ON THE ORDERED K_0 -GROUP OF UNIVERSAL FREE PRODUCT C^* -ALGEBRAS

Mikael Rørdam and Jesper Villadsen

ABSTRACT. The ordered K_0 -group of the universal, unital free product C^* -algebra $M_k(\mathbb{C}) * M_l(\mathbb{C})$ is calculated in the case where k is prime and not a divisor in l. It is shown that the positive cone of $K_0(M_k(\mathbb{C}) * M_l(\mathbb{C}))$ is as small as possible in this case. The article also contains results (full and partial) on the ordered K_0 -group of more general universal, unital free product C^* -algebras.

1. Introduction

Let A * B denote the universal, unital free product C^* -algebra of the unital C^* -algebras A and B. The purpose of this paper is to calculate the ordered K_0 -group $(K_0(A*B), K_0(A*B)^+)$, at least for some specific C^* -algebras A and B. Along the same line, we consider the question of what ordered abelian groups (G, G^+) arise as the ordered K_0 -groups of some C^* -algebra with particular focus on the case where $G = \mathbb{Z}$.

The K₀-groups — just as abelian groups — of these algebras have been calculated by E. Germain in [G] when A and B are K-nuclear. The ordered K₀-group of the reduced free product C^* -algebra $A *_r B$ has been determined in [DR] (under some stronger assumptions on A and B), and it has been shown that these K₀-groups are weakly unperforated, ie. ng > 0 for some $n \in \mathbb{Z}^+$ and $g \in K_0(A * B)$ implies g > 0. One can rephrase this result by the somewhat imprecise statement, that the positive cone $K_0(A *_r B)^+$ is as large as one can imagine. The results on the ordered K₀-group of the universal, unital, free product C^* -algebra referred to above can similarly be rephrased by saying that $K_0(A *_B)^+$ is as small as one can imagine.

2. Ordered abelian groups and K₀-groups

Recall that an ordered abelian group is a pair (G, G^+) where G is an abelian group, $G^+ \subseteq G$ and

$$G^+ + G^+ \subseteq G^+, \qquad G^+ - G^+ = G, \qquad G^+ \cap -G^+ = \{0\}.$$

An element $u \in G^+$ is called an *order unit* in G if for every $x \in G$ there exists a $k \in \mathbb{N}$ such that $-ku \le x \le ku$. If every $u \in G^+ \setminus \{0\}$ is an order unit, then

Typeset by A_MS -T_EX

 (G, G^+) is said to be *simple*. A simple ordered group (G, G^+) is said to be *weakly unperforated* if kx > 0 for some $x \in G$ and some $k \in \mathbb{N}$ implies x > 0.

If A is a stably finite C^* -algebra with an approximate unit consisting of projections then $(K_0(A), K_0(A)^+)$ is an ordered abelian group. If, in addition, A is simple then so is $(K_0(A), K_0(A)^+)$. George Elliott has proved in [E] that every simple, weakly unperforated, countable abelian ordered group is isomorphic to the ordered K_0 -group of a unital, separable, simple, stably finite, nuclear C^* -algebra. (This result fits into a program whereby the ordered K_0 -group together with other invariants are conjectured — and in specific cases proved — to be a complete invariant for nuclear, simple, unital, separable, stably finite C^* -algebras.) The second named author showed in [V] that the ordered K_0 -group of a nuclear, simple, unital, separable, stably finite C^* -algebra need not be weakly unperforated. This raises the following:

Question 2.1.

- a) Which simple, countable ordered groups are isomorphic to the ordered K_0 -group of some stably finite C*-algebra?
- b) Which such groups are isomorphic to the ordered K_0 -group of some *simple*, stably finite, unital C*-algebra?
- c) Which such groups are isomorphic to the ordered K_0 -group of some *simple*, stably finite, unital and *nuclear* C*-algebra?

We know of no examples of countable ordered groups (simple or not) that do not arise as the K_0 -group of a C*-algebra. The example below may illustrate the complexity of ordered groups with perforation.

