ON THE ORDERED K_0-GROUP OF
UNIVERSAL FREE PRODUCT C^*-ALGEBRAS

Mikael Rørdam and Jesper Villadsen

Abstract. The ordered K_0-group of the universal, unital free product C^*-algebra $M_k(\mathbb{C}) * M_l(\mathbb{C})$ is calculated in the case where k is prime and not a divisor in l. It is shown that the positive cone of $K_0(M_k(\mathbb{C}) * M_l(\mathbb{C}))$ is as small as possible in this case. The article also contains results (full and partial) on the ordered K_0-group of more general universal, unital free product C^*-algebras.

1. Introduction

Let $A * B$ denote the universal, unital free product C^*-algebra of the unital C^*-algebras A and B. The purpose of this paper is to calculate the ordered K_0-group $(K_0(A * B), K_0(A * B)^+)$, at least for some specific C^*-algebras A and B. Along the same line, we consider the question of what ordered abelian groups (G, G^+) arise as the ordered K_0-groups of some C^*-algebra with particular focus on the case where $G = \mathbb{Z}$.

The K_0-groups — just as abelian groups — of these algebras have been calculated by E. Germain in [G] when A and B are K-nuclear. The ordered K_0-group of the reduced free product C^*-algebra $A * r B$ has been determined in [DR] (under some stronger assumptions on A and B), and it has been shown that these K_0-groups are weakly unperforated, i.e. $ng > 0$ for some $n \in \mathbb{Z}^+$ and $g \in K_0(A * B)$ implies $g > 0$. One can rephrase this result by the somewhat imprecise statement, that the positive cone $K_0(A * r B)^+$ is as large as one can imagine. The results on the ordered K_0-group of the universal, unital, free product C^*-algebra referred to above can similarly be rephrased by saying that $K_0(A * B)^+$ is as small as one can imagine.

2. Ordered abelian groups and K_0-groups

Recall that an ordered abelian group is a pair (G, G^+) where G is an abelian group, $G^+ \subseteq G$ and

$$G^+ + G^+ \subseteq G^+, \quad G^+ - G^+ = G, \quad G^+ \cap -G^+ = \{0\}.$$

An element $u \in G^+$ is called an order unit in G if for every $x \in G$ there exists a $k \in \mathbb{N}$ such that $-ku \leq x \leq ku$. If every $u \in G^+ \setminus \{0\}$ is an order unit, then

Typeset by AMS-TeX

1
(G, G^+) is said to be simple. A simple ordered group (G, G^+) is said to be weakly unperforated if $kx > 0$ for some $x \in G$ and some $k \in \mathbb{N}$ implies $x > 0$.

If A is a stably finite C*-algebra with an approximate unit consisting of projections then $(K_0(A), K_0(A)^+)$ is an ordered abelian group. If, in addition, A is simple then so is $(K_0(A), K_0(A)^+)$. George Elliott has proved in [E] that every simple, weakly unperforated, countable abelian ordered group is isomorphic to the ordered K_0-group of a unital, separable, simple, stably finite, nuclear C*-algebra. (This result fits into a program whereby the ordered K_0-group together with other invariants are conjectured — and in specific cases proved — to be a complete invariant for nuclear, simple, unital, separable, stably finite C*-algebras.) The second named author showed in [V] that the ordered K_0-group of a nuclear, simple, unital, separable, stably finite C*-algebra need not be weakly unperforated. This raises the following:

Question 2.1.

a) Which simple, countable ordered groups are isomorphic to the ordered K_0-group of some stably finite C*-algebra?

b) Which such groups are isomorphic to the ordered K_0-group of some simple, stably finite, unital C*-algebra?

c) Which such groups are isomorphic to the ordered K_0-group of some simple, stably finite, unital and nuclear C*-algebra?

We know of no examples of countable ordered groups (simple or not) that do not arise as the K_0-group of a C*-algebra. The example below may illustrate the complexity of ordered groups with perforation.

Example 2.2. Let $n \geq 2$ be an integer, and let $\Gamma_0, \ldots, \Gamma_{n-1}$ be arbitrary subsets of \mathbb{Z}. Set $G = \mathbb{Z} \oplus \mathbb{Z}$ and

$$G^+ = \{(0,0)\} \cup \{(n+j,x) : 0 \leq j < n, x \in \Gamma_j\} \cup \{(k,x) : k \geq 2n, x \in \mathbb{Z}\}.$$

Then (G, G^+) is a simple ordered group (which is not weakly unperforated).

In the following we shall primarily study the case where $G = \mathbb{Z}$. In that case G^+ is either a subset of \mathbb{Z}^+ (= \{0, 1, 2, \ldots\}) or a subset of $-\mathbb{Z}^+$. We may assume the former by replacing G^+ with $-G^+$. If $S \subseteq \mathbb{Z}^+$, then (\mathbb{Z}, S) is an ordered group if and only if S is a subsemigroup of \mathbb{Z}^+, $0 \in S$ and $S - S = \mathbb{Z}$.

Let $n_1, \ldots, n_r \in \mathbb{Z}^+$ and set

$$S = \langle n_1, \ldots, n_r \rangle = \{k_1n_1 + \cdots + k_rn_r : k_1, \ldots, k_r \in \mathbb{Z}^+\}.$$

Then S is a subsemigroup of \mathbb{Z}^+ and $0 \in S$. Moreover $S - S = \mathbb{Z}$ if and only if $\gcd(n_1, n_2, \ldots, n_r) = 1$.

2
Lemma 2.3. Let integers $k, l \geq 2$ with $gcd(k, l) = 1$ be given. Set $N = kl - k - l$. Then $N \notin \langle k, l \rangle$, but $\{N + 1, N + 2, N + 3, \ldots \} \subseteq \langle k, l \rangle$.

Moreover, if S is a subsemigroup of \mathbb{Z}^+, then $S = \langle k, l \rangle$ if (and only if) $k, l \in S$ and $N \notin S$.

Proof. Each $m \in \mathbb{Z}$ can in a unique way be written as $m = ak + bl$ where $a, b \in \mathbb{Z}$ and $0 \leq a < l$. Clearly, $m \in \langle k, l \rangle$ if and only if $b \geq 0$ in this decomposition. Since $N = (l - 1)k - l$ it follows that $N \notin \langle k, l \rangle$. Assume that $m > N$. Then $bl = m - ak > N - (l - 1)k = (-1)l$, whence $b \geq 0$ and $m \in \langle k, l \rangle$.

