \a1) o pe) €A

The “only if” part of the claim now follows immediately from Definition 5.1.

To prove the “if” part it suffices to show that ((a — 1)+, (b — 1);) has the matrix
diagonalization property for every pair of positive elements a,b in A and for every n > 0;
cf. Lemma 5.6. Let z in A be such that ((a;"” (bf;)Jr) is positive. Put ¢ = a+b. It follows
from (5.3), as in the proof of Proposition 5.4, that A must be purely infinite. Hence, for

some § > 0,

((a—n)+ z* ><0<(a—n/2)+ 0 ><O((c—6)+ 0 )w
z (b—m)+) "~ 0 (b—n/2)+) ™~ 0 (c=8)s )~ 7

where e Zy f means that e = z* fz for some z in (a rectangular matrix over) A. We need

therefore only show that each positive matrix in Ms(A) of the form y*cy, where y belongs

to M;2(A) and c is a positive element in A, can be approximately matrix diagonalized.
Let (2% ) = y*cy be given and write y = (y1,y2). Then a = yfcy1, b = yicys, and

1/2 1

x = y5cy,. Consider the polar decompositions ¢'/2y; = ua'/? and c'/?y, = vb'/?, where u, v

are partial isometries in A**) and put a9 = uau* and by = vbv*. Then ay and by belong to

A, and
u* 0 agp 00(1)/26(1)/2 u 0\ fa z*
0 v* b(l)/Qa(l)/2 by 0v) \z b))
Find e, e; in A such that

||e§bl/2 1/2

llejage; — ao|| < &, |lesboes — bo|| < e, o ay el < e.

Upon replacing e; by ge;g for a suitable positive contraction in the hereditary sub-C*-al-
gebra agAay we may assume that e; belongs to this sub-C*-algebra. Similarly, we may

assume that es belongs to byAby. Then d; = u*eju and dy = v*eyv belong to A, and

|diad, — a|| < e, ||d3bdy — b|| < e, |d5xdy|| < e.
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Proposition 5.11 (Permanence properties)
(i) If A is strongly purely infinite, then so is every non-zero quotient of A.
(ii) If A is strongly purely infinite, then so are all its non-zero hereditary sub-C*-algebras.
(iii) If A and B are stably isomorphic and if A is strongly purely infinite, then so is B.

(iv) Any inductive limit of a system of strongly purely infinite C*-algebras is again strongly

purely infinite.

Proof: (i). We must show that A/l is strongly purely infinite whenever I is a closed
two-sided ideal in A. To see this take a positive element b in My(A/I). Lift b to a
positive element @ in Ms(A). Find dy, ds in A that approximately matrix diagonalize a as
in Definition 5.1. The images under the quotient mapping A — A/I of d;,d, will then
approximately matrix diagonalize b.

(ii). This follows from Lemma 5.2.

(iv). In the light of (i) it suffices to show that if A is a C*-algebra with a directed

family {A;}icr of strongly purely infinite sub-C*-algebras A; such that | J, ; A; is dense in

i€l
A, then A is strongly purely infinite.

We must for each positive matrix (2% ) in My(A) and for each € > 0 show that there

are di, dy in A such that ||djad; — a|| < ¢, ||dsbdy — b]| < €, and ||dszdy|| < e. It is no loss
of generality to assume that the given positive matrix is a contraction.

Choose d; > 0 and d, > 0 such that d, < ¢/2 and (26, + 1)d; < £/2. Find i in T and
a positive element (;2 ig) in M,(A;) such that

la—aoll <d1,  [lb=boll <b1,  lz — ol < 1.
Find next dy, d, in A; with ||d;||> < 26;" and
diagd; = (ag — 82) 4, dybods = (by — 02) 1, ld3zod: || < Oo;
cf. Lemma 5.6. Then
Idiady — all < |ldi]lla — aoll + lla — aoll + d2 < (205" +1)d1 + 82 <,
and, similarly, ||d3bdy — b|| < &. Also,
Idzzdy]| < |ldulllldallllz — zoll + lld3zod: || < 265761 + 62 < e.
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This shows that A is strongly purely infinite.

(iii). By (ii) it suffices to show that A® K is strongly purely infinite when A is strongly
purely infinite, and using (iv) it suffices to show that M, (A) is strongly purely infinite for
all natural numbers n, when A is strongly purely infinite. Let (¢ %) be a positive element
in My(M,(A)) and let ¢ > 0. Then a and b are positive elements of M, (A). Denote by @
and b the diagonal parts of a and b, i.e., @ is the diagonal matrix in M, (A) whose diagonal
entries are equal to the diagonal entries of a, and similarly for b. Then diag(a, 5) is the
diagonal part of (22" ). As remarked in Lemma 5.3, a 3@ and b 3 b. Hence there is § > 0
and ey, es in M,(A) such that eX(d — 6)ye1 = (a — )4 and e5(b — 8)1e0 = (b—¢)5.

According to Lemma 5.8 we can find (diagonal) matrices fi, fo in M,,(A) such that

frafi=@=08)y,  fibfa= 004, If5zfill < lledl el e

Put d; = fie; and dy = foes. Then djad; = (a — €)4, dibdy = (b — )4, and ||d5zd,|| <
llea||le2ll]| faz f1]| < €. This shows that M, (A) is strongly purely infinite. O

Proposition 5.12 The following conditions are equivalent for every C*-algebra A:
(i) A is strongly purely infinite.
(ii) £>°(A) is strongly purely infinite.
(iii) A, is strongly purely infinite for every filter w on N.
(iv) A, is strongly purely infinite for some filter w on N.

Proof: (i) = (ii). Assume that A is strongly purely infinite. To show that ¢*°(A) is
strongly purely infinite take a positive matrix (2% ) in £*°(A). Upon scaling this matrix,

we can assume that a and b are contractions. Write

az(al,ag,...), b:(bl,bg,...), $=($1,$2,...).

an T

Then {a,}, {b,}, and {z,} are sequences of contractions in A and (mn i
M, (A) for each n. Let € > 0 be given. Use Lemma 5.6 to find elements d; ,,, ds,, in A with

) is positive in

A} nndin = (@n — €)1,  dibndon = (by — €)1, ||d5,Tadinll <, ldjnll® < 2671
Then d; = (d;1,d;2,-..) belongs to £>°(A) for j = 1,2, and
diad; = (a —¢)4, dybdy = (b—¢)4, |d5xd: || < e.
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This shows that £*°(A) is strongly purely infinite.

(ii) = (iii). This follows from Proposition 5.11 (i).

(iii) = (iv). Trivial!

(iv) = (i). Assume that A, is strongly purely infinite for some filter w on N. Let (2 %")
be a positive element in Ms(A) and let € > 0 be given. Let m,: £*°(4) — A, denote the
quotient mapping. Identify x in A with 7, (x,z,...) (thus viewing A as a sub-C*-algebra
of A,). Then (2%") is a positive element in My(A,). We can therefore find d;,dy in A,
such that ||djad; —a|| < ¢, ||d3bds — b|| < ¢, and ||d5zds|| < €. Write d; = 7, (dj1,dj2,--.).
Then

limsup ||d] ,ady, — al| <&, limsup ||dj ,bdz,, — b]| < ¢, limsup||d3 ,zd1 .| < e.
w w w

Hence ||d] ,ad1, — a| < ¢, ||d5,bdy,, — bl| < &, and ||d3,zd1 .|| < € for each n in some

subset belonging to w, and hence for at least one n. This completes the proof. (|

Combining Lemma 5.6 and Lemma 2.5 we get the following sharpening of Lemma 5.8 for
limit algebras:

Lemma 5.13 Let w be a free filter on N and let A be a strongly purely infinite C*-alge-
bra. Then for each positive matriz a = (a;j) in M,(A,) and for each choice of ; > 0,

j=1,...,n, there are elements dy, . ..,d, in A, such that
diajid; = (aj; =€)+, dfayd;|| =0 for i#j,  |dj]I* < 2¢5agl.

Proposition 5.14 FEvery approximately divisible, purely infinite C*-algebra is strongly
purely infinite.

Proof: Let A be an approximately divisible, purely infinite C*-algebra, and let w be a
free filter on N. We show that A, is strongly purely infinite, and it will then follow from
Proposition 5.12 that A is strongly purely infinite.

Let T = (2%") be a positive matrix in Ms(A,,). Lift T to a positive matrix (71, T, .. .)
in My(¢*(A)) and write T,, = (;Z i:) With E = M,(C) & M3(C) we can find unital
*-homomorphisms ¢, : E — M(A) such that

Tim (€t — aua(@)] = 1im [[gn()by — buga(@)ll = lim ga(€)zs — zugale)]| =0

for all e in E.
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With 7,,: £°(M(A)) = M(A), the quotient mapping, define

p: B — M(A), € M(Ay) by ¢(e) = m,(e1(e), pa(e), - - )

Then a, b,z commute with the image of ¢.
Choose a full (non-unital) *-homomorphism ¢: My(C) — E, let {e;;} be the matrix

units for My(C), and put f;; = t(e;;). There are elements e, ez, e3 in E such that 1 =
Z;’ 1 €] fue;. Hence

3
a=>_¢le)e(fu)ap(e;)

and so a belongs to the ideal generated by ¢(f11)a (= ¢(f11)ap(fi11)). Similarly, b belongs
to the ideal generated by ¢(fa2)bp(fa2). Let € > 0 be given. Since A, is purely infinite (by

Proposition 3.5) there are elements ¢, ¢, in A, such that

cip(fin)ap(fin)er = (a —€)y, chp(f22)bp(faz)ca = (b —€)4.

Put di = ¢(f11)c1 and do = ¢(fa2)ca. Then dizd; = 0 because x commutes with the image
of ¢, diad; = (a —€),, and dibds = (b —¢),. Hence T can be matrix diagonalized, and
this proves that A, is strongly purely infinite. O

6 Purely infinite C*-algebras of real rank zero

It is shown in this section that every purely infinite C*-algebra of real rank zero is strongly
purely infinite.

Call an element a in a C*-algebra A locally central if it belongs to the center of the
hereditary sub-C*-algebra aAa. Every projection and every multiple of a projection are

locally central. If a is locally central, then so is (a — p)4 for every p > 0.

Definition 6.1 A C*-algebra A is said to have the locally central decomposition property
if for every a in A" and for every ¢ > 0 there exist locally central elements a1, as, ..., a,
in AT such that

(i) a1,as,...,a, belong to AaA,

(ii) (a —e)4 belongs to A7, aj)A.
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Remark 6.2 If a purely infinite C*-algebra A satisfies the locally central decomposition
property then it has the following stronger property:
For every a in AT and for every € > 0 there exist e, f in A and locally central elements

ai,as,...,a, in AT such that
(i) etae =37, aj,
(i) f*(e*ae)f = (a —¢€)4.