Example 2.2. Let $n \geq 2$ be an integer, and let $\Gamma_0, \ldots, \Gamma_{n-1}$ be arbitrary subsets of \mathbb{Z} . Set $G = \mathbb{Z} \oplus \mathbb{Z}$ and

$$G^+ = \{(0,0)\} \cup \{(n+j,x) : 0 \le j < n, x \in \Gamma_i\} \cup \{(k,x) : k \ge 2n, x \in \mathbb{Z}\}.$$

Then (G, G^+) is a simple ordered group (which is *not* weakly unperforated).

In the following we shall primarily study the case where $G = \mathbb{Z}$. In that case G^+ is either a subset of \mathbb{Z}^+ (= $\{0, 1, 2, ...\}$) or a subset of $-\mathbb{Z}^+$. We may assume the former by replacing G^+ with $-G^+$. If $S \subseteq \mathbb{Z}^+$, then (\mathbb{Z}, S) is an ordered group if and only if S is a subsemigroup of \mathbb{Z}^+ , $0 \in S$ and $S - S = \mathbb{Z}$.

Let $n_1, \ldots, n_r \in \mathbb{Z}^+$ and set

$$S = \langle n_1, \dots, n_r \rangle = \{k_1 n_1 + \dots + k_r n_r : k_1, \dots, k_r \in \mathbb{Z}^+\}.$$

Then S is a subsemigroup of \mathbb{Z}^+ and $0 \in S$. Moreover $S - S = \mathbb{Z}$ if and only if $\gcd(n_1, n_2, \ldots, n_r) = 1$.

Lemma 2.3. Let integers $k, l \geq 2$ with gcd(k, l) = 1 be given. Set N = kl - k - l. Then $N \notin \langle k, l \rangle$, but $\{N + 1, N + 2, N + 3, \dots\} \subseteq \langle k, l \rangle$.

Moreover, if S is a subsemigroup of \mathbb{Z}^+ , then $S = \langle k, l \rangle$ if (and only if) $k, l \in S$ and $N \notin S$.

Proof. Each $m \in \mathbb{Z}$ can in a unique way be written as m = ak + bl where $a, b \in \mathbb{Z}$ and $0 \le a < l$. Clearly, $m \in \langle k, l \rangle$ if and only if $b \ge 0$ in this decomposition. Since N = (l-1)k - l it follows that $N \notin \langle k, l \rangle$. Assume that m > N. Then bl = m - ak > N - (l-1)k = (-1)l, whence $b \ge 0$ and $m \in \langle k, l \rangle$.

Assume now that S is a subsemigroup of \mathbb{Z}^+ , that $k, l \in S$, and that $N \notin S$. Then $\langle k, l \rangle \subseteq S$. Suppose $\langle k, l \rangle \neq S$, and choose $m \in S \setminus \langle k, l \rangle$. Then, by the argument above, we can write m = ak + bl where $a, b \in \mathbb{Z}$, $0 \le a < l$, and b < 0. Hence

$$N - m = ((l-1) - a)k + ((-b) - 1)l \in \langle k, l \rangle \subseteq S.$$

But then $N = m + (N - m) \in S$, in contradiction with our assumptions. \square

Proposition 2.4. Let S be a subsemigroup of \mathbb{Z}^+ with $0 \in S$ and $S - S = \mathbb{Z}$. Then

- i) there exits $N \in \mathbb{Z}^+$ such that $\{N+1, N+2, N+3, \dots\} \subseteq S$,
- ii) there exists a finite set $n_1, \ldots, n_r \in \mathbb{Z}^+$ such that $S = \langle n_1, \ldots, n_r \rangle$.