Assume now that S is a subsemigroup of \mathbb{Z}^+, that $k, l \in S$, and that $N \notin S$. Then $\langle k, l \rangle \subseteq S$. Suppose $\langle k, l \rangle \neq S$, and choose $m \in S \setminus \langle k, l \rangle$. Then, by the argument above, we can write $m = ak + bl$ where $a, b \in \mathbb{Z}$, $0 \leq a < l$, and $b < 0$. Hence

$$N - m = ((l - 1) - a)k + ((-b) - 1)l \in \langle k, l \rangle \subseteq S.$$

But then $N = m + (N - m) \in S$, in contradiction with our assumptions. □

Proposition 2.4. Let S be a subsemigroup of \mathbb{Z}^+ with $0 \in S$ and $S - S = \mathbb{Z}$. Then

i) there exists $N \in \mathbb{Z}^+$ such that $\{N + 1, N + 2, N + 3, \ldots \} \subseteq S$,

ii) there exists a finite set $n_1, \ldots, n_r \in \mathbb{Z}^+$ such that $S = \langle n_1, \ldots, n_r \rangle$.

Proof. i). By assumption $1 \in S - S$ which entails that $k, k + 1 \in S$ for some k. Set $N = k(k + 1) - 2k - 1$. Then by Lemma 2.3,

$$\{N + 1, N + 2, N + 3, \ldots \} \subseteq \langle k, k + 1 \rangle \subseteq S.$$

ii). Let k and N be as above, and let n_1, n_2, \ldots, n_r be the elements of the set $S \cap \{1, 2, \ldots, N\}$. Then clearly $\langle n_1, \ldots, n_r \rangle \subseteq S$, and $S \cap \{1, 2, \ldots, N\} \subseteq \langle n_1, \ldots, n_r \rangle$. Since $k, k + 1$ belong to $\{n_1, \ldots, n_r\}$ it follows from i) that

$$\{N + 1, N + 2, N + 3, \ldots \} \subseteq \langle k, k + 1 \rangle \subseteq \langle n_1, \ldots, n_r \rangle,$$

and therefore $S = \langle n_1, \ldots, n_r \rangle$ as desired. □

Proposition 2.5. Let S be a subsemigroup of \mathbb{Z}^+ with $0 \in S$ and $S - S = \mathbb{Z}$. Then S has a (unique) smallest generating set (n_1, \ldots, n_r), i.e. $S = \langle n_1, \ldots, n_r \rangle$, and if $S = \langle m_1, \ldots, m_s \rangle$ then $\{n_1, \ldots, n_r\} \subseteq \{m_1, \ldots, m_s\}$.

Moreover, if n_1, \ldots, n_r are listed increasingly with respect to the usual order on \mathbb{Z}, then

$$n_1 = \min S \setminus \{0\}, \quad n_j = \min S \setminus \langle n_1, \ldots, n_{j-1} \rangle, \quad 2 \leq j \leq r.$$

Proof. Let S be given, and let n_1, n_2, \ldots be the finite or infinite set given recursively by (2.1). (It will follow that this set is actually finite.) By Proposition 2.4 there
exists a finite set \((m_1, \ldots, m_s) \in \mathbb{Z}^+\) such that \(S = \langle m_1, \ldots, m_s \rangle\). We may assume that \(m_1 \leq m_2 \leq \cdots \leq m_s\), and for the purpose of proving the given statement, we may refine this set in such a way that \(m_i \notin \langle m_1, \ldots, m_{i-1} \rangle\) for all \(i = 2, 3, \ldots, s\). To prove the proposition, it suffices to show that \(\{n_1, n_2, \ldots, m_1, m_2, \ldots, m_s\}\).

Notice first that \(m_1 = \min S \setminus \{0\} = n_1\). Assume that \(m_i = n_1, \ldots, m_{i-1} = n_{i-1}\), where \(2 \leq i \leq s\). Let \(t\) be an element in \(S \setminus \langle m_1, \ldots, m_{i-1} \rangle\). Then
\[
t = k_1 m_1 + \cdots + k_{i-1} m_{i-1} + k_i m_i + \cdots + k_s m_s \geq k_i m_i + \cdots + k_s m_s,
\]
for some \(k_1, \ldots, k_s \in \mathbb{Z}^+\) where at least one of \(k_i, k_{i+1}, \ldots, k_s\) is nonzero. Hence \(t \geq m_i\) and so
\[
m_i = \min S \setminus \langle m_1, \ldots, m_{i-1} \rangle = \min S \setminus \langle n_1, \ldots, n_{j-1} \rangle = n_i.
\]
It follows by induction that \(\{n_1, n_2, \ldots, m_1, m_2, \ldots, m_s\}\) as desired. \(\square\)

Notice that there are countably infinitely many orderings on \(\mathbb{Z}\) by the two previous propositions. The proposition below shows (among other things) that only one of these orderings is weakly unperforated.

Recall that an ordered group \((G, G^+)\) is said to have the Riesz Interpolation Property if whenever \(x_1, x_2, y_1, y_2 \in G\) satisfy \(x_i \leq y_j\), for \(i, j = 1, 2\), there exists an element \(z \in G\) such that \(x_i \leq z \leq y_j\) for \(i, j = 1, 2\).

Proposition 2.6. Let \(S\) a subsemigroup of \(\mathbb{Z}^+\) which satisfies \(0 \in S\) and \(S - S = \mathbb{Z}\). Then the following three conditions are equivalent:

i) \(S = \mathbb{Z}^+\),

ii) \((\mathbb{Z}, S)\) is weakly unperforated,

iii) \((\mathbb{Z}, S)\) has the Riesz Interpolation Property.

Proof. The implications i) \(\Rightarrow\) ii) and i) \(\Rightarrow\) iii) are trivial.

ii) \(\Rightarrow\) i). Since \(S - S = \mathbb{Z}\) there is \(k \in S\) with \(k > 0\). Accordingly, \(k \cdot 1 \in S\), and so if \((\mathbb{Z}, S)\) is weakly unperforated, then \(1 \in S\). This entails that \(S = \mathbb{Z}^+\).

iii) \(\Rightarrow\) i). Suppose that \(S \neq \mathbb{Z}^+\). We show that \((\mathbb{Z}, S)\) does not have the Riesz decomposition property, and hence not the Riesz interpolation property. To do so we must find \(a, b, c \geq 0\) such that \(a + b \geq c\) and so that there is no pair \(a_1, b_1 \in \mathbb{Z}\) with \(0 \leq a_1 \leq a, 0 \leq b_1 \leq b\), and \(c = a_1 + b_1\). (All inequalities are with respect to the ordering on \(\mathbb{Z}\) given by \(S\).