To see that the locally central decomposition property implies conditions (i) and (ii)
above, take ¢ in AT and € > 0. Applying conditions (i) and (ii) of Definition 6.1 to
(a —e/3), and to /3, and using the assumption that A is purely infinite, we find locally

central elements aq, as, ..., a, in AT such that

Zajﬁ (a—¢/3)+, (0_25/3)+§Z%‘-
j=1 j=1

We can now use Lemmas 2.4 and 2.3 to find e, f in A such that (i) and (ii) above hold.

Proposition 6.3 Every purely infinite C*-algebra of real rank zero has the locally central

decomposition property.

Proof: Let a be a non-zero positive element in a purely infinite C*-algebra A of real rank
zero. Since aAa has an approximate unit consisting of projections, it contains for each
e > 0 a projection p such that (a — ), belongs to the ideal generated by p. Hence the two
conditions of Definition 6.1 are satisfied (with n =1 and a; = p). O

It is shown in [4] that continuous field C*-algebras, whose fibers are purely infinite and

simple, have the locally central decomposition property.

Lemma 6.4 Let A be a purely infinite C*-algebra. Let 6 > 0, let x, f in A, and e in x*Ax

be given such that x is a contraction and
I frzell < 6% (lz[ =)+ < le].

Let D be a hereditary sub-C*-algebra of A which contains x*x. Then for each positive
element b in D and for each € > 0 there exists d in D with d*d = (b —¢)4 and

1 £72d]) < (lBIIFI+ 5] £1)) 262
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Proof: We may assume that § < 1. Put by = (b—¢), and find positive contractions uy, uo
in D such that ujus = usu; = us and uqgbg = boug = by.

Let J be the closed two-sided ideal in A generated by (|e*| —§); and let w;: A — A/J
be the quotient mapping. Then ||7;(e)|| < J, and hence ||7;(|z|)|| < 25. Accordingly, we
can find a positive contraction ¢ in J such that ||33u1/2( —9)|| < V/56.

Put a = ui/z(l - 9)%u, A" le*|. Then a belongs to D and (u; — §); belongs to the
closed two-sided ideal I in A generated by (a — d);. To see the latter, observe first that
lmr(le*])|] < ||mr(a)|| < 0, which shows that (|e*| — ¢); belongs to I. This entails that [
contains J. Hence

mr(u) = mr(r(1 = 9)"w’®) < mr(a) <6,

whence (u; — §); belongs to I.

We have uy X (u1—9)4+ 2 (a—6)4 (in A and hence in D), the second relation is because
(a — &)y is properly infinite. By Lemma 2.4 (ii) we can find y in D such that [|y[|? < 2/§
and y*ay = uy. Put d = al/be(l)/Q. Then d belongs to D, d*d = by, and

Ifrzdl* = |If*zdd =" f]| < |lbollllyll*l| f*zaz” £
< 25 bl (Il "y’ (1 = 9)%ur e £ + | fale’ |2 f]])
< 207 Bl (1Pl (1 = g) I + [L£ e [Hl"[[1£1])
< 257 lbll (50111 + 6%]1£11)

20[[bllLANGILAN+1)-
O

Proposition 6.5 Let A be a purely infinite C*-algebra, let Dy and Dy be hereditary sub-
C*-algebras of A, and let x be an element in A such that x*z € Dy and xx* € Dy. Let a be a
positive element in D1, let b be a positive element in Do, and let £1 > 0 and 9 > 0 be given.
It follows that for each § > 0 there exist di € Dy and dy € Dy such that did; = (a — 1),
dydy = (b — €9)4, and ||d5zd, || < 6.

Proof: Since § > 0 is arbitrary, we may assume that a, b, and x are contractions. Choose
n > 0 such that 123n < §*. Using that A is purely infinite we can find Ay, hy in 2* Az such

that
(|| =n)% 0 _ (Bt 0\ [lz] 0\ (P2 h
0 (Jz|Y/2 — n)% Ry 0J\o o/\o o)’
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or, equivalently, such that
hilzlh = (2] =m)%,  Bylzlhe = (22 =), hilzlhe = 0.

Let z = v|z| = |z*|v be the polar decomposition for x, where v is a partial isometry in
A*. Put x; = v|z|'?, fi = z1hiv*, and e; = hy. Then e; belongs to z*Azx = ziAz,

fizier = vhizix1he = vhi|z|he = 0,

les = (R3ha)'? 2 (R3llhe)'? = (J2'? — )+ = (J1| — ),

and f; is a contraction. It follows from Lemma 6.4 that there exists d; in D; with djd, =
(a—e1)y and [|fizidi]l < (12)2 (= m).
Put zo = z*, fo = di, and e3 = vhiv*. Then

flzidy = vhizizifo = vhilz[f;

= (fZlzlho?)" = (fse"vhv")" = (f372e2)",

and so || fozoea|| < m. Moreover, ey belongs to v(z*Az)v* = zAx* = ziAxs, xixe = xa*

belongs to Dy, and
leo] = w(hih)Pv" > w(hilzh) " = v(|z] =) 40"
= (="l =n)+ = (w2l =1+ = (Jwo| —m)+-
Apply Lemma 6.4 once more to get an element dy in Dy satisfying didy = (b — €3)4, and
| f32ds|| < (12m4]BI)Y? < (1200)1/2 < (12(129)1/%)1/2 < 6.

This completes the proof because ||dszd, || = ||djz*d2|| = || f3z2ds]|- O

Remark 6.6 (Pure infiniteness versus strong pure infiniteness) At a first glance
it would seem that Proposition 6.5 proves that every purely infinite C*-algebra is strongly
purely infinite. Here is what actually follows from this proposition: If a,b are positive

elements in a purely infinite C*-algebra A and if + = b'/2x¢a!/?, where z, belongs to

(b —p)+A(a — p)4 for some p > 0, then for each € > 0 and 6 > 0 there are elements dy, do
in A such that djad; = (a — €)4, dibdy = (b—¢€),, and ||dszd;|| < 4.
Indeed, assume as we may that p < ¢, and put

a = (a—p)y, bo=(b-ps, D = agAag, Do = byAby,
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so that z{zo belongs to Dy, zox} belongs to Dy, (a — )4 = (ag— (€ — p))4, and (b—¢); =
(bg — (¢ — p))+. We can apply Proposition 6.5 to get e; in D; and ey in Dy satisfying
eie; = (a —¢)y, esea = (b—€)y, and |leszoer]| < 6. Now, find di,dy in A such that
e1 = a'/?d; and ey = b'/2dy. Then diad; = ete; = (a —€),, dibdy = eje; = (b—€),, and

|dszd: || = ||d3b'2zoat?dy|| = ||e3zoen]| < 6.

In general we cannot take z to be of the form b'/2zya'/?, with z, as above, although,
by Remark 5.10, to prove that A is strongly purely infinite, it would suffice to find d;, ds
as above for z = b'/2¢!/2,

The two next lemmas concern the matrix diagonalization property of n-tuples as in Defi-
nition 5.5 and locally central elements (defined above Definition 6.1).

Lemma 6.7 FEach n-tuple (a1, ...,ay) of locally central positive elements in a purely infi-

nite C*-algebra has the matriz diagonalization property.

Proof: By Lemma 5.7 it suffices to prove the lemma for n = 2. Recall that (a; — n); is
locally central for each n > 0.
Let x in A be such that

(‘“ ! ) € My(A)*.
r Q9

Choose a continuous function f: RT — [0, 1] satisfying that f(¢t) = 0 when ¢ < §/2 and
|f(t)t —t] < 6 for all t > 0. Put D; = a;Aa;, j = 1,2, so that z*z belongs to D; and zz*
belongs to Dy. It follows from Proposition 6.5 that there exist d; in Dj, j = 1, 2, satisfying
did; = f(a;) and ||dszd;|| < 8. Notice that ||d;||* = ||f(a;)|| < 1. Because a; is a central
element in D; we get dja;d; = djd;a; = f(a;)a;. Hence ||d}a;d;—a;|| < 6 and [|d3zd, || < 6,
and this shows that (a, as) has the matrix diagonalization property; cf. Lemma 5.2. O

Theorem 6.8 FEvery purely infinite C*-algebra with the locally central decomposition prop-
erty is strongly purely infinite.

Proof: Let A be a C*-algebra with the locally central decomposition property, and let

7

and € > 0 be given. By the assumption that A satisfies the locally central decomposition

property and by Remark 6.2 and Lemmas 6.7 and 5.9 there are elements ey, f1, e, fo in A
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such that (efaes, e5bey) satisfies the matrix diagonalization property, and such that

[fi(eraen) fr —all < /2, [|f5(e3bea) fo — bl < /2.

el 0 a x* esr 0\ [efae;r ]
0 e z b 0 ey x1  esbes ’

where ; = ejxe;. Find gy, g, in A such that

Now,

197 (elaer)gr —€laer || < = [|g3(e5bea)ga—eibesl| < =y lgizrign]| <
gilejaer)gr —ejaer|| < =, gs(esbes)go —esbes|| < ——5, G9T191|| L 7.
neae)nmatall = g 19219007 e8ell = o rees 1Rl = e
Put d; = e;g,f; for j = 1,2. Then

|diady —all = ||f7gi(elaer)gi fi — all
< NAlPllgi(etae) g1 — efaes]| + |1 f (efaer) fi —al| < e,

N

and, similarly, ||d5bdy — b|| < e. Finally,

|dszdy || = || f5 g5e5zergi fill = || fsgazigi full < || fillll fellllgazign]| < e,

as desired. 0

Combining Theorem 6.8 with Proposition 6.3 yields:

Corollary 6.9 Every purely infinite C*-algebra of real rank zero is strongly purely infinite.

7 Approximately inner completely positive contrac-

tion on strongly purely infinite C*-algebras

The main result of this section is a local variation of the Weyl-von Neumann theorem.
It says that any approximately inner, completely positive contraction from a nuclear sub-
C*-algebra of a strongly purely infinite C*-algebra A into A is approximately 1-step inner.
This result will in Section 8 be used to show that A is isomorphic to A® O, if A is nuclear,
strongly purely infinite, stable, and separable.

The section is divided into three, the last of which contains a refinement of matrix
diagonalization in strongly purely infinite C*-algebras that will not be used in the rest of

the paper.
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Some preliminary results

We begin by defining what it means for a completely positive mapping to be (approxi-

mately) inner:

Definition 7.1 (Inner and approximately inner maps) Let A and B be C*-algebras
both contained in a C*-algebra E, and let T: B — A be a completely positive map. The
map 7 is said to be n-step inner (relatively to E) if there are elements e, .. ., e, in E such
that

T(b) = Z e;be;
j=1

for all b in B. We say that 7' is inner if 1" is n-step inner for some natural number n.
If for each finite subset F' of B and for each € > 0 there is an n-step inner, respectively,
an inner completely positive map S: B — A such that ||T'(b) — S(b)|| < ¢ for all b in F,

then T is called approzimately n-step inner, respectively, approximately inner.