Proof. i). By assumption $1 \in S - S$ which entails that $k, k + 1 \in S$ for some k. Set N = k(k+1) - 2k - 1. Then by Lemma 2.3,

$$\{N+1, N+2, N+3, \dots\} \subseteq \langle k, k+1 \rangle \subseteq S.$$

ii). Let k and N be as above, and let n_1, n_2, \ldots, n_r be the elements of the set $S \cap \{1, 2, \ldots, N\}$. Then clearly $\langle n_1, \ldots, n_r \rangle \subseteq S$, and $S \cap \{1, 2, \ldots, N\} \subseteq \langle n_1, \ldots, n_r \rangle$. Since k, k+1 belong to $\{n_1, \ldots, n_r\}$ it follows from i) that

$$\{N+1, N+2, N+3, \dots\} \subseteq \langle k, k+1 \rangle \subseteq \langle n_1, \dots, n_r \rangle,$$

and therefore $S = \langle n_1, \dots, n_r \rangle$ as desired. \square

Proposition 2.5. Let S be a subsemigroup of \mathbb{Z}^+ with $0 \in S$ and $S - S = \mathbb{Z}$. Then S has a (unique) smallest generating set (n_1, \ldots, n_r) , i.e. $S = \langle n_1, \ldots, n_r \rangle$, and if $S = \langle m_1, \ldots, m_s \rangle$ then $\{n_1, \ldots, n_r\} \subseteq \{m_1, \ldots, m_s\}$.

Moreover, if n_1, \ldots, n_r are listed increasingly with respect to the usual order on \mathbb{Z} , then

$$(2.1) n_1 = \min S \setminus \{0\}, n_j = \min S \setminus \langle n_1, \dots, n_{j-1} \rangle, 2 \le j \le r.$$

Proof. Let S be given, and let n_1, n_2, \ldots be the finite or infinite set given recursively by (2.1). (It will follow that this set is actually finite.) By Proposition 2.4 there

exists a finite set $(m_1, \ldots, m_s) \in \mathbb{Z}^+$ such that $S = \langle m_1, \ldots, m_s \rangle$. We may assume that $m_1 \leq m_2 \leq \cdots \leq m_s$, and for the purpose of proving the given statement, we may refine this set in such a way that $m_i \notin \langle m_1, \ldots, m_{i-1} \rangle$ for all $i = 2, 3, \ldots, s$. To prove the proposition, it suffices to show that $\{n_1, n_2, \ldots\} = \{m_1, m_2, \ldots, m_s\}$.

Notice first that $m_1 = \min S \setminus \{0\} = n_1$. Assume that $m_1 = n_1, \ldots, m_{i-1} = n_{i-1}$, where $2 \le i \le s$. Let t be an element in $S \setminus \langle m_1, \ldots, m_{i-1} \rangle$. Then

$$t = k_1 m_1 + \dots + k_{i-1} m_{i-1} + k_i m_i + \dots + k_s m_s \ge k_i m_i + \dots + k_s m_s,$$

for some $k_1, \ldots, k_s \in \mathbb{Z}^+$ where at least one of $k_i, k_{i+1}, \ldots, k_s$ is nonzero. Hence $t \geq m_i$ and so

$$m_i = \min S \setminus \langle m_1, \dots, m_{i-1} \rangle = \min S \setminus \langle n_1, \dots, n_{i-1} \rangle = n_i.$$

It follows by induction that $\{n_1, n_2, \dots\} = \{m_1, m_2, \dots, m_s\}$ as desired. \square

Notice that there are countably infinitely many orderings on \mathbb{Z} by the two previous propositions. The proposition below shows (among other things) that only one of these orderings is weakly unperforated.

Recall that an ordered group (G, G^+) is said to have the Riesz Interpolation Property if whenever $x_1, x_2, y_1, y_2 \in G$ satisfy $x_i \leq y_j$, for i, j = 1, 2, there exists an element $z \in G$ such that $x_i \leq z \leq y_j$ for i, j = 1, 2.