Let \(n\) be the smallest (with respect to the usual order) number in \(S \setminus \{0\}\). Then \(n \neq 1\), and therefore \(S\) is not contained in the set \(\{kn \mid k \in \mathbb{Z}^+\}\). Let \(m\) be the smallest (with respect to the usual order) number in \(S \setminus \{kn \mid k \in \mathbb{Z}^+\}\). Let \(k\) be the smallest (with respect to the usual order) integer such that \(kn - m \in \mathbb{S}\), and observe that \(k \in \{2, 3, 4, \ldots\}\). Put \(a = n, b = (k-1)n, \) and \(c = m\). Assume that there were \(a_1, b_1 \in \mathbb{Z}\) with \(0 \leq a_1 \leq a, 0 \leq b_1 \leq b\), and \(c = a_1 + b_1\). Then either \(a_1 = 0\) or \(a_1 = a = n\). In the first case, \(m = c = b_1 \leq b = (k-1)n\), in contradiction with the choice of \(k\). In the other case, \(m - n = c - a_1 = b_1 \in \mathbb{S}\), in contradiction with the choice of \(m\). \(\square\)
3. The ordered K_0-groups of free products of matrix algebras

Let A and B be unital C^*-algebras, and let $\mathcal{A} = A \ast B$ be the universal free product of A and B (in the category of unital C^*-algebras). There are inclusion maps $\iota_A: A \rightarrow \mathcal{A}$ and $\iota_B: B \rightarrow \mathcal{A}$; and for each unital C^*-algebra D with unital *-homomorphisms $\phi_A: A \rightarrow D$ and $\phi_B: B \rightarrow D$ there is a unique *-homomorphism $\phi: \mathcal{A} \rightarrow D$ making the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\iota_A} & \mathcal{A} & \xrightarrow{\phi} & D \\
\downarrow{\phi_A} & & \downarrow{\phi} & \downarrow{\iota_B} \\
B & \xrightarrow{\phi_B} & D
\end{array}
\]

commutative. Define maps

\[
\lambda: \mathbb{Z} \rightarrow K_0(A) \oplus K_0(B), \quad \mu: K_0(A) \oplus K_0(B) \rightarrow K_0(\mathcal{A})
\]

by

\[
\lambda(k) = (k[1_A]_0, -k[1_B]_0), \quad \mu(g, h) = K_0(\iota_A)(g) + K_0(\iota_B)(h),
\]

and consider the sequence:

\[
(3.1) \quad \mathbb{Z} \xrightarrow{\lambda} K_0(A) \oplus K_0(B) \xrightarrow{\mu} K_0(\mathcal{A}) \rightarrow 0.
\]

Then, obviously, $\text{Im}(\lambda) \subseteq \text{Ker}(\mu)$. E. Germain has proved, in [G], that if A and B are K-nuclear, then we have an exact six-term sequence:

\[
\begin{array}{ccc}
K_0(\mathbb{C}) & \xrightarrow{\lambda} & K_0(A) \oplus K_0(B) & \xrightarrow{\mu} & K_0(\mathcal{A}) \\
\downarrow & & \downarrow & & \downarrow \\
K_1(\mathcal{A}) & \xleftarrow{\lambda} & K_1(A) \oplus K_1(B) & \xleftarrow{\lambda} & K_1(\mathbb{C})
\end{array}
\]

In particular (3.1) is exact. Notice that

\[
(3.2) \quad \mu(K_0(A)^+ \oplus K_0(B)^+) \subseteq K_0(\mathcal{A})^+.
\]

Question 3.1. Is

\[
K_0(\mathcal{A})^+ = \mu(K_0(A)^+ \oplus K_0(B)^+)
\]

for all (K-nuclear) unital C^*-algebras A and B?
Question 3.2. Let $p \in A$ and $q \in B$ be projections, and suppose that $p \neq 0$ and that there exists no subprojection of q which is equivalent to 1_B, i.e. $1_B \nless q$ in B. Does it follow that $\iota_A(p) \nless \iota_B(q)$ in A?

In other words, if $p \in A$ and $q \in B$ are projections such that $\iota_A(p) \nless \iota_B(q)$ in A, does it then follow that either $p = 0$ or $1 \nless q$?

Remark 3.3. Recall that a projections p in a C*-algebra D is called properly infinite if there exist sub-projections p_1, p_2 of p such that $p_1 \sim p_2 \sim p$ and $p_1 \perp p_2$.

Assume that $e_1, e_2 \in D$ are projections such that $e_1 \sim e_2$ and $e_1 \perp e_2$. It is not known if $e_1 + e_2$ is properly infinite implies that e_1 (and e_2) are properly infinite. If the answer to Question 3.2 is affirmative, then there do exist e_1 and e_2 as above with $e_1 + e_2$ properly infinite and with e_1 and e_2 not properly infinite as shown below:

Let A be the Cuntz algebra O_2, and set $B = M_2(\mathbb{C})$ with $p = 1$, the unit of O_2 and q a 1-dimensional projection in B. Set $e_1 = \iota_B(q)$ and $e_2 = \iota_B(1 - q)$. Then $e_1 \sim e_2$, $e_1 \perp e_2$, and $e_1 + e_2 = 1$ is properly infinite because the unit of O_2 is properly infinite. If e_1 is properly infinite in A, then there exist subprojections $f_1, f_2 \in A$ of e_1 with $f_1 \perp f_2$, and $f_1 \sim f_2 \sim e_1 \sim e_2$. Hence

$$\iota_A(p) = 1 = e_1 + e_2 \sim f_1 + f_2 \leq e_1 = \iota_B(q),$$

in which case we could answer Question 3.2 in the negative.

Note added in proof: The existence of non properly infinite (actually finite) projections e_1, e_2 in some C*-algebra D with $e_1 \sim e_2$, $e_1 \perp e_2$, and $e_1 + e_2$ properly infinite, has subsequently been found in [R].

For a C*-algebra D let $V(D)$ be the ordered semi-group of Murray-von Neumann equivalence classes of projections in $D \otimes K$. If $p \in D \otimes K$ is a projection, then $[p]$ and $[p]_0$ will denote its classes in $V(D)$ and $K_0(D)$ respectively. Let $\eta: V(D) \rightarrow K_0(D)$ be the canonical map. Then $\eta([p]) = [p]_0$.

Theorem 3.4. Let $k, l \geq 2$ be integers with k prime and l not divisible by k. There exists a C*-algebra D, projections $p, q \in D$, and an element $g \in K_0(D)$ such that

i) $[p]_0 = kg$, \; $[q]_0 = lg$;

ii) $l[p] = k[q]$;

iii) $mg \notin K_0(D)^+$ if $m \notin \langle k, l \rangle$ (the semi-group generated by k and l).

It follows in particular from Theorem 3.4 that

$$\{n \in \mathbb{Z} : ng \in K_0(D)^+\} = \langle k, l \rangle.$$

Proof. Set $B_k = \mathbb{D}/\sim$, where $\mathbb{D} \subseteq \mathbb{C}$ is the unit disc and $z \sim w$ if $z, w \in \mathbb{T}$ and $z^k = w^k$. Then $H^2(B_k) \cong \mathbb{Z}_k$.