The C*-algebra FE in the definition above will usually be either A, the multiplier algebra
of A, or a limit algebra A, for some free filter w on N. If £ = A or if it is clear from
the context which ambient C*-algebra we are considering, then we may omit the reference
“relatively to E”. Lemma 7.3 below says that approximate innerness is independent of the

ambient C*-algebra. First we need a lemma:

Lemma 7.2 Let T: B — A be a completely positive contraction that is approximately
n-step inner relatively to a C*-algebra E containing both A and B. Then for each finite

subset F' of B and for each € > 0 there are elements eq,...,e, in E such that
IT(0) = esbesl| <, beF, | elell < 1.
7j=1 7j=1

Proof: Let § = ¢/(2 + max{|[b|| : b € F'}). Find a positive contraction f in B such that
| fbf —b|]| < & for all bin F.

Take an n-step inner completely positive map S with [|7'(b) — S(b)|| < § for all b in
FEFU{f?}. Write S(b) = Y-7_, d;bd;, where d; belong to E. Put e; = (1+6)"'/2fd;.
Then

I3 eeill = @+ 7SEHI < (148 AT +6) < 1.
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We also have
(1+0) (D €jbe; = T(b)) = (S(fbf) = T(f6)) = T(b— fb1) = 6T()

for b € B, from which the lemma follows. (I

Lemma 7.3 Let A and B be C*-algebras with B separable, and let T: B — A be a com-

pletely positive contraction.

(i) Suppose that B is a sub-C*-algebra of A, for some free filter w on N and that T
is approzimately n-step inner relatively to A,. Then T is (exactly) n-step inner

relatively to A, and T is approximately n-step inner relatively to A.

(ii) Suppose that B is a sub-C*-algebra of M(A) and that T is approzimately n-step inner
relatively to M(A). Then T is approzimately n-step inner relatively to A.

Proof: (i). Assume that T is approximately n-step inner relatively to A,. Then for each

natural number k there are contractions dy,...,d, in A, such that

]}LI& d;,kbdj,k = T(b)
j=1
for all b in B. By the obvious generalization of Lemma 2.5 to polynomials in 2n non-
commuting variables we find contractions dy,...,d, in A, satisfying » 7, djbd; = T(b)
for all b in B.

Write d; = ﬂ'w(dgl), d§-2), ...) where each dg-k) is a contraction in A. Then

limsup| Y _(d)bd" — T(b)|| =0, beB.
w j=1

For each finite subset F' of B and for each ¢ > 0 we can therefore find a natural number k&
such that

1D (&) bd? ~T@)| <e,  beF
j=1

Hence T is approximately n-step inner relatively to A.

(ii). Assume that 7' is approximately n-step inner relatively to M(A). Take a finite
subset F' of B and € > 0. Find an n-step inner completely positive contraction S: B —
M(A) such that | T(b) — S(b)|| <e/2 for all b in F. Write S(b) = >_"_, dibd; for suitable

J=1"
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d; in M(A). Find a positive contraction f in A with ||fY/2T(b) f1/2 — T(b)|| < &/2 for all
bin F, and put e; = d; f/2. Then each e; belongs to A, and

I|Z€*b€g O < IF2(SO) = TO) S22+ 1 2TO 2 =T < e

for all b in F. O

Part (i) of our next preliminary result describes (approximately) 1-step inner maps, and
part (ii) is a related result that will be used in Section 8.

Lemma 7.4 Let A be a stable C*-algebra.

(i) Let B be a separable sub-C*-algebra of A, and let V: B — A be an approzimately
1-step inner completely positive contraction. Then there is a sequence {t,}>°, of
isometries in M(A) such that ||t;bt, — V (b)|| — O for all b in B.

(ii) If there is a sequence {d,} of elements in My(A) such that

d (‘0‘ g) dy — (‘OL 2) H =0 (7.1)

for all a in A, then there are isometries un, v, in M(A) such that u,u} + v,v) <1

(0 o) (5 v) -G oa)l=e

Proof: Because A is stable we can write A = Ay ® K, where K denotes the compact

operators on a separable Hilbert space H. We can then view 1® B(H) as a sub-C*-algebra

and

3* 3*

for all a in A.

of M(A). Choose an increasing approximate unit {e, }5°, for K consisting of projections.
Then [|a(1—1®e,)|| — 0 for every a in A. Take isometries s, 1, Sp2 in 1® B(H) satisfying
Sn,1551 + Sn28ho =1 and s, 95,9 <1 —1® e,. Then [las, s}, 5| — 0 for all a in A.

(i). Use Lemma 7.2 to find a sequence {d,}>°, of contractions in A such that d}bd, —
V() for all b in B, and put

tn = 8n,185 100 + Sn2(1 — d;sn,ls;‘;ldn)l/?. (7.3)
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Then each t, is an isometry and t*bt, — V(b) for b € B.
(ii). Observe first that M(My(A)) = My(M(A)). Put e = diag(1,0) € My(M(A)).
By Lemma 7.2 we can assume that each d,, is a contraction. Upon replacing d,, by ed,, we

may also assume that ed,, = d,. Let s, ; € M(A) be as above, and set

2 2
~ _ Sn,l Sn,lsn,Q ~ _ 8n,25n,1 Sn,g
Sn,1 = ) Sp2 = .
0 0 0 0

Let here ¢, in My(M(A)) be given by (7.3) where s, 1, s,, 2 are replaced by 3,1, 5, 2. Then
tn is an isometry satisfying (7.1) (with ¢, in the place of d,), t, = et,, and hence

Uy Up
t, = .

for some u,,v, in M(A) that necessarily are isometries with u,u; orthogonal to v,v

because t,, is an isometry. O

A local Weyl-von Neumann theorem

The main result of this subsection is Theorem 7.21 which will be proved in a series of
lemmas. Two of these lemmas (Lemma 7.7 and Lemma 7.12) will use the following:

Remark 7.5 (A construction with commuting elements) Let ay,as, ..., a, be com-
muting positive contractions in a strongly purely infinite C*-algebra A, and let 1, > 0,
ne > 0, and 13 > 0 be given, where 7; < 1/2. We underline that 7, and 73 can be chosen
independent from 7, and that we allow n3 = 0 only if A is the ultrapower of some other
strongly purely infinite C*-algebra.

Let X denote the primitive ideal spectrum of D = C*(ay,as,...,a,), so that D is
isomorphic to Co(X). For each z in X let p,: D — C denote the corresponding character
on D. Identifying X with the image of the (injective) map

x> (pz(ar), pa(az), - - -, palan)),
X becomes a bounded subset of R*. Put
Q={z € X :max{ai(x),...,a,(x)} > 2},
so that € is a compact subset of X. It is a standard fact from dimension theory that every
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open cover of 2 C R™ has an open sub-cover such that each point in R* belongs to at most
n+ 1 of the open sets in the sub-cover. Use this to find open sets Uy,...,U, and V4,..., V.
such that

(i) QCcVviuUu---UV, CU;UUU---UU, C X, and V; CUj;
(ii) |pz(ak) — pw(ag)| <meforall j=1,2,...,r, for all z,2’ in Uj, and for all &;
(iii) each z in X is contained in at most n + 1 of the open sets Uy, ..., U,.

Choose z; in V; for each j. Let gi,...,g, be positive contractions in D such that g, +
o9, <1, pp(gr + -+ g,) =1 for all zin ©Q, and p,;(g;) = 0 when 2 ¢ V;. Choose
next positive contractions fi, ..., fr in D such that f;g; = g; and p,(f;) =0 when = ¢ U;.
Then

la =D oo (an)gill < mav lleare — pu (ar) (| < 1 (7.4)

J=1

for all contraction c in f;Df;, for k=1,...,n,and for j =1,...,r. Put

g1/2
1
f= < 11/2 T1/2) € Ml,r(A)a g= : € MT’I(A)'
1/2
gr
For each § > 0 define S5: D — M, (D) by
P (€)(fr —0)4 - 0
Ss(c) = : : , c€D.
0 o pe(O)(fr = 0)+

Applying Lemma 5.8 (with £; = 7; and 0 small enough) to the positive matrix

f e frpr

[°f= : :
FER? g
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we obtain elements dy, d, . .., d, in A such that df;d; = (f; —m)+, ||d;||* < 2/m, and

i - 0 d - 0 (fi—m)s - 0
T U RS : . : | <m (@3)
0 --- dr 0 - d, 0 e (fr—m)s

(We can take n3 = 0 if A is a limit algebra; cf. Lemma 5.13, otherwise we must require
s > 0.) Set hj = f;°dj, and set h = (hy,...,h,) in My, (A), so that hih; = dif;d; =
(fi = m)+-

Lemma 7.6 In the notation of Remark 7.5,
[P axh — Sy (@)l < 2(n+ Vnang ' + 13, (19" S (ar)g — axll < 2m + 12,
g 18 a contraction, and || f||* < n+ 1.

Proof: Since ff* = Y77, f; < n+1 by condition (iii) in Remark 7.5, we have || f[|* < n+1.

For each j = 1,...,r let p; in A™ correspond to the indicator function 1y; so that
fip; = fj and ||pjar — pg,; (ax)p;j|| < m2; cf. the second estimate in (7.4). Then, using this
in the third inequality and (7.5) to see the first inequality below, we get

[P axh — Sy, (ax)]|

dr -+ 0 por (a) - 0 dy - 0
< |l: - s (Far—rr| = o ) ]
0 - d 0 o pa(ag) 0 --- d,
w0 puler) 0
<oprl o i =rl 0 s
0 - a 0 - pu(ar)
pr oo 0\ [ak— po(ar) -+ 0
S R : : |+
0 by 0w p)

< W F fllne +ms < 2(n+ D)menyt + 7.