Proposition 2.6. Let S a subsemigroup of \mathbb{Z}^+ which satisfies $0 \in S$ and $S - S = \mathbb{Z}$. Then the following three conditions are equivalent:

- i) $S = \mathbb{Z}^+$,
- ii) (\mathbb{Z}, S) is weakly unperforated,
- iii) (\mathbb{Z}, S) has the Riesz Interpolation Property.

Proof. The implications i) \Rightarrow ii) and i) \Rightarrow iii) are trivial.

- ii) \Rightarrow i). Since $S S = \mathbb{Z}$ there is $k \in S$ with k > 0. Accordingly, $k \cdot 1 \in S$, and so if (\mathbb{Z}, S) is weakly unperforated, then $1 \in S$. This entails that $S = \mathbb{Z}^+$.
- iii) \Rightarrow i). Suppose that $S \neq \mathbb{Z}^+$. We show that (\mathbb{Z}, S) does not have the Riesz decomposition property, and hence not the Riesz interpolation property. To do so we must find $a, b, c \geq 0$ such that $a + b \geq c$ and so that there is no pair $a_1, b_1 \in \mathbb{Z}$ with $0 \leq a_1 \leq a$, $0 \leq b_1 \leq b$, and $c = a_1 + b_1$. (All inequalites are with respect to the ordering on \mathbb{Z} given by S.)

Let n be the smallest (with respect to the usual order) number in $S \setminus \{0\}$. Then $n \neq 1$, and therefore S is not contained in the set $\{kn \mid k \in \mathbb{Z}^+\}$. Let m be the smallest (with respect to the usual order) number in $S \setminus \{kn \mid k \in \mathbb{Z}^+\}$. Let k be the smallest (with respect to the usual order) integer such that $kn - m \in S$, and note that $k \in \{2, 3, 4, \ldots\}$. Put a = n, b = (k-1)n, and c = m. Assume that there were $a_1, b_1 \in \mathbb{Z}$ with $0 \leq a_1 \leq a$, $0 \leq b_1 \leq b$, and $c = a_1 + b_1$. Then either $a_1 = 0$ or $a_1 = a = n$. In the first case, $m = c = b_1 \leq b = (k-1)n$, in contradiction with the choice of k. In the other case, $m - n = c - a_1 = b_1 \in S$, in contradiction with the choice of m. \square

3. The ordered K_0 -groups of free products of matrix algebras

Let A and B be unital C*-algebras, and let $\mathcal{A}=A*B$ be the universal free product of A and B (in the category of unital C*-algebras). There are inclusion maps $\iota_A\colon A\to \mathcal{A}$ and $\iota_B\colon B\to \mathcal{A}$; and for each unital C*-algebra D with unital *-homomorphisms $\phi_A\colon A\to D$ and $\phi_B\colon B\to D$ there is a unique *-homomorphism $\phi\colon \mathcal{A}\to D$ making the diagram

commutative. Define maps

$$\lambda \colon \mathbb{Z} \to \mathrm{K}_0(A) \oplus \mathrm{K}_0(B), \quad \mu \colon \mathrm{K}_0(A) \oplus \mathrm{K}_0(B) \to \mathrm{K}_0(A)$$

by

$$\lambda(k) = (k[1_A]_0, -k[1_B]_0), \quad \mu(g, h) = K_0(\iota_A)(g) + K_0(\iota_B)(h),$$

and consider the sequence:

$$(3.1) \mathbb{Z} \xrightarrow{\lambda} K_0(A) \oplus K_0(B) \xrightarrow{\mu} K_0(A) \longrightarrow 0.$$

Then, obviously, $\operatorname{Im}(\lambda) \subseteq \operatorname{Ker}(\mu)$. E. Germain has proved, in [G], that if A and B are K-nuclear, then we have an exact six-term sequence:

$$K_{0}(\mathbb{C}) \xrightarrow{\lambda} K_{0}(A) \oplus K_{0}(B) \xrightarrow{\mu} K_{0}(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$K_{1}(A) \longleftarrow K_{1}(A) \oplus K_{1}(B) \longleftarrow K_{1}(\mathbb{C})$$

In particular (3.1) is exact. Notice that

(3.2)
$$\mu(\mathrm{K}_0(A)^+ \oplus \mathrm{K}_0(B)^+) \subseteq \mathrm{K}_0(\mathcal{A})^+.$$

Question 3.1. Is

$$K_0(A)^+ = \mu(K_0(A)^+ \oplus K_0(B)^+)$$

for all (K-nuclear) unital C^* -algebras A and B?