Let ω be a non-trivial complex line bundle over B_k. Then the Euler class of ω is nonzero and $k\omega \cong \theta_k$, i.e. the k-fold direct sum of ω is a trivial vector bundle.
Let B_k^{k-1} denote the $(k - 1)$-fold Cartesian product of B_k with itself and let $\rho_i : B_k^{k-1} \to B_k$, $1 = i, \ldots, k - 1$ denote the coordinate projections. Once again, let $(B_k^{k-1})^l$ denote the l-fold Cartesian product of B_k^{k-1} and let $\pi_j : (B_k^{k-1})^l \to B_k^{k-1}$, $j = 1, \ldots, l$, be the corresponding coordinate projections. Put

$$
\zeta = \rho_1^*(\omega) \otimes \cdots \otimes \rho_{k-1}^*(\omega), \quad \xi = \zeta^x \cong \pi_1^*(\zeta) \otimes \cdots \otimes \pi_l^*(\zeta).
$$

Then ζ is a line-bundle over B_k^{k-1}, and ξ is a vector bundle over $(B_k^{k-1})^l$ of fiber dimension l. Successive applications of the isomorphism $k\omega \cong \theta_k \cong k\theta_1$ yields $k\zeta \cong \theta_k$, and this in turns implies that $k\xi \cong \theta_{kl}$.

We show that the Euler class $e((k - 1)\xi)$ is nonzero. Using the product formula for the Euler class we get

$$
e((k - 1)\xi) = e(\xi)^{k-1} = \prod_{j=1}^l \pi_j^*(e(\xi)^{k-1}).$$

From the definition of ζ it follows that

$$
e(\zeta) = \sum_{i=1}^{k-1} \rho_i^*(e(\omega)),$$

and since $e(\omega)^2 = 0$ we get

$$
e(\xi)^{k-1} = (k - 1)! \prod_{i=1}^{k-1} \rho_i^*(e(\omega)).$$

Let

$$
\mu : \bigotimes_{1}^{(k-1)^l} H^2(B_k; \mathbb{Z}) \to H^2((B_k^{k-1})^l; \mathbb{Z})
$$

be given by

$$
\mu(x_{11} \otimes \cdots \otimes x_{k-1,l}) = \prod_{ij} \pi_j^*(\rho_i^*(x_{ij})).
$$

By the Künneth Theorem for singular cohomology, μ is injective. Now,

$$
e((k - 1)\xi) = \mu(((k - 1)!e(\omega) \otimes e(\omega) \otimes \cdots \otimes e(\omega))$$

and since k does not divide $((k - 1)!$ it follows that $e((k - 1)\xi)$ is nonzero.

Consider the C^*-algebra

$$
D = C(B_k^{(k-1)!}) \otimes \mathcal{K}.
$$

7
Let \(p \in D \) be a projection corresponding to a trivial bundle of dimension \(k \), and let \(q \in D \) be a projection which corresponds to the bundle \(\xi \). Then \(k|q| = l|p| \) (these classes both correspond to the trivial bundle of dimension \(kl \)). Choose \(a, b \in \mathbb{Z} \) such that \(1 = ak + bl \), and put \(g = a[p]_0 + b[q]_0 \in K_0(D) \). Then \(kg = [p]_0 \) and \(lg = [q]_0 \).

We must show that \(mq \notin K_0(D)^+ \) if \(m \notin (k, l) \). By Lemma 2.3 it is enough to show that \((kl - k - l)g \notin K_0(D)^+ \). Suppose, for a moment, that \((kl - k - l)g \) is positive. Since

\[
(kl - k - l)g = (k - 1)lg - kg = (k - 1)[q]_0 - [p]_0
\]

it follows that \((k - 1)[\xi] - [\theta_k] \) is positive in \(K^0(B_k^{(k-1)l}) \), and so, in particular, \((k - 1)[\xi] - [\theta_1] \) is positive. Consequently, there exists a complex vector bundle \(\vartheta \) and \(d \in \mathbb{N} \) such that \((k - 1)\xi \oplus \theta_d \cong \vartheta \oplus \theta_{d+1} \). Hence,

\[
e((k - 1)\xi) = e(\vartheta \oplus \theta_1) = e(\vartheta)e(\theta_1) = 0
\]

in contradiction with the choice of \(\xi \). \(\square \)

We shall consider the ordered \(K_0 \)-group of the free product \(\mathcal{A} = M_k(\mathbb{C}) \ast M_l(\mathbb{C}) \). It follows from Germain's theorem (quoted earlier in this section), that \(K_0(\mathcal{A}) = \mathbb{Z} \) when \(k \) and \(l \) are relatively prime. We give below an elementary proof of this fact.

Proposition 3.5. Let \(k, l \in \mathbb{N} \) be relatively prime, set \(\mathcal{A} = M_k(\mathbb{C}) \ast M_l(\mathbb{C}) \), let

\[
\phi_1: M_k(\mathbb{C}) \to M_k(\mathbb{C}) \otimes M_l(\mathbb{C}), \quad \phi_2: M_l(\mathbb{C}) \to M_k(\mathbb{C}) \otimes M_l(\mathbb{C}),
\]

be the natural homomorphisms, and let \(\tau: \mathcal{A} \to M_k(\mathbb{C}) \otimes M_l(\mathbb{C}) \) be the homomorphism induced by \(\phi_1 \) and \(\phi_2 \).

Then \(K_0(\tau) \) and \(K_1(\tau) \) are isomorphisms, and in particular we have that \(K_0(\mathcal{A}) \cong \mathbb{Z} \) and \(K_1(\mathcal{A}) = 0 \).

Proof. Let \(\iota_1: M_k(\mathbb{C}) \to \mathcal{A} \) and \(\iota_2: M_l(\mathbb{C}) \to \mathcal{A} \) denote the canonical inclusion mappings. Let \(e_1 \in M_k(\mathbb{C}) \) and \(e_2 \in M_l(\mathbb{C}) \) be one-dimensional projections, and set \(f_j = \iota_j(e_j) \in \mathcal{A} \). Then \(\tau(f_j) = \phi_j(e_j) \), and hence \(\tau(f_1) \) has dimension \(l \) and \(\tau(f_2) \) has dimension \(k \). Since \(k \) and \(l \) are relatively prime, this shows that \(K_0(\tau) \) is onto.