Next, g*g = Z;Zlgj < 1, so g is a contraction. We have ¢;(f; — 2m)+ = (1 — 2m)g;
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because f;g; = g; and 1, < 1/2 by the assumptions in Remark 7.5. Hence,

T T
* 1/2 1/2
9 Som (a)g =Y pay(ar) g5 (f; = 2m)+0;" = (1= 201) D pw; (k) g5
j=1 j=1

This and the first estimate in (7.4) yield ||g*Sap, (ax)g — axl| < 211 + 10 O

Lemma 7.7 Let ay,as,...,a, be commuting positive elements in a strongly purely infinite
C*-algebra A. Then for each € > 0 and for each m in N there exists b in M,,,(A) such that

a 0 --- 0 arp 0 - 0
0 0 --- 0 0 a, --- 0
C D LR R |
0 0 --- 0 0 0 - a
fork=1,...,n (where ay is repeated m times in the second matriz).
Proof: Upon replacing € and the elements ay, ..., a, with Ae and Aay, ..., Aa, for some

positive real number A we may assume that each a; is a contraction and that ¢ < 1.
Apply Remark 7.5 and Lemma 7.6 with

3

€ €
= 47 = ] {7,—}7 - 2 40
m=¢/ =320+ 1) 4 m=e'/
Then by Lemma 7.6,
i g2 i 3e
||h akh - S€/4(ak)|| < an’? ||g SE/Z(G'k)g - a’k” < — for k = ]-7 EETRL2 (76)
20 4

Because A is purely infinite we have (f;—¢/2);®1,, 3 (fj—¢/2)4+, so by Lemma 2.4 (ii)
and (2.1) there are ty,...,t, in M, ,,(A) with

t(fi—e/d)st; = (fj —¢/2)+ @ 1, 111 < 5/e.
Put
131 01,m
t= : : € My m(A).
Olm t'r

45



Then |[[t]|?> < 5/¢ and

on(fi—e/4)4 - 0 on(f1—€/2)+ @ Ly - 0
t* : : = : - :
0 eop(fr —e/4) 4 0 e ap(fr—€/2) 1 ® 1,
for all complex numbers aj,...,qa,. Taking u in M,,,(C) to be the permutation unitary

which implements the natural isomorphism from M,(M,,) &£ M,, ® M, onto M,,(M,) =
M, ® M, we get

ar(fr —e/4)+ - 0 or(fr—€/2)4 - 0
u't* : : tu = : : Q 1y,
0 e on(fr —e/4)4 0 on(fr —€/2)4

and in particular, u*t*S, /s(c)tu = S./2(c) ® 1y, for all ¢ in D, which by the first inequality
in (7.6) implies that

wt*h*aphtu — Seo(ar) @ 1,,]| <e/4 for k=1,...,n. 7.7
/

Put by = htu(g ® 1,,) € My ,(A). By (7.7) and the second inequality in (7.6) we get the

estimate:

lbgarbo — ar ® L]l < (" ® L) (w't*h*axhtu — (Seja(ar) ® 1m)) (g ® 1,,)]|
+||(g* b2y 1m)(85/2(ak) ® 1m)(g & 1m) — a4 Q@ 1m||
< u't*h*aghtu — Seo(ak) @ || + ||g*Se2(ar)g — ax]] < e

Taking b in M,,(A) to be the matrix whose first row is by and whose other rows are zero,

the lemma is proved. O

Proposition 7.8 Let A be a strongly purely infinite C*-algebra.

(i) Let ay,as,...,a, be commuting, positive elements in A. For each natural number m
and for each € > 0 there is a contraction b in M,,(A) such that

ap 0 -+ 0 ap 0 - 0
0 0 --- 0 0 ap - 0
o IO U I
0 0 --- 0 0 0 - a
fork=1,...,n (where ay is repeated m times in the second matriz).

46



(ii) Let w be a free filter on N. Let a1, ay, ..., a, be commuting, positive elements in A,

and let m be a natural number. Then there exists a contraction b in M,,(A,) such

that
ag 0 -+ 0 ay o --.- 0
00 --- 0 0 a, --- 0
ey b= .
00 --- 0 0 0 - a
fork=1,...,n (where ay is repeated m times in the second matriz).
Proof: (i). Lemma 7.7 says that the completely positive contraction diag(a,...,0) —
diag(a,...,a), where a belongs to the abelian C*-algebra generated by ai,...,a,, is ap-

proximately 1-step inner relatively to M,,(A). It therefore follows from Lemma 7.2 that we
can approximate this completely positive contraction by 1-step inner maps implemented
by contractions b.

(ii). This follows from (i), Proposition 5.12, and Lemma 2.5. O

For any positive element a in a purely infinite C*-algebra A, for any m in N, and for every
e > 0, one can find d in M; ,,(A) such that ||d*ad—a®1,,|| < e. It is, however, not know to
us if one always can choose d to be a contraction. One of the offsprings of Proposition 7.8

above is that d can be chosen to be a contraction in a strongly purely infinite C*-algebra.

Lemma 7.9 Let D be a C*-algebra, let a be a positive element in D, and let d be a
contraction in D. Then the following two conditions are equivalent:

(i) d commutes with a, and d*da = a,
(i) d*ad = a and d*a*d = a®.

Proof: (ii) = (i). Set £ = ad — da. Then

¥z = d*a®d — d*ada — ad*ad + ad*da = ad*da — a®> < 0

(because d is a contraction). This shows that 2 must be zero. Hence d commutes with a,
and d*da = d*ad = a. (i) = (ii) is trivial. O

Lemma 7.10 Suppose that A is a strongly purely infinite C*-algebra. Let w be a free filter
on N, and let a1, a9,...,a, be a set of commuting normal elements in A,. Then for each
natural number m there are contractions ri,ra, ..., Ty in Ay, N{a1,as,...,a,} such that
rir; = 0iTiT1, ririax = ag, for all i,j, k.

3
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Proof: We can without loss of generality assume that each a; is positive. Use Lemma 2.5
to find a positive contraction e in A, such that ea; = aie = a;. Given m, take a contraction

bin M,,(A,) as in Proposition 7.8 (ii) with respect to the set

2 9 2 2
{a1,a9,...,a,,07,05,...,a,,¢e,€e}.

We can assume that b is a row matrix, i.e., that

by by -+ by
h=

Then each b; is a contraction, bfaxb; = d;;ax, and bfab; = &;;az.

We conclude from Lemma 7.9 that each b; belongs to A, N {ai,as,...,a,}’, and that
bibjar = 0;ja. Similarly we find that each b; commutes with e, that bjb;e = e, and that
bieb; = dije. Set r; = bie!/2. Then each r; is a contraction in A, N {a1,as,...,a,} and

rir; = 0;je. This proves the lemma. 0

Lemma 7.11 Let D and E be C*-algebras, and let S: D — E and T: E — D be com-

pletely positive contractions.

(i) If a is a positive element in D such that ||S(a®) — S(a)?|| < e, then ||S(ab) —
S(a)S(b)|| < &'? and ||S(ba) — S(b)S(a)|| < '/? for all contractions b in D.

(ii) If a is a positive element in E such that ||S(T(a)) —al| < e and ||S(T(a?)) — a?|| <&,
then [|S(T'(a)*) = S(T(a))*|| < (1+ 2[|al])e.

Proof: (i). By Stinespring’s theorem we can find a representation of E on a Hilbert space
H, a *~homomorphism 7: D — B(H), and a projection p on H such that S(d) = pr(d)p,
when viewing F as a sub-C*-algebra of B(H). Define G(z) = (1 — p)n(x)p for z in D.
Then S(y*z) — S(y*)S(z) = G(y)*G(z) for all z,y € D and ||G(b)|| < ||b]| < 1. Hence

18 (ab) = S(@)S®)II” < |G@PIGO)* < 1G(a)*G(a)ll = [IS(a®) — S(a)*|| < .

The second inequality follows by replacing b by b*.
(ii). Any completely positive contraction V' between two C*-algebras satisfies the

inequality V(z)*V(z) < V(az*z). (This can for example be proved using Stinespring’s
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theorem as in the proof of (i) above.) Using this fact twice together with the estimate
1S(T(a))? — a?|| < 2lalle yields:

0 < S(T(a)?) = S8(T(a))* < S(T(a®)) — S(T(a))®
< (a*+¢e-1)— (a®> —2|alle-1) = (1+2]|a|)e.

This proves (ii). O

Lemma 7.12 Suppose that A is a strongly purely infinite C*-algebra. Let w be a free filter
on N, let ai,as,...,a, be a set of commuting normal elements in A, and let by, bs, ... by,

be elements in A,. Then there exists a contraction d in A, with
d*dak = O, [d, CLk] = O, [d*bjd, ak] = 0, [d*bjd, d*bzd] =0
for all i, j, and k.

Proof: It is no loss of generality to assume that all a; and all b; are positive contractions.
Next, it suffices to prove the lemma in the case where m = 1. Indeed, for m > 2 use the

case m = 1 to find a contraction d; satisfying
d’{dlak = Qg, [dl, ak] = 0, [d;bldl, ak] = 0, k= 1, oy .

Recall that diagd; = ay, (by Lemma 7.9). Then repeat the process on the n+ 1 commuting

elements ay,...,an,, ay11 = djbid; and on 131 = d;bad; to obtain a contraction ds satisfying
d;dgak = Ak, [d2,ak] = 0, [d;gldg,ak] :0, k= 1,,’}’L+1
After m such steps we have found contractions dy, ds, ..., d,,, and d = dids - - - d,,, will then

be as desired.

Assume accordingly that m = 1 and that b = b, is a positive contraction. By Lemma 7.9
it suffices to find a contraction d in A, such that d*axd = ax, d*aid = a}, and [d*bd, a;] = 0
for all k. By Lemma 2.5 it suffices to show that for each £ > 0 there is a contraction d in
A, such that

d*ad — a¥)| < e, |[d*bd,as]]| <&, k=1,...,n, v=1,2. (7.8)

We may assume that ¢ < 1/2.
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We apply Remark 7.5 and Lemma 7.6 with A, in the place of A, with n; =¢/4, 93 =0,
with ny > 0 chosen such that

2¢/3n2 + 2ma < g, 64(2n + 1)e2ny + /2 +m < &,

and with {ai,...,a,,a?,...,a2} in the place of the set {ai,...,a,}. Hence n (from Re-
mark 7.5) is replaced with 2n. In Remark 7.5 we chose positive contractions fi,..., fr,
g1, - -- g, in the abelian C*-algebra D generated by aq,...,a,. By making a new choice of
these positive contractions (if necessary) we can find a third set of positive contractions
ki,..., k. in D with f;k; = k; and k;g; = g, for j =1,.

With h; as in Remark 7.5 we have hfh; = §;;(f; 5/4) by (7.5) because 3 = 0. In
particular, h3bh; < hih; = (f; —€/4)+ because b is a contraction. Apply Lemma 5.13 to

the positive matrix

(fr —€/4)4 — hibhy - 0
h*bh + : .. :
0 coo (fr—¢/4)L — hlbh,
to obtain positive elements eq,...,e, in A, such that
e;(fi —e/4)ve; = (fj —€/2)+, e;hibhje; =0 when i # j, lle;lI” < 8/e.

Put d =370, hjejgjlﬂ. Since f;jg; = g; we obtain g;(f; —¢/2); = (1 —¢/2)g; (because
e < 1/2), whence

Z 91/2 20i(fj —€/4) +ejgj Zgl/2 —e/2)4 =(1-¢/2) Zgj,
j=1

1,j=1

and so d is a contraction. We proceed to verify (7.8).
Let g € M, (A,) and h € M ,(A,) be as in Remark 7.5 and define R: M,(A4,) — Au
and T: A, — M,.(A,) by

kle’{ e 0 elkl e 0
R(z) =g'zg, T(y)= h*yh
0 - ke 0 - ek,

T
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The (ij)th entry of T'(b) is given by

k]e;‘h;bh]e]k], if 7,:_]

T(b)).. = kiefhibhjek; = )
( )” Z Y {0, if i#7
We conclude that

R(T®) =Y 6" (T(1),,9;" = g,/ €eh;bhje;q; = d*bd,
j=1

=1

because gjl-/zkj = 9]1_/2'

For each § > 0 consider the map Ss: D — M, (D) from Remark 7.5. The map S = Sy
is given by

par () f1 - 0
S(c) = : : , ce D.