Question 3.2. Let $p \in A$ and $q \in B$ be projections, and suppose that $p \neq 0$ and that there exists no subprojection of q which is equivalent to 1_B , i.e. $1 \not\precsim q$ in B. Does it follow that $\iota_A(p) \not\precsim \iota_B(q)$ in A?

In other words, if $p \in A$ and $q \in B$ are projections such that $\iota_A(p) \lesssim \iota_B(q)$ in \mathcal{A} , does it then follow that either p = 0 or $1 \lesssim q$?

Remark 3.3. Recall that a projections p in a C*-algebra D is called properly infinite if there exist sub-projections p_1, p_2 of p such that $p_1 \sim p_2 \sim p$ and $p_1 \perp p_2$.

Assume that $e_1, e_2 \in D$ are projections such that $e_1 \sim e_2$ and $e_1 \perp e_2$. It is not known if $e_1 + e_2$ is properly infinite implies that e_1 (and e_2) are properly infinite. If the answer to Question 3.2 is affirmative, then there do exist e_1 and e_2 as above with $e_1 + e_2$ properly infinite and with e_1 and e_2 not properly infinite as shown below:

Let A be the Cuntz algebra \mathcal{O}_2 , and set $B = \mathrm{M}_2(\mathbb{C})$ with p = 1, the unit of \mathcal{O}_2 and q a 1-dimensional projection in B. Set $e_1 = \iota_B(q)$ and $e_2 = \iota_B(1-q)$. Then $e_1 \sim e_2$, $e_1 \perp e_2$, and $e_1 + e_2 = 1$ is properly infinite because the unit of \mathcal{O}_2 is properly infinite. If e_1 is properly infinite in \mathcal{A} , then there exist subprojections $f_1, f_2 \in \mathcal{A}$ of e_1 with $f_1 \perp f_2$, and $f_1 \sim f_2 \sim e_1 \sim e_2$. Hence

$$\iota_A(p) = 1 = e_1 + e_2 \sim f_1 + f_2 \le e_1 = \iota_B(q),$$

in which case we could answer Question 3.2 in the negative.

Note added in proof: The existence of non properly infinite (actually finite) projections e_1, e_2 in some C*-algebra D with $e_1 \sim e_2$, $e_1 \perp e_2$, and $e_1 + e_2$ properly infinite, has subsequently been found in [R].

For a C*-algebra D let V(D) be the ordered semi-group of Murray-von Neumann equivalence classes of projections in $D \otimes \mathcal{K}$. If $p \in D \otimes \mathcal{K}$ is a projection, then [p] and $[p]_0$ will denote its classes in V(D) and $K_0(D)$ respectively. Let $\eta \colon V(D) \to K_0(D)$ be the canonical map. Then $\eta([p]) = [p]_0$.

Theorem 3.4. Let $k, l \geq 2$ be integers with k prime and l not divisible by k. There exists a C^* -algebra D, projections $p, q \in D$, and an element $g \in K_0(D)$ such that

- i) $[p]_0 = kg$, $[q]_0 = lg$,
- ii) l[p] = k[q],
- iii) $mg \notin K_0(D)^+$ if $m \notin \langle k, l \rangle$ (the semi-group generated by k and l).

It follows in particular from Theorem 3.4 that

$${n \in \mathbb{Z} : ng \in \mathrm{K}_0(D)^+} = \langle k, l \rangle.$$

Proof. Set $B_k = \mathbb{D}/\sim$, where $\mathbb{D} \subseteq \mathbb{C}$ is the