The diagram,

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\mu_k} & M_k(\mathbb{C}) \otimes \mathcal{A} \\
\Downarrow{\tau} & & \Downarrow{id \otimes \iota_2} \\
M_k(\mathbb{C}) \otimes M_l(\mathbb{C}) & &
\end{array}
\]

where \(\mu_k \) is given by \(a \mapsto 1_k \otimes a \), commutes up to homotopy. Indeed, the diagram commutes exactly on the image of \(\iota_2 \), and it commutes up to homotopy on the
image of \(\iota_1 \) (since the two canonical homomorphisms \(M_k(\mathbb{C}) \to M_k(\mathbb{C}) \otimes M_k(\mathbb{C}) \) are homotopic). It follows that the diagram commutes exactly at the level of K-groups, and therefore that

\[
\text{Ker}(K_j(\tau)) \subseteq \text{Ker}(K_j(\mu_k)) = \text{Ker}(k \cdot \text{id}_{K_j(A)}).
\]

By interchanging the roles of the first and second factor in \(A \), we get

\[
\text{Ker}(K_j(\tau)) \subseteq \text{Ker}(l \cdot \text{id}_{K_j(A)}).
\]

Since \(k \) and \(l \) are relatively prime,

\[
\text{Ker}(k \cdot \text{id}_{K_j(A)}) \cap \text{Ker}(l \cdot \text{id}_{K_j(A)}) = 0,
\]

and this proves that \(K_j(\tau) \) is injective for \(j = 0, 1 \). \(\square \)

Theorem 3.6. Let \(k, l \geq 2 \) be integers with \(k \) prime and \(l \) not divisible by \(k \). Put \(A = M_k(\mathbb{C}) \ast M_l(\mathbb{C}) \). Then

i) \((K_0(A), K_0(A)^+) \cong (\mathbb{Z}, \langle k, l \rangle) \),

ii) \(K_0(A)^+ = \mu(K_0(M_k(\mathbb{C}))^+ \oplus K_0(M_l(\mathbb{C}))^+) \).

Moreover, if \(p \in M_k(\mathbb{C}) \) and \(q \in M_l(\mathbb{C}) \) are projections with \(p \neq 0 \) and \(q \neq 1 \), then \(p \not\cong q \) in \(A \).

Proof. Let \(\tau : A \to M_k(\mathbb{C}) \otimes M_l(\mathbb{C}) \) be as in Proposition 3.5. Identify \(K_0(M_k(\mathbb{C})) \), \(K_0(M_l(\mathbb{C})) \) and \(K_0(M_k(\mathbb{C}) \otimes M_l(\mathbb{C})) \) with \(\mathbb{Z} \) in the natural way. Let \(\mu \) be as in (3.1), and set \(\mu'(x, y) = lx + ky \). Then by Proposition 3.5 the diagram

\[
\begin{array}{ccc}
K_0(M_k(\mathbb{C})) \oplus K_0(M_l(\mathbb{C})) & \xrightarrow{\mu} & K_0(A) \\
\downarrow \cong & & \downarrow \cong \\
\mathbb{Z} \oplus \mathbb{Z} & \xrightarrow{\mu'} & \mathbb{Z}
\end{array}
\]

commutes, and hence

\[
(3.3) \quad (K_0(\tau) \circ \mu)(K_0(M_k(\mathbb{C}))^+ \oplus K_0(M_l(\mathbb{C}))^+) = \mu'(\mathbb{Z}^+ \oplus \mathbb{Z}^+) = \langle k, l \rangle.
\]

Put \(S = K_0(\tau)(K_0(A)^+) \subseteq \mathbb{Z}^+ \). Then, by (3.1) and (3.3), \(\langle k, l \rangle \subseteq S \). We proceed to show that \(S \subseteq \langle k, l \rangle \), and this will prove i) and ii).

Let \(D, p, q \in D \) and \(g \in K_0(D) \) be as in Theorem 3.4. Upon replacing \(D \) with a corner of \(D \otimes \mathcal{K} \), we may assume that \(D \) is unital and that \(l[p] = k[q] = |1_D| \). Let \(e_1 \in M_k(\mathbb{C}) \) and \(e_2 \in M_l(\mathbb{C}) \) be 1-dimensional projections. By the choice of \(p \) and \(q \) there exist unital *-homomorphisms \(\psi_1 : M_k(\mathbb{C}) \to A \) and \(\psi_2 : M_l(\mathbb{C}) \to A \) such
that $\psi_1(e_1) = q$ and $\psi_2(e_2) = p$. By the universal property of \mathcal{A}, ψ_1 and ψ_2 factor through a unital *-homomorphism $\psi: \mathcal{A} \to D$:

![Diagram](image)

At the level of K-theory, we have the following commuting diagram

$$
\begin{array}{c}
S & \xrightarrow{V(\tau)} & V(\mathcal{A}) & \xrightarrow{V(\psi)} & V(D) \\
\downarrow{\cong} & & \downarrow{\eta} & & \downarrow{\eta} \\
\mathbb{Z} & \xrightarrow{\cong} & \mathbb{K}_0(\mathcal{A}) & \xrightarrow{\mathbb{K}_0(\psi)} & \mathbb{K}_0(D).
\end{array}
$$

Let $h \in \mathbb{K}_0(\mathcal{A})$ be the element satisfying $\mathbb{K}_0(\tau)(h) = 1$. Viewing e_1 and e_2 as elements of \mathcal{A}, we have $\psi(e_1) = q, \psi(e_2) = p, \mathbb{K}_0(\tau)([e_1]_0) = l$, and $\mathbb{K}_0(\tau)([e_2]_0) = k$. Hence $lh = [e_1]_0$ and $kh = [e_2]_0$, and so

$$l \cdot \mathbb{K}_0(\psi)(h) = \mathbb{K}_0(\psi)([e_1]_0) = [q]_0 = lg, \quad k \cdot \mathbb{K}_0(\psi)(h) = \mathbb{K}_0(\psi)([e_2]_0) = [p]_0 = kg,$$

which implies that $\mathbb{K}_0(\psi)(h) = g$.

Assume $m \in S$, and find $x \in V(\mathcal{A})$ which is mapped to m. Then $mh = \eta(x)$, and therefore

$$mg = \mathbb{K}_0(\psi)(mh) = \mathbb{K}_0(\psi) \circ \eta(x) = \eta \circ V(\psi)(x) \in \mathbb{K}_0(D)^+.$$

By Theorem 3.4 this implies that $m \in \langle k, l \rangle$. We have now shown that $S = \langle k, l \rangle$ and the proof of i) and ii) is complete.

Let $p \in \mathbb{M}_k(\mathbb{C})$ and $q \in \mathbb{M}_l(\mathbb{C})$ be given such that $p \neq 0$ and $q \neq 1$. Then $[p]_0 = x[e_1]_0$ and $[q]_0 = y[e_2]_0$ where $x, y \in \mathbb{Z}$ satisfy $1 \leq x \leq k$ and $0 \leq y < l$. Since

$$\mathbb{K}_0(\tau)([q]_0 - [p]_0) = yk - xl \notin \langle k, l \rangle = S,$$

it follows that $[q]_0 - [p]_0 \notin \mathbb{K}_0(\mathcal{A})^+$, and so $p, q \notin \mathcal{A} \quad \Box$

Remark 3.7. It would be interesting to know if

$$\mathbb{K}_0(\mathbb{M}_k(\mathbb{C}) * \mathbb{M}_l(\mathbb{C}))^+ = \mu(\mathbb{K}_0(\mathbb{M}_k(\mathbb{C}))^+ \oplus \mathbb{K}_0(\mathbb{M}_l(\mathbb{C}))^+)$$

10
for all integers $k, l \geq 2$. It should be noted that if $\gcd(k, l) = m > 1$, then $K_0(M_k(\mathbb{C}) \ast M_l(\mathbb{C})) \cong \mathbb{Z} \oplus \mathbb{Z}/m$.