0 - pa(0)f

Use this, the expression for (T(b))ij, and that f;k; = k; to see that S(c)T'(b) = T(b)S(c)
for all ¢ in D. Because g;/ijgjl./2 = gj we get R(S(c)) = Y i_; pr;(c)g; for all ¢ in D.
Hence ||R(S(a})) — a¥|| < no for all k and for v = 1,2 by (7.4). Lemma 7.11 (ii) now yields

IR(S(ax)?) — R(S(ax))?[| < (1 + 2lak]l)ne < 31,
whence

IR(S(ax)T (b)) — R(S(ar))R(TO))I < /312,
IR(T(8)S(ax)) = RITO)RS @)l < /3,

by Lemma 7.11 (i). Recalling that S(ax) commutes with 7'(b) and that R(T'(b)) = d*bd, this
leads to the estimate | R(S (ax))d*bd—d*bdR(S(ax))|| < 24/3n2. Since ||R(S(ax))—ak|| < 1o

we get

||[d*bd:ak]||§2v3772+2772§5; k:]-:"'ana
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by the choice of 5. We have

er .. 0\ e -+ 0
ded = g | o i|wen| i i
0 --- ejj/ 0 - e
el - 0\ e; - 0
9 Sepp(€)g = g" | ¢+ o i Sl |t 0 g
0 --- e;i/ 0 - e

for all ¢in D. From Lemma 7.6 we know that
|h*agh — Sopa(ap)|| < 8 '(2n+1)ma,  |lg*Se2(af)g — aill < e/2+
for k=1,...,n and for v = 1,2. By the choice of 7, this shows that

ld*azd — agll < |d"aid — g*Seja(ak)gll + 19" Se/2(ak)g — il
< 87[htagh — Sepalap)ll +e/2+ e

< 64(2n+De P +e/2+m < &,

for k=1,...,n and v = 1,2. We have now established (7.8). d

Proposition 7.13 (Extension) Let A be a strongly purely infinite C*-algebra, let w be
a free filter on N, let B be a separable sub-C*-algebra of A,, and let C' be an abelian
sub-C*-algebra of B. It follows that there is a 1-step inner completely positive contraction
T: B — A, such that the image of T is contained in an abelian sub-C*-algebra of A, and
such that T'(c) = ¢ for all ¢ in C.

Proof: Choose countable subsets {b1,bs, ...} and {ci,ca, ...} of positive contractions in
B, respectively, C, which span dense subspaces of B and C', respectively.

By Lemma 7.12 there is for each natural number n a contraction d,, in A, such that
d:ckdn = Ckg, [d;bjdn, C]c] = 0, [d;bjdn, d;bzdn] =0 forall ’i,j, k= 1, 2, e, N (79)

Lemma 2.5 then shows that there is a contraction d in A, such that (7.9) holds for all 4, 7,
and k£ in N. Now, the completely positive contraction given by T'(b) = d*bd has the desired
properties. [l

Proposition 7.14 Let A be a strongly purely infinite C*-algebra.
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(i) Let w be a free filter on N, let B be a separable sub-C*-algebra of A,, and let
V:B — A, be an approrimately inner, completely positive contraction whose im-
age 1s contained in an abelian sub-C*-algebra of A,. It follows that V is 1-step inner

relatively to A, .

(ii) Let B be a separable sub-C*-algebra of M(A), the multiplier algebra of A, and let
V: B — A be an approzimately inner completely positive contraction whose image is
contained in an abelian sub-C*-algebra of A. Then V 1is approrimately 1-step inner

relatively to A.

Proof: We prove (i) and (ii) simultaneously. It suffices to show that if B is either a
separable subalgebra of A, or of M(A), if V: B — A, is approximately inner (relatively
to A,), then V is 1-step inner relatively to A,. Because if V: B — A is 1-step inner
relatively to A,, then V' is approximately 1-step inner relatively to A by Lemma 7.3 (i).

Choose a set {by, by, bs,...} of positive elements that span a dense subset of B. By
Lemma 2.5 it suffices, for each n and for each ¢ > 0, to find a contraction f in A,
such that ||V (by) — f*bef|| < € for k£ = 1,2,...,n. By assumption there is an m-step
inner completely positive contraction W: B — A, such that ||V (by) — W (b)|| < ¢ for all
k=1,...,n. Find dy,dy, ..., dy in A, such that W(b) = >_7, dfbd;.

By Lemma 7.12 there is a contraction d in A, such that each pair of elements in the

finite set
{d*dibpd;d 2 i,j=1,...,m, k=1,...,n}

commute, and such that d*V (by)d = V' (by) for k = 1,...,n; cf. Lemma 7.9.

In particular, each d*d;byd;d is normal. Use Lemma 7.10 to find contractions ry,...,7m,
in A, commuting with each d*d;byd;d, and such that r;d*d;bxd;dr; = 0;;d"d;brd;d (cf.
Lemma 7.9). Put f =3>""", d;dr;. Then

fouf = > rididibpdidr; = Y d*dibpdid = d'W(b)d,  k=1,...,n.

ij=1 j=1
As ||[W(b) — V(br)|| < €, and d is a contraction satisfying d*V (b;)d = V' (by), we conclude
that ||V (bx) — f*bef|| < e. O

Definition 7.15 For each pair of C*-algebras A and B such that B C M(A), define
%o(B, A) to be the set of all approximately inner completely positive maps from B to A
whose image is contained in an abelian sub-C*-algebra of A. Define € (B, A) to be the set
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of all completely positive maps T: B — A such that

T(b) = Z a;To(cibei)a;, be B (7.10)
4,j=1
for some natural number n, for some ay,...,a, in M(A), for some cy,...,c, in M(B),

and for some Tj in 65(B, A). Let €(B, A) denote the pointwise-norm closure of % (B, A).

Let A be a C*-algebra such that its multiplier algebra M (A) contains a unital copy of the
Cuntz algebra J;. Each stable C*-algebra has this property, and if A is stable and w is
any filter on N, then A, has this property. Indeed, there is a unital embedding of B(H),
where H is a separable infinite dimensional Hilbert space, into M (A) and there is a unital
embedding of O, into B(H). Also, there is a (canonical) unital embedding of M(A) into
M(AL).

By assumption there are isometries sq, so in M(A) satisfying the Cuntz relation: s;s}+
5955 = 1. Fixing two such isometries s;, s, we can for each C*-algebra B define the Cuntz
sum of two maps 77,715: B — A by

(T1 D Tz)(b) =51} (b)ST + SQTZ(b)S;, be B. (711)

The operation & depends on the choice of sq, so, but only up to unitary equivalence; @ is
not associative, but (77 & T») @ T3 is unitarily equivalent to 77 @ (75 @ T3). With this in
mind, define inductively 7' @ To & --- @ T, tobe (118 12) & T3® --- @ T,,. Then

(oT®-- &T1,)(0b) = s1aT1(b)s1, + - -+ + sSnnTn(b)sy (7.12)
for some isometries sy, ..., Spy, in Ay, satisfying 1 = 81,87, + - + SpuS;, -

Lemma 7.16 Let A and B C M(A) be C*-algebras, and assume that there is a unital
embedding of Oy into M(A). Then the following holds:

(i) If 11, T; belong to € (B, A), then so does their Cuntz sum Ty & Ts.

(ii) If Ty,...,T, belong to € (B, A), if a1, ...,a, are elements in M(A), thenT: B — A,
given by T'(b) = >27_, a;Tj(b)aj, belongs to € (B, A). In particular, € (B, A) is a
cone.

(iii) If T belongs to € (B, A), ifai,...,a, belong to M(A), and cy,. .., c, belong to M(B),
then S: B — A, given by S(b) = Y 7., aiT(cjbe;)a;, belongs to €(B, A).

1,J=1"7
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Straightforward continuity considerations show that Lemma 7.16 holds with € (B, A) re-
placed by € (B, A).

Proof: (i). Suppose first that 77, T, belong to 6;(B, A). The image of T} is then contained
in an abelian sub-C*-algebra D; of A. Now, D = 5,D;s] + s,D,s5 is an abelian sub-C*-
algebra of A which contains the image of 77 @ T5. It is easy to check that 7} & 715 is
approximately inner. Hence T7 @ T, belongs to 6,(B, A). Assume next that 77,75 belong
to €(B, A). Then
N
Tk(b) = Z a;,kSk(c;’kbci,k)ai,k
2,7=1

for suitable a;; in M(A), ¢ji in M(B), and with S}, S, in 63(B, A). We saw above that
S =51 ® S, belongs to 6y(B, A). The Cuntz relation for the isometries s, s, implies that
s3S(b)s; = 0k, Sk(b). Hence

2 n
(MeB)b) = 3 >, ovajxSk(c]sbein)ainst

k=11,j=1

2 ng
* * X *
= 5 E skaj,kskS(cj,kbcu)slai,lsl,

kd=14,j=1

and it follows from the latter expression that 7} @ T3 belongs to € (B, A).
(ii). In the notation of (i) and (7.12), put a = Y°7_, sjna; € M(A). Then

Th)=a (i ®---®T,)(ba.

From (i) we know that T} & - - - & T}, belongs to € (B, A). It is now clear from (7.10) that
T belongs to € (B, A).

(iii). Let S, T be as stipulated. Find R in %(B, A), elements ey, ..., e, in M(A), and
elements fi, ..., fr, in M(B) such that

T(b) =Y e;R(fibfi)e, beB.

k=1
Then . I
S() = a;T(cbe)ai =Y Y aleR(frcibeif)ewa;.
ij=1 ij=1 k=1
This expression conforms with (7.10), and so S belongs to €' (B, A). O
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The two following (well known) facts, formulated as a lemma, are used in the proof of
Lemma 7.18 below. If p is a positive functional on a C*-algebra D and if d is an element
in D, then d*pd denotes the positive functional on D given by (d*pd)(x) = p(d*zd).

Lemma 7.17 Let D be a C*-algebra.

(i) Let fi,..., fn be elements in the dual of D. Then there is a cyclic representation m

of D on some Hilbert space H, a cyclic vector & in H, and elements cy1,...,c, in
m(D)' N B(H) such that f;(d) = (n(d)§, c;€) for all d in D.

(ii) Suppose that A is a weak-* closed sub-cone of the cone of all positive linear func-
tionals on D, and suppose that d*pd belongs to JE for every d in D and for every
pin A . Let J be the set of all d in D such that p(d*d) = 0 for all p in . Then
J is a closed two-sided ideal in D; and if py is a positive functional on D such that
po(d*d) =0 for all d in J, then py belongs to A .

Proof: (i). Since each element in the dual of D is a linear combination of positive function-
als on D it suffices to consider the case where each f; is a positive. Put f = fi +---+ f,,
and let (7, H, &) be the GNS-representation with respect to f, so that f(d) = (w(d)&, ) for
all d in D. By (a linear version of) Sakai’s Radon—Nikodym theorem (see [12, Proposition
7.3.5]) there are elements c; in B(H) Nw(D)' such that f;(d) = (¢;m(d)¢, &) = (m(d)§, c;€)
for all d in D.