Remark 3.8. It would also be interesting to know if one to each subsemigroup S of \mathbb{Z}^+ with $0 \in S$ and $S - S = \mathbb{Z}$ can find a C*-algebra A with $(K_0(A), K_0(A)^+) \cong (\mathbb{Z}, S)$.

One obvious generalization of Theorem 3.6 is as follows: Let $k_1, k_2, \ldots, k_r \geq 2$ be integers and consider the unital C*-algebra

$$
\mathcal{A} = M_{k_1}(\mathbb{C}) \ast M_{k_2}(\mathbb{C}) \ast \cdots \ast M_{k_r}(\mathbb{C}),
$$

where the free product, \ast, is the universal free product in the category of unital C*-algebras. By Germain's theorem (see below (3.1)), $K_0(A) \cong \mathbb{Z}$ if and only if $\gcd(k_i, k_j) = 1$ whenever $i \neq j$.

Assume now that $\gcd(k_i, k_j) = 1$ for all $i \neq j$. Set

$$
(3.4) \quad n_j = \prod_{i \neq j} k_i.
$$

Set $S = \{n_1, n_2, \ldots, n_r\}$. One can show that $(K_0(A), K_0(A)^+) \cong (\mathbb{Z}, S)$ provided that S satisfies the following condition:

(S) For each $m \in \mathbb{Z}^+ \setminus S$ there exist a C*-algebra B and homomorphisms $\beta: S \to V(B)$ and $\gamma: \mathbb{Z} \to K_0(B)$ such that

$$
\begin{array}{ccc}
S & \xrightarrow{\beta} & V(B) \\
\subseteq & \downarrow & \downarrow \eta \\
\mathbb{Z} & \xrightarrow{\gamma} & K_0(B)
\end{array}
$$

commutes, and such that $\gamma(m) \notin K_0(B)^+$. Only rather special semi-groups S arise from such a set k_1, k_2, \ldots, k_r. For example, if S has minimal generating set (n_1, n_2, \ldots, n_r), where $r \geq 3$ and $\gcd(n_i, n_j) = 1$ for some $i \neq j$, then (n_1, n_2, \ldots, n_r) cannot be obtained from any set k_1, k_2, \ldots, k_r as in (3.4).

We sketch below another construction which to an arbitrary subsemigroup S of \mathbb{Z}^+ with $0 \in S$ and $S - S = \mathbb{Z}$ associates a C*-algebra $\mathcal{F}(S)$, whose ordered K_0-group is likely to be isomorphic to (\mathbb{Z}, S).

Let (n_1, n_2, \ldots, n_r) be the minimal generating set for S (cf. Proposition 2.5). For each pair of indices i, j with $1 \leq i, j \leq r$, $i \neq j$, set $m^i_j = n_i/\gcd(n_i, n_j)$ and find projections $e^i_j \in \mathcal{K}$ with $\dim(e^i_j) = m^i_j$ and such that the projections

$$e^1_j, e^2_j, \ldots, e^{j-1}_j, e^{j+1}_j, e^{j+2}_j, \ldots, e^r_j$$
are mutually orthogonal for every $j = 1, 2, \ldots, r$.

Put $\mathcal{F}_r = \mathcal{K} * \mathcal{K} * \cdots * \mathcal{K}$ (with r copies of \mathcal{K}, and where $*$ denotes universal free product with no amalgamation). Let $\phi'_1, \phi'_2, \ldots, \phi'_r : \mathcal{K} \to \mathcal{F}_r$ be the canonical inclusions. Let I be the closed two-sided ideal in \mathcal{F}_r generated by the set
\[
\{ \phi'_i(e_i^j) - \phi'_j(e_i^j) : 1 \leq i, j \leq r, i \neq j \}.
\]

Set $\mathcal{F}(S) = \mathcal{F}_r/I$, let $\pi : \mathcal{F}_r \to \mathcal{F}(S)$ be the quotient mapping, and set $\phi_j = \pi \circ \phi'_j : \mathcal{K} \to \mathcal{F}(S)$.

Then $\mathcal{F}(S) = C^*(\phi_1(\mathcal{K}), \phi_2(\mathcal{K}), \ldots, \phi_r(\mathcal{K}))$, i.e., $\mathcal{F}(S)$ is generated by r copies of \mathcal{K}. Moreover, it can be shown that
\[
(K_0(\mathcal{F}(S)), K_0(\mathcal{F}(S))^+) \cong (\mathbb{Z}, S)
\]
provided that the semi-group S satisfies the condition (S) described above, and provided that
\[
K_0(\mathcal{F}(S)) = K_0(\phi_1(K_0(\mathcal{K}))) + \cdots + K_0(\phi_r(K_0(\mathcal{K}))).
\]

4. Comparison of projections in free products

Combining Theorem 3.6 with Propositions 4.1 and 4.2 below we shall show that one can answer Questions 3.1 and 3.2 in the affirmative for a rather large class of pairs of C^*-algebras. To systematize our treatment, let \mathcal{C}_1 denote the class of all pairs of K-nuclear C^*-algebras (A, B) such that
\[
K_0(A * B)^+ = \mu(K_0(A)^+ \oplus K_0(B)^+),
\]
(cf. (3.1) and (3.2)). Let \mathcal{C}_2 denote the class of pairs of C^*-algebras (A, B) such that for every pair of projections $p \in A$ and $q \in B$, if $p \neq 0, q \neq 0, 1 \not\prec p$, and $1 \not\prec q$, then p and q are incomparable in $A * B$, i.e., $p \not\succ q$ and $q \not\succ p$ in $A * B$.

If follows from Theorem 3.6 that $(\mathcal{M}_k(\mathbb{C}), \mathcal{M}_l(\mathbb{C})) \in \mathcal{C}_j$ for $j = 1, 2$ when k is prime and $\gcd(k, l) = 1$ (or vice versa).

Recall that a (unital) C^*-algebra A is said to be finite if for every pair of projections $p, q \in A$, $p \not\lesssim q \lesssim p$ implies $p = q$. If A and B are finite C^*-algebras, then $(A, B) \in \mathcal{C}_2$ if and only if for every pair of projections $p \in A$ and $q \in B$, $p \not\lesssim q$ implies that either $p = 0$ or $q = 1$ (and vice versa).

Proposition 4.1.

i) If $(A, B) \in \mathcal{C}_1$, then $(B, A) \in \mathcal{C}_1$.

ii) If $(A_1, B), (A_2, B) \in \mathcal{C}_1$, then $(A_1 \oplus A_2, B) \in \mathcal{C}_1$.

iii) If A is the inductive limit of a sequence of unital C^*-algebras
\[
A_1 \to A_2 \to A_3 \to \cdots
\]
with unital connecting maps, and if $(A_n, B) \in \mathcal{C}_1$ for all n, then $(A, B) \in \mathcal{C}_1$.