(ii). The set J is a closed left-ideal of D (because the left-kernel of each p in JZ is a
closed left-ideal). Also, for each z in J, for each d in D, and for each p in £ we have
p((zd)*(zd)) = (d*pd)(2*z) = 0 because d*pd belongs to .#. This proves that zd belongs
to J, and hence that J is a closed two-sided ideal in D.

To prove the second part of (ii) we may assume that J = 0. (Otherwise just replace
A by A/J and view py and each functional in J# as a functional on A/J.) Suppose that
po does not belong to #. Then, by Hahn—Banach’s theorem and the characterization
of weak-* continuous linear mappings on the dual space of A as being evaluation maps
p — p(a) for some a in A, there is an element a in A such that py(a) < 0 and p(a) > 0 for
all p in . Upon replacing a by (a + a*)/2 we may assume that a is self-adjoint. Write
a = ay —a_ where ay and a_ are the positive and negative parts of a. Let {e,} be an
approximate unit consisting of positive contractions for the C*-algebra generated by a_.
Then e,ae, - —a_ and e,ae, < 0 for all n. For each p in %, e pe,, belongs to %", and
hence

0 < (eppen)(a) = plenaen) <0,
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so that p(—enae,) = 0 for p in £ and for all n. Since —e,ae,, is positive, this entails that
enae, = 0 for all n, and hence that a_ = 0. But this contradict the fact that py(a) < 0.
O

Lemma 7.18 Let B be a separable nuclear sub-C*-algebra of a stable C*-algebra A, and
suppose that for each positive b in B there is V in € (B, A) such that V(b) = b. Then the
inclusion mapping 1: B — A belongs to €(B, A).

Proof: For each finite set by, ...,b, in B and for each ¢ > 0 we must find V in € (B, A)
such that ||V (b;) — b;]| < e for all j. Equivalently, we must show that

(br, - by) € {(V(by),...,V(bn)) : V € €(B, A)}. (7.13)

By a Hahn—Banach separation argument, and because the set displayed above is convex (cf.
Lemma 7.16 (ii)) it will suffice to show the following: For each finite set by, ..., b, in B, for
each set fi,..., f, in A*, and for each € > 0 there is V in €' (B, A) such | f;(b;)—f;(V(b;))| <
e for j = 1,...,n. Choose a cyclic representation 7: A — B(H), a cyclic vector £ in H,
and elements ¢, ...,c, in m(A)" N B(H) such that f;(b) = (7(b)&, ;) for all b in B and
for all j; cf. Lemma 7.17 (i).

Let C be the sub-C*-algebra of B(H) N w(A)’ generated by c¢i,...,c¢,. Keeping 7 and
¢ fixed, let ¢y be the positive functional on B ® C defined by

vb®c) = (r(V(b)E ), beB, ceC. (7.14)

(A priori, ¢y defines a functional on the maximal tensor product B®mp.xC, but the maximal
and the minimal tensor products on B ® C coincide because B is nuclear.) Let £ be the
weak-* closure of the cone {¢y : V € €(B, A)}. Observe that

| f5(b;) — b;))| = |(m(b;)€, ci&) — (m(V ()€, )| = . (b; ® ¢;) — oy (b; ® ¢5)].

Hence it will suffice to show that ¢, belongs to JZ .

We proceed to check that d*pd belongs to % for all p in J# and for all d in BQ C. By
continuity of the maps p — d*pd and d — d*pd (with d, respectively, p fixed) it suffices to
show that d*pyd belongs to J# for d = 2?21 2; ®y; in the algebraic tensor product BOC
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and for V in € (B, A). But

(d*pyd)(b®c) = Z oy (x;bz; @ y;cy;) Z (m(V(x5bx))E, (yiey;)*E)

',j—l ,j=1

= Z <7T LE b.’L'] yjé-’c yz§>

1,5=1

The vectors y;¢ can be approximated arbitrarily well by vectors of the form 7 (a;)¢ for
suitable elements a; in A. Let W: B — A be given by W(b) = }_/',_, a;V(;bz;)a;. Then
W belongs to (B, A) by Lemma 7.16 (iii), and

w(b®c) Z (m(V(x;bz;))m(a;)E, " m(a:)).

1,j=1

We conclude that d*¢yd can be approximated in the weak-* topology by elements of the
form @y with W in %(B, A).

As in Lemma 7.17 (ii), let J be the closed two-sided ideal in B ®@ C consisting of those
elements z such that ¢y (2*2) = 0 for all V in €(B, A). By Lemma 7.17 (ii) it now suffices
to show that ¢,(2*z) = 0 for all z in J. It is a consequence of a theorem of Blackadar, [1,
Theorem 3.3], see also [13, Proposition 2.13], that J is the closed linear span of the set of
elementary tensors z ® y in J because B is nuclear. The left kernel L of ¢,, consisting of
all z in B® C' such that ¢,(z*z) = 0, is a closed linear subspace of B® C, and so it suffices
to show that ¢,(z*z ® y*y) = 0 whenever z € B and y € C are such that z ® y belongs
to J. By assumption there is V, in (B, A) such that V,(z*z) = 2*z for each z in B. Tt
follows that

p(z'z @y*y) = (m(2*2)€,y*yE) = oy, (z*z @ y*y) =0

as desired. 0

Lemma 7.19 Let B be a sub-C*-algebra of a C*-algebra A such that Oy admits a unital
embedding into M(A), and assume that the inclusion mapping B — A belongs to € (B, A).
Then € (B, A) contains every approzimately inner completely positive map from B to A.

Proof: Because € (B, A) is closed in the pointwise-norm topology, it suffices to show that
each inner completely positive map T': B — A belongs to €(B, A). Let .: B — A denote
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the inclusion mapping (that belongs to €(B, A)), and find dy, ..., d, in A such that

T(b) =Y dibd; = dsu(b)d;.
7j=1 7j=1

It now follows from Lemma 7.16 (ii) (and the remark below Lemma 7.16) that 7" belongs
to €(B, A). O

Lemma 7.20 Let A be a C*-algebra, let B be a sub-C*-algebra of M(A), and assume
that every map in 6y(B, A) is approzimately 1-step inner. Then every map in € (B, A) is
approximately 1-step inner.

Proof: By the definition of being approximately 1-step inner, it suffices to show that every
map in € (B, A) is approximately 1-step inner. Take (a non-zero) T in % (B, A) and find
Ty in 65(B, A), a,-..,a, in M(A) and ¢y, ..., ¢, in M(B) such that (7.10) holds. Put

C = max{||a1||, ||az|], ..., ||an||}-

Let F' be a finite subset of B and let ¢ > 0. Choose a positive contraction f in B such
that || fbf —b|| < &/2||T|| for all bin F. By the assumption that 7} is approximately 1-step
inner, there is d in M(A) such that

ITo(c; fbf ci) — d*c; fofeid]| < e/ (2C°n?), beF, i,j=1,...n.
Put e =" | feida; € M(A). Then, for all b in B,
|7(b) — e*bel| < [[T'(b) = T(foN)I| + I T(fbf) — €*be]l

< /24 ) la;To(c) fofe)a; — ajd’c; fofeidas|

2,j=1
< cf2+ 3 lallladlle@c®?) ™ < e
2,j=1
This shows that 71" is approximately 1-step inner. U

Theorem 7.21 Let A be a strongly purely infinite C*-algebra and let B be a nuclear,
separable sub-C*-algebra of A. Then each approximately inner, completely positive map

from B to A is approximately 1-step inner.
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Proof: It suffices to prove the theorem in the case where A is stable. Indeed, A ® K
is strongly purely infinite by Proposition 5.11 and we may view any C*-algebra A as
being a sub-C*-algebra of A® IC. If V: B — A is approximately inner, then clearly so is
V: B — ARK. Next, if {d, }2° ; is a sequence of elements in AQK satisfying d}bd,, — V (b),
then we will also have g:bg, — V(b), when g, = e,d,e, € A for a suitable approximate
unit {e,}>2, for A.

Let w be a free filter on N, and view A as a sub-C*-algebra of the limit algebra A,. By
Lemma 7.3 (i) it suffices to show that each approximately inner completely positive map
from B to A, is approximately 1-step inner. The inclusion mapping ¢t: B — A, belongs
to €(B, A,) by Lemma 7.18 and Proposition 7.13, and € (B, A,) therefore contains all
approximately inner completely positive maps by Lemma 7.19. Proposition 7.14 (i) says
that each map in %y(B, A,) is 1-step inner. Lemma 7.20 then implies that each map in
%(B, A,) — and hence each approximately inner, completely positive map from B to A,

— is approximately 1-step inner. [l

Other applications

In the definition of strong pure infiniteness there is no assumptions made on the norm of
the elements d;, d,. A norm estimate for d; and dy was proved in Lemma 5.6. Now we can

show that d; and d, can be chosen to be contractions:

Corollary 7.22 Let A be a strongly purely infinite C*-algebra. For each

SR

and for each £ > 0 there are contractions di,dy tn A such that

()26 2)-6 )=

If, moreover, A = E,, for some C*-algebra E and for some free filter w on N, then there

are contractions di,dy tn A such that

di 0 a x* di 0 _[a O
0 &/ \z bv)\o d) \0 b
Proof: The second statement (concerning the case A = E,) follows from the first state-
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ment and from Lemma 2.5. We proceed to prove the first statement of the corollary. Let
(a2") in My(A)* and let ¢ > 0 be given. Choose positive contractions e in C*(a) and
f in C*(b) such that ||a — eae|| < /2 and ||b — fbf|| < €/2. Put By = C*(a,b,z), put
B = My(By), and put

C= { (Col i) cc € C*(a), ¢ € C’*(b)}.

Then C is an abelian sub-C*-algebra of the separable C*-algebra B. Let w be a free
ultrafilter on N. Apply Proposition 7.13 (and its proof) to find a contraction d in B, and
an abelian sub-C*-algebra D of B, such that d*bd belongs to D for all b in B and d*cd = ¢
for all ¢ in C. Write

dy d
d="" ") e B, =M(B).).
d21 d22

For each ¢; in C*(a) and for each ¢y in C*(b) we have
C1 0 _ d* C1 O d _ d‘{lcldll d{lcldlz
0 O 0 0 d){201d11 dI261d12 ’
0 O — 0 0 d= d§162d21 d;102d22
0 Co 0 Co d§202d21 d;202d22 ‘
We conclude that

61/2d12 = 0, f1/2d21 = 0, dTlcldn = Cq, d;202d22 = Co, (715)

for all ¢; € C*(a) and all ¢, € C*(b). Using this, we get

- 0 0) , _ 0 0
f1/2x61/2 0 - d;2]c1/2fwl/2d11 0 ’

and this element commutes with diag(e'/2,0) and with diag(0, f1/2). Hence
0 = diy f12xet ?dyet/? = fY2d5, f12xet2d,,. (7.16)

Put s = e'/2dy1e'/? and t = f1/%dy f*/?. Then s and ¢ are contractions, t*zs = 0 by (7.16),
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and
s*as = e'%d;, (e'?ae'?)die'? = eae, bt = f2d5, (f/20f?)doof 1 = fOF

by (7.15). Write

s = my(s1,82,---), t=m,(t1,ta,...),
where s,, and t,, are contractions in By C A. Then

lim sup ||t;zs,|| = 0, limsup ||s)as, — a|| < /2, lim sup ||¢;bt,, — b|| < &/2.
w

w w

We can therefore find n such that ||t} zs,|| < e/2, ||stas,—a| < /2, and ||t;bt, —b|| < /2,
and we can take d; = s, and dy = ¢,,. O

8 Tensor products with O,

Corollary 8.3 below gives a McDuff type description of C*-algebras A that satisfy A =
A ® Ou. This corollary is proved in [13] by the first named author. For the convenience
of the reader, we give here the proof in a version taken almost vertabim from [19, Chapter

7] (a work in progress at the time where this is written).

Proposition 8.1 (An approximate intertwining) Let A and B be separable C*-alge-

bras and let ¢: A — B be an injective *-homomorphism. Suppose that there is a sequence
{vn}oe, of unitaries in M(B) such that

lim ||lv,9(a) — ¢(a)v,|| =0, lim dist(v;;bv,, ¢(A)) = 0,
n—oo

n—oo
foralla in A and all b in B. Then A and B are isomorphic, and there is an isomorphism

v A — B which is approximately unitarily equivalent to .

Proof: Let {a1,as,as,...} and {b,bs, b3, ...} be (countable) dense subsets of A, respec-
tively, of B. Passing to a subsequence of {v,} we can inductively select unitaries v, in
M(B) and elements a,, ; in A such that

|, (U7, + + - v30Tb0109 - V1)U — @(an5)|| < 1/m,

long(a;) — la)vall <277, |lva@(am,;) — @amg)onll <277,
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forj=1,2...,nand m=1,2,...,n — 1. Being a limit of a Cauchy sequence,

Y(a) = lim vivg - - - vy(a)v), - - - v30]
n—00

exists for all ¢ in {a1, as, as, ... }, and hence for all ¢ in A; and ¢: A — B is a *-homomor-
phism. Clearly v is injective, because ||¢)(a;)|| = ||a;|| for all j, and ¢ is approximately
unitarily equivalent to . Observe that

[9(an;) = vive - - - vap(an,;)v, - - -voi]| <277,
and use this to deduce
16 = Plany)ll < 27" + lvpon - - vibjor - - vnvn — @(ang)|| < 27" + 1/n.
Since 9(A) is closed and {by, bo, b3, ...} is dense in B we conclude that 1(A) = B. O

Theorem 8.2 ( [13, Corollary 10.8]) Let A be a separable C*-algebra and let B be a
unital and separable C*-algebra. Then A is isomorphic to A ® B if

(i) there is a sequence {@,}22 | of unital injective *-homomorphisms from B into M(A)
satisfying ||¢on(z)a — app(x)|| — 0 for all a in A and all b in B, and

(ii) the two *-homomorphisms o, 3: B — B® B given by a(b) =b® 1 and f(b) = 1® b,

b € B, are approrimately unitarily equivalent.

It is shown in [15], based on ideas from the paper [8] by Effros, that a C*-algebra B that

satisfies (ii) must necessarily be simple and nuclear.

Proof: We show that the conditions of Proposition 8.1 are satisfied with respect to the
injective *-homomorphism ¢: A - A® B given by a — a ® 15. More specifically we shall
for each finite subset F' of A, for each finite subset G of B, and for each ¢ > 0 find a unitary
v in M(A ® B) such that

llvp(a) — pla)v] <e, dist(v*(a ® b)v, p(A)) < e, a€F,bedq. (8.1)

Let w be a free filter on N. Let «o,: B — M(A ® B) be given by a,(b) = ¢,(b) ® 1,
and define a: B - M(A® B), to be a(b) = m,(a1(b), as(b),...). By the assumption on
the *~homomorphisms ¢,,, the image of & commutes with the image of ¢ (when viewing
M(A® B) as a sub-C*-algebra of M(A® B),). Let 3: B—> M(A® B) C M(A® B),
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be given by 3(b) = 1 ® b. The images of o and [ commute with each other and with
the image of ¢. The C*-algebra generated by «(B) and 3(B) is isomorphic to B ® B
(because B is nuclear and simple). By (ii) there is a unitary w in C*(«(B), 5(B)) with
|lw*B(b)w — a(b)|| < ¢/(2C) for all b in G, where C' = max{||a|]| : « € F}. Since w
commutes with the image of ¢ we have

w*(a @ b)w = w*p(a)B(b)w = p(a)w*B(b)w, a€ A, be B.
Write w = 7, (w1, wy, ... ) where each w, is a unitary in M(A ® B). Then

lim sup [|wnp(a) — p(a)wn|| =0,  limsup [lw;(a @ b)w, — ¢(a)w;,B(b)wn|| = 0,

w w

lim sup ||w,, B(b)wn — an (b)|| = [|w*B(b)w — a(b)|| < e/(20),
for all ¢ in A and all b in B. It follows that
lwnip(a) — p(a)w,|| < e, |wy,(a ®b)w, — p(a)an(b)|| <e, a€F, beQG,

for all n € X for some X € w, and hence for at least one n. The element p(a)a, (b) belongs
to A® 1= p(A) and (8.1) is therefore satisfied with v = wy,. O

Corollary 8.3 Let A be a separable C*-algebra. Then A is isomorphic to A @ Oy if
and only if there is a sequence of unital *-homomorphisms ¢,: Ox — M(A) such that
llon(z)a — ap,(z)]| — 0 for all x in Oy and for all a in A.

Proof: The “if” part follows immediately from Theorem 8.2 together with the theorem
of Lin and Phillips, [17], that any pair of unital *-homomorphisms Oy, — Oy ® O are
approximately unitarily equivalent.

It is shown in Lin and Phillips’ paper, [17], that O is isomorphic to @ | Ox. As a
consequence of this isomorphism we get a sequence 9, : Oy, — O of unital *-homomor-
phisms satisfying ||¢,(2)y — ytn(z)|| — 0 for all z,y in O.,. Let A be any C*-algebra. The
C*-algebra M(A)®0Oy is a unital sub-C*-algebra of M(AROy,), and s0 ¢, (z) = 1Q, ()
defines a sequence of unital *-homomorphisms from O, into M(A ® O, ) which satisfies
llon(x)a — apy,(z)|| — 0 for all z in Oy and for all @ in A @ O. O

It follows easily from Corollary 8.3 that any C*-algebra that absorbs O, is approximately
divisible.
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Proposition 8.4 Let A be a separable C*-algebra which is either unital or stable. Then

the following conditions are equivalent:
(i) AZ AR O,

(ii) for each natural number m, every approzimately inner, completely positive contrac-
tion from a sub-C*-algebra B of M,,(A) into M,,(A) is approzimately 1-step inner,

(iii) there is sequence {d,}2, in Mo(A) such that
a (@ g, - (" H:o (8.2)
0 0 0 a

Proof: (i) = (ii). If A satisfies (i), then so does M,,(A) for all natural numbers m. We
need therefore only consider the case m = 1. Let B be a sub-C*-algebra of A. It suffices to

lim
n—0o0

for all a in A.

show that each n-step inner completely positive contraction V: B — A is approximately
1-step inner. Find di,...,d, in M(A) with V(b) = >_"_, dibd;. By Corollary 8.3 we can

J=1"j
find sequences of isometries {t;;}%>; in M(A) for j =1,...,n satisfying

tl,ktI k + -t tnykt; k S 1, lim ||tj,ka — atj,k” = 0,
? ’ k—00

for all ¢ in A and all j. Put f; = Z;L:l t;xdj. Then frafi, — V(a), and this shows that V'
is approximately 1-step inner.

(ii) = (iii). Let B be the sub-C*-algebra of M5(A) consisting of all elements of the
form diag(a,0) with a in A. Let V: B — M,(A) be given by

(0= o)

The map V' is approximately 2-step inner, and hence V is approximately 1-step inner if
(ii) holds.
(iii) = (i). If Ais stable, then by Lemma 7.4 (ii) we can take d,, in My(M(A)) satisfying

(8.2) to be isometries of the form
Up Uy
(s .
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Notice that (8.3) and (8.2) imply that u, and v, are isometries in M(A) with orthogonal
range projections, that u}au, — a and v}av, — a for all ¢ in A, and hence (by Lemma 7.9)
that

nh—>120 lluna — au,|| =0, nh_)rgo lvna — av,|| =0 (8.4)
for all a in A.

Let & be the universal C*-algebra generated by two isometries with orthogonal range
projections. The two isometries uy,, v, have orthogonal range projections (for each fixed
n), and so there is a unital *~homomorphism v,,: £, — M(A) mapping the two canonical
generators of & onto u, and v,. By (8.4) we see that ¥, (x)a — atp,(x) — 0 for all z in &
and all ¢ in A. The C*-algebra & has a unital sub-C*-algebra isomorphic to Q.. Taking
On: Ox — M(A) to be the restriction of 1/, an application of Corollary 8.3 yields that A
is isomorphic to A ® O.

Suppose now that A is unital (and that (iii) holds). Put e = diag(1,0) in M,(A).
Upon replacing d,, by ed,, we may assume that d,, = ed,,. Applying (8.2) to a =1 we find
that d’d, — 1. Hence d}d,, is invertible (for n large enough) and d,, = w,|d,| for some
isometry w,. Since ||w, — d,|| — 0 and since w,, = ew,, we can replace d,, by w, and obtain
isometries u,, and v, such that (8.3) holds. The rest of the proof now follows the proof for
the stable case. O

Recall that a C*-algebra A is called O -absorbing if A ® O, is isomorphic to A.

Proposition 8.5 (Permanence properties)
(i) If A is an Ou-absorbing C*-algebra, then so is every closed two-sided ideal in A.
(ii) If A is an Ou-absorbing C*-algebra, then so is every quotient of A.

(i) If A is a separable O -absorbing C*-algebra, and if B is a hereditary sub-C*-algebra

of A admitting an approximate unit consisting of projections, then B is O -absorbing.

(iv) If A is an inductive limit of a sequence Ay — Ay — A3z — -+ of separable C*-al-
gebras A,, each of which absorbs O, and if each connecting map A, — Api1 i

non-degenerate 2, then A absorbs O .

3A *-homomorphism ¢: D — E is said to be non-degenerate if o(D)Ep(D) is dense in E.
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Proof: (i) and (ii). Write A = Ag® O for some C*-algebra Ay. Suppose that I is an ideal
in A. Because O is exact and simple, I = Iy ® O, for some ideal I in I; cf. [1, Theorem
3.3] and [13, Proposition 2.13]. Hence I is O-absorbing, and A/I = (Ay/1y) @ O because
O is exact.