12
Proposition 4.2.

i) If \((A, B) \in C_2\), then \((B, A) \in C_2\).

ii) If \((A_1, B), (A_2, B) \in C_2\), then \((A_1 \oplus A_2, B) \in C_2\).

iii) If \(A\) is the inductive limit of a sequence of unital \(C^*\)-algebras

\[A_1 \to A_2 \to A_3 \to \ldots \]

with unital connecting maps, and if \((A_n, B) \in C_2\) for all \(n\), then \((A, B) \in C_2\).

iv) Assume \(A\) and \(B\) are finite \(C^*\)-algebras with \((A, B) \in C_2\). Then \((A_0, B_0) \in C_2\) for all sub-\(C^*\)-algebras \(A_0\) of \(A\) and \(B_0\) of \(B\) with \(1_A \in A_0\) and \(1_B \in B_0\).

We prove Propositions 4.1 and 4.2 simultaneously, and we note that part i) of these propositions is trivial. To prove part ii) we shall need the following:

Lemma 4.3. Assume \((A, B) \in C_1\), let \(x \in K_0(A)\), \(y \in K_0(B)\), and set

\[g = K_0(\iota_A)(x) + K_0(\iota_B)(y) \in K_0(A \ast B). \]

Then \(g \in K_0(A \ast B)^+\) if and only if \(x + n[1_A]_0 \in K_0(A)^+\) and \(y - n[1_B]_0 \in K_0(B)^+\) for some integer \(n\).

Proof. The “if” part follows from (3.2) and the exactness of (3.1). Assume \(g \in K_0(A \ast B)^+\). Then, by the assumption that \((A, B) \in C_1\), there exist \(x' \in K_0(A)^+\) and \(y' \in K_0(B)^+\) such that \(g = K_0(\iota_A)(x') + K_0(\iota_B)(y')\). Hence

\[K_0(\iota_A)(x' - x) + K_0(\iota_B)(y' - y) = 0. \]

By exactness of the sequence (3.1) there is an integer \(n\) such that \(x' - x = n[1_A]_0\) and \(y' - y = -n[1_B]_0\). This completes the proof. \(\square\)

Proof of part ii) of Propositions 4.1 and 4.2. From the universal property of the free product, the maps \(A_1 \oplus A_2 \to A_j \to A_j \ast B\) factor through \(*\)-homomorphisms \(\phi_j\): \((A_1 \oplus A_2) \ast B \to A_j \ast B\).

To show that \((A_1 \oplus A_2, B) \in C_1\) it suffices to show that

\[K_0((A_1 \oplus A_2) \ast B)^+ \subseteq \mu(K_0(A_1 \oplus A_2)^+ \oplus K_0(B)^+). \]

Let \(g \in K_0((A_1 \oplus A_2) \ast B)^+\). By exactness of the sequence (3.1), there exist \(x_1 \in K_0(A_1), x_2 \in K_0(A_2),\) and \(y \in K_0(B)\), such that

\[g = K_0(\iota_{A_1 \oplus A_2})(x_1, x_2) + K_0(\iota_B)(y). \]

Now,

\[K_0(\iota_{A_j})(x_j) + K_0(\iota_B)(y) = K_0(\phi_j)(g) \in K_0(A_j \ast B)^+. \]
By Lemma 4.3 this entails that $x_j + n_j[1_{A_j}]_0 \geq 0$ and $y - n_j[1_{B}]_0 \geq 0$ for some integers n_1 and n_2. Set $n = \text{max}\{n_1, n_2\}$. Then

$$x' = (x_1 + n[1_{A_1}]_0, x_2 + n[1_{A_2}]_0) \in K_0(A_1 \oplus A_2)^+, \quad y' = y - n[1_{B}]_0 \in K_0(B)^+,$$

$$g = K_0(\iota_{A_1, A_2})_0(x') + K_0(\iota_B)(y') \in \mu(K_0(A_1 \oplus A_2)^+ \oplus K_0(B)^+)$$
as desired.

We proceed to show that $(A_1 \oplus A_2, B) \in C_2$ if $(A_1, B), (A_2, B) \in C_2$. Let $p = (p_1, p_2)$ be a projection in $A_1 \oplus A_2$, let q be a projection in B, and assume that $p \preceq q$ in $(A_1 \oplus A_2)^*B$. Then $p_j = \phi_j(p) \preceq \phi_j(q) = q$ in A_j^*B. Hence either $p_j = 0$ or $1 \preceq q$ for $j = 1, 2$. This entails that either $p = 0$ or $1 \preceq q$. \[\square\]

Part iii) of Propositions 4.1 and 4.2 are easy consequences of the following:

Lemma 4.4. Let

$$A_1 \to A_2 \to A_3 \to \cdots$$

be a sequence of unital C^*-algebras with unital connecting *-homomorphisms, and let B be a unital C^*-algebra. Then there exists an isomorphism ψ making the diagram

$$
\begin{array}{c}
\lambda_m*\text{id}_B \\
A_m* B \\
\uparrow \lambda_m \\
(\lim A_n)* B \\
\Downarrow \approx \\
\psi \\
\lim(A_n* B)
\end{array}
$$

commutative. (The maps $\lambda_m*\text{id}_B$ and λ'_m are the natural maps arising from the functoriality of the free products and the inductive limits.)

Proof. We have *-homomorphisms α_n and α and the commuting diagram

$$
\begin{array}{c}
A_1 \\
\alpha_1 \\
\downarrow \\
A_1* B \\
\alpha \\
\downarrow \\
(\lim A_n)* B \\
\Rightarrow \\
\alpha \\
\Downarrow \\
\lim(A_n* B)
\end{array}
$$

which yields a *-homomorphism ψ:

$$
\begin{array}{c}
\lim A_n \\
\alpha \\
\downarrow \\
(\lim A_n)* B \\
\Rightarrow \\
\psi \\
\leftarrow \\
\Downarrow \\
B \\
\lim(A_n* B)
\end{array}
$$

14
Moreover, \(\psi\) makes the diagram in the lemma commutative. (One can check this for example by inspecting elements in \(A_m\) and in \(B\) separately.)