(iii). Let {px}52 be an increasing approximate unit for B where each py, is a projection.
Observing that there are unital embeddings of & into O and vice versa, we may use
Corollary 8.3 — with &, in the place of O,, — to find an asymptotically central sequence
of unital *-homomorphisms ¢, : & — M(A). Let s,t be the two canonical generators of
&y, i.e., s,t are isometries with ss* L tt*. Put po = 0 and put ¢ = pp — pr_1 for all £ in N.
Then 1= 37", g, in M(B) (the sum is strictly convergent). Also,

T [[on(5)ak — arpn(s)| = Tim ln(t)ax — aron(B)] = 0.

The relations satisfied by s, ¢ are stable, and we can therefore for each k£ in N find sequences
{snitnzy and {tnx}52, of isometries in qyAgy = qrBgy, such that s, s}, L tnt; , and
such that

Jim lgxpn(s)gy — snpll = lim {lgeen()gr — tnxll = 0.

For each n there is a (unique) unital *-homomorphism ,,: & — M (B) that satisfies

d)n(s) = an,ka 1/)n(t) = Ztn,ka
k=1 k=1

(the sums are strictly convergent). We have ||1,(z)b — bib, (x)|| — 0 for each x in & and
for each b in B. (To see this, consider first b in p,Bpy for some k.) Hence the conditions
of Corollary 8.3 are satisfied, and so B is isomorphic to B @ Q.

(iv). Let pn: A, — A be the inductive limit map. Then u, is non-degenerate for
each n and it therefore extends to a unital *-homomorphism p,,: M(A,) - M(A). Use
Corollary 8.3 to find a sequence of unital *~homomorphisms ¢y ,,: Os — M(A,,) such that

lim ||k n(z)a — apgn(x)]| =0, z € Oy, a € A,.

k—o0

Let g pn: Oo — M(A) be the composition mapping fin © @k ,. Then

im |[¢n(x)a — athpn(z)|| =0, 2z € Oy, a € A.

k,n—00

Corollary 8.3 now shows that A absorbs Q. O
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Theorem 8.6 Let A be a separable C*-algebra. If A is strongly purely infinite and nuclear,
and if A is either stable or has an approrimate unit consisting of projections, then A is
tsomorphic to A ® Ou. Conversely, for any C*-algebra A, if A is isomorphic to A ® O,
then A 1is strongly purely infinite.

Proof: Assume first that A is isomorphic to A ® O. Then, by Corollary 8.3, there are

sequences {u,}2°; and {v,}2; of isometries in M(A) such that u,u} L v,v% and

lim ||u,a — au,|| =0, lim ||v,a — av,|| =0
n—o00 n—o0

uy, 0 a x* u, 0 a 0
_)
e G)-60)

for all a, b,z in A. We can now take d; = eu,, and dy = ewv,, for an appropriate approximate

for all ¢ in A. Hence

unit e for A and for n large enough to show that A is strongly purely infinite; cf. Lemma 5.2.

Suppose next that A is strongly purely infinite, nuclear, and that A either has an
approximate unit consisting of projections or is stable. In the former case, if A ® K
absorbs O, then so does A by Proposition 8.5 (iii), and A ® K is strongly purely infinite
by Proposition 5.11 (iii). It therefore suffices to consider the case where A is stable.

Let B and V: B — M5(A) be as in the proof of (ii) = (iii) of Proposition 8.4. Being
isomorphic to A, B is nuclear, and V is approximately 2-step inner. Thus V is approxi-
mately 1-step inner by Theorem 7.21, and so A is isomorphic to A® O, by Proposition 8.4.

O

9 Summary and open problems
The main results of this paper are contained in Theorem 7.21 and in the theorem below:

Theorem 9.1 Consider the following six properties of a separable C*-algebra A:
(i) AZ AR O.
(ii) A is strongly purely infinite *.

(iii) A is purely infinite °.

4A definition of being strongly purely infinite is given in Definition 5.1.
5A definition of being purely infinite is given in Definition 3.4.
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(iv) A is weakly purely infinite ©.
(v) A, is traceless 7 for some free filter w on N.
(vi) A is traceless.

Then
(i) = (ii) = (iii) = (iv) & (v) = (vi),

and

(il) = (i) if A is nuclear, and either stable or with an approximate unit consisting of

projections;
(iii) = (ii) if A is either simple, of real rank zero, or approzimately divisible ®;

(iv) = (iii) 4if and only if A has the global Glimm property °, and in particular if A is either

simple, of real rank zero, or approximately divisible;

(vi) = (v) if A is approzimately divisible.

Proof: The implications (i) = (ii) and (ii) = (i) are treated in Theorem 8.6.

(ii) = (iii) is proved in Proposition 5.4. It is shown in Corollary 6.9 that (iii) = (ii) if A
is of real rank zero, and hence in particular if A is simple, because all simple, purely infinite
C*-algebras are of real rank zero. Proposition 5.14 shows that (iii) = (ii) for approximately
divisible C*-algebras.

(iii) = (iv) follows from [16, Theorem 4.16]; cf. the remark below Definition 4.3. The
implication (iv) = (iii) is treated in Proposition 4.15, Corollary 4.16 and Proposition 4.18.

The equivalence (iv) < (v) is proved in Theorem 4.8 (i), and by Theorem 4.8 (ii) we
have (iv) = (vi). Finally, the implication (vi) = (iv) is proved to hold for approximately
divisible C*-algebras in [16, Theorem 5.9]. O

The implication (ii) = (i) does not hold in general. There is in [7, Theorem 1.4] an example
of a simple, unital, purely infinite, separable C*-algebra A which is not approximately
divisible. Hence A is not isomorphic to A ® O (as noted below Corollary 8.3). We do

not have counterexamples to any other implication of Theorem 9.1.%°

6A definition of being weakly purely infinite is given in Definition 4.3.
"Traceless C*-algebras are defined in Definition 4.2.
8 A definition of being approximately divisible can be found in Definition 4.1.
9A definition of the global Glimm property can be found in Definition 4.12
10Added to proof: It has recently been shown by the second named author that the implication (vi) =
(v) fails: there is a non-nuclear simple counterexample.
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We summarize the situation when A is either simple, approximately divisible or of real
rank zero. The conclusions of Corollary 9.2 below was obtained in 1994 by the first named
author (and is published in [15]).

Corollary 9.2 Let A be a simple, separable, nuclear C*-algebra. Then A =2 A ® Oy if
and only if A is purely infinite.

Proof: If A is simple and purely infinite, then A is either stable or unital by [22]. Hence

conditions (i) — (v) in Theorem 9.1 are equivalent for A. O

Corollary 9.3 Let A be a separable, nuclear C*-algebra that is either stable or admits an

approximate unit consisting of projections. Then the following conditions are equivalent:
(i) A2 AR Oy,
(ii) A is approxzimately divisible and purely infinite,

(iii) A is approzimately divisible and traceless.

Proof: The implications (iii) = (ii) = (i) follows from Theorem 9.1. If (i) holds then A
is approximately divisible (this is easy to see from Corollary 8.3), and A is traceless (by
Theorem 9.1). O

It is a consequence of the next corollary that all non-degenerate (simple and non-simple)
Cuntz—Krieger algebras absorb Oy. A Cuntz—Krieger algebra Q4 is non-degenerate if its
corresponding matrix has no irreducible component which is a permutation matrix. Non-
degenerate Cuntz-Krieger algebras have real rank zero and all their non-zero projections

are properly infinite.

Corollary 9.4 Let A be a separable, nuclear C*-algebra of real rank zero. Then the fol-
lowing conditions are equivalent:

(i) AZ AR O,
(ii) A is strongly purely infinite,
(iii) A is purely infinite,
(iv) A is weakly purely infinite,
(v) A, is traceless for all free filters w on N,
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(vi) all non-zero projections in A are properly infinite.

Proof: Each C*-algebra of real rank zero admits an approximate unit consisting of pro-
jections, and so conditions (i) — (v) of Theorem 9.1 (and hence of the present corollary)
are equivalent for separable, nuclear C*-algebras of real rank zero. The implication (iii) =
(vi) follows from [16, Theorem 4.16] (saying that all non-zero positive elements in a purely
infinite C*-algebra are properly infinite), and (vi) = (iii) follows from [16, Proposition 4.7]
(since every hereditary sub-C*-algebra of a quotient of a C*-algebra of real rank zero again

is of real rank zero). O

There are still several unanswered questions regarding the structure of infinite C*-algebras.

We list some of the more intriguing of these open problems below:

Question 9.5 (Three kinds of pure infiniteness) Do we have
A strongly purely infinite <= A purely infinite <= A weakly purely infinite

for all C*-algebras A?

The two right-implications “=" in Question 9.5 are true and easy to prove (see Theo-
rem 9.1). All weakly purely infinite C*-algebras are purely infinite if and only if all weakly
purely infinite C*-algebras have the global Glimm property (see Proposition 4.15), or,
equivalently if and only if all non-zero projections in a weakly purely infinite C*-algebra
are infinite (see Proposition 4.19).

We do not know if the multiplier algebra of a purely infinite C*-algebra is purely infinite.
We do not even know if its unit is infinite. Following the proof of Proposition 4.11, this

would follow if we have an affirmative answer to the following:

Question 9.6 (Sums of properly infinite elements) Let a and b be positive elements
in a C*-algebra A such that, for some J > 0, the elements (a—¢), and (b—¢) are properly
infinite for all € € [0, 6]. Does it follow that their sum a + b is properly infinite?

A partial answer to this question can be found in Lemma 4.9. Note that our assumption
on a and b is slightly stronger than just asking these two elements to be properly infinite.
For example, any strictly positive element a in the C*-algebra K of compact operators on
an infinite dimensional Hilbert space is properly infinite (see [16, Proposition 3.7]), but
(a — €)4 is not properly infinite for ¢ > 0.

There are strongly purely infinite C*-algebras that are neither stable nor have an ap-

proximate unit consisting of projections. Take for example Cy(R) ® O, (which by the way
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clearly is Ou-absorbing). The implication (ii) = (i) of Theorem 9.1 therefore does not
apply to all separable, nuclear C*-algebras. Nonetheless, we have no (nuclear, separable)

counter example to this implication. We therefore ask:

Question 9.7 (Morita equivalence of O,-absorption) Suppose that A and B are
stably isomorphic C*-algebras and that A =2 A ® O4. Does it follow that B = B ® O4?

One can answer Question 9.7 in the affirmative if one can prove that the inductive limit
of any sequence A; — Ay — --- of Oy -absorbing, separable C*-algebras, not necessarily
with non-degenerate connecting mappings (see Proposition 8.5 (iii)) is Oy-absorbing.

We know that extensions of weakly purely infinite and of purely infinite C*-algebras
again are weakly purely infinite, respectively, purely infinite. What is the situation for
strongly purely infinite C*-algebras?

Question 9.8 (Extensions of O, -absorbing C*-algebras) Given an extension

0 I A B 0

of C*-algebras. Suppose that [ and B are strongly purely infinite. Does it follow that A is
strongly purely infinite? Can one conclude that A =2 A ® O if we know that [ = I ® O
and B2 B® 047

It is shown in Proposition 8.5 that I and B are O4-absorbing if A is Oy-absorbing.
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