By commutativity of the diagram:

\[
\begin{array}{c}
A_m \ast B \\
\downarrow \lambda_m \ast \text{id}_B \\
\left(\varprojlim A_n \right) \ast B \\
\end{array}
\]

we get a \(*\)-homomorphism \(\varphi\): \(\varprojlim (A_n \ast B) \rightarrow \left(\varprojlim A_n \right) \ast B\), which makes

\[
\begin{array}{c}
\varprojlim (A_n \ast B) \\
\downarrow \varphi \\
\left(\varprojlim A_n \right) \ast B \\
\end{array}
\]

commutative. Finally, \(\psi \circ \varphi\) is the identity on the image of \(\lambda'_m\), and \(\varphi \circ \psi\) is the identity on the image of \(\lambda_m \ast \text{id}_B\) for each \(m\). This shows that \(\psi\) and \(\varphi\) are each others inverses. Hence \(\psi\) is an isomorphism. \(\square\)

Proof of Proposition 4.2 iv. Let \(A_0 \subseteq A\) and \(B_0 \subseteq B\) with \(1_A \in A_0\) and \(1_B \in B_0\) be given, and let \(\varphi\): \(A_0 \ast B_0 \rightarrow A \ast B\) be the canonical \(*\)-homomorphism arising from these inclusions. Let \(p \in A_0\) and \(q \in B_0\) be projections, and assume that \(p \preceq q\) in \(A_0 \ast B_0\). Then \(p = \varphi(p) \preceq \varphi(q) = q\) in \(A \ast B\). Since \(B\) is assumed to be finite, and since \((A, B) \in \mathcal{C}_2\), this implies that \(p = 0\) or \(q = 1\). Reverting the roles of \(A\) and \(B\) yields the other case. \(\square\)

If we knew that \((M_k(\mathbb{C}), M_l(\mathbb{C})) \in \mathcal{C}_1\) for all positive integers \(k\) and \(l\), then we could conclude from Proposition 4.1 that \((A, B) \in \mathcal{C}_1\) for all unital AF-algebras \(A\) and \(B\). With the present restrictions on \(k\) and \(l\) in Theorem 3.6 we can still use Proposition 4.1 to reach conclusions about the ordered \(K_0\)-group at least for some non-trivial AF-algebras:

Corollary 4.5. Let \(\tilde{\mathcal{K}}\) denote the \(C^*\)-algebra of compact operators on a separable Hilbert space with a unit adjoined. Then \((\tilde{\mathcal{K}}, \tilde{\mathcal{K}}) \in \mathcal{C}_1\), ie.,

\[
K_0(\tilde{\mathcal{K}} \ast \tilde{\mathcal{K}})^+ = \mu(K_0(\tilde{\mathcal{K}})^+ \oplus K_0(\tilde{\mathcal{K}})^+).
\]

Proof. Let \(\{p_n\}\) and \(\{q_n\}\) be two increasing, disjoint, sequences of primes, set

\[
A_n = M_{p_n}(\mathbb{C}) \oplus \mathbb{C}, \quad B_n = M_{q_n}(\mathbb{C}) \oplus \mathbb{C}.
\]

Then \(\tilde{\mathcal{K}} \cong \varprojlim A_n \cong \varprojlim B_n\) (with appropriate choices of unital connecting \(*\)-homomorphisms \(A_n \rightarrow A_{n+1}\) and \(B_n \rightarrow B_{n+1}\)). By Proposition 4.1 (ii) and Theorem 3.6.
we have that \((A_n, B_m) \in \mathcal{C}_1\) for all \(n\) and \(m\). Two applications of Proposition 4.1 (iii) yield \((\mathcal{K}, B_m) \in \mathcal{C}_1\) for all \(m\), and \((\mathcal{K}, \mathcal{K}) \in \mathcal{C}_1\). \(\square\)

We have \(K_0(\mathcal{K}) = \mathbb{Z}[1]_0 + \mathbb{Z}[e]_0\), where \(e\) is a 1-dimensional projection in \(\mathcal{K}\). Hence we can identify \((K_0(\mathcal{K}), K_0(\mathcal{K})^+)\) with \((\mathbb{Z} \oplus \mathbb{Z}, G)\), where

\[
G = \{(0, y) : y \geq 0\} \cup \{(x, y) : x \geq 1\}.
\]

By Corollary 4.5 we get that \((K_0(\mathcal{K} \ast \mathcal{K}), K_0(\mathcal{K} \ast \mathcal{K})^+)\) equals \((\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}, H)\), where

\[
H = \{(0, y, z) : y \geq 0, z \geq 0\} \cup \{(1, y, z) : y \geq 0, z \geq 0\} \cup \{(x, y, z) : x \geq 2\}.
\]

We call a unital \(C^*\)-algebra \(A\) non-divisible if there for no integer \(n \geq 2\) exists \(g \in K_0(A)\) such that \([1_A]_0 = ng\).

Corollary 4.6. Every pair of unital \(C^*\)-algebras, each of which can be unitally embedded into unital, simple, non-divisible AF-algebras, belong to \(\mathcal{C}_2\) (cf. the first paragraph of this section).

Proof. Find four mutually disjoint sequences of primes \(\{p_n\}, \{p'_n\}, \{q_n\}\) and \(\{q'_n\}\) such that if

\[
A_n = M_{p_n}(\mathbb{C}) \oplus M_{p'_n}(\mathbb{C}), \quad B_n = M_{q_n}(\mathbb{C}) \oplus M_{q'_n}(\mathbb{C}),
\]

then there exist unital connecting maps \(A_n \to A_{n+1}\) and \(B_n \to B_{n+1}\) which map each non-zero element of \(A_n\), respectively, \(B_n\), to a full element of \(A_{n+1}\), respectively, \(B_{n+1}\). Set \(A = \lim A_n\) and \(B = \lim B_n\). Arguing as in the proof of Corollary 4.5 we see that \((A, B) \in \mathcal{C}_2\).

The AF-algebras \(A\) and \(B\) are unital, simple and infinite-dimensional. The ordered \(K_0\)-groups of a unital, simple and infinite-dimensional AF-algebra has the property that for each non-zero positive element \(g\) and for each set of positive integers \(d_1, d_2, \ldots, d_r\), with greatest common divisor equal to 1, there exist non-zero positive elements \(g_1, g_2, \ldots, g_r\) such that \(g = d_1 g_1 + d_2 g_2 + \cdots + d_r g_r\).

Using this property it can be shown that every unital, simple, non-divisible AF-algebra can be unitally embedded into \(A\) and \(B\) (first at the level of \(K\)-theory, and then, by the classification theorem for AF-algebras, at the level of algebras). Hence any pair \((A', B')\) of \(C^*\)-algebras that can be unitally embedded into unital, non-divisible AF-algebras can be unitally embedded into \(A\) and \(B\). Therefore \((A', B') \in \mathcal{C}_2\) by Proposition 4.2 (iv). \(\square\)

Remark 4.7. Whereas the conclusions of Corollary 4.6 may apply to a very large class of unital, separable, exact \(C^*\)-algebras, it does not give us information about infinite \(C^*\)-algebras, cf. Remark 3.3.
REFERENCES

Mathematics Institute, Universitetsparken 5, University of Copenhagen, 2100 Copenhagen Ø, Denmark.

E-mail address: rordam@math.ku.dk

Department of Mathematics, Lade, NTNU, 7034 Trondheim, Norway

E-mail address: jesperv@math.ntnu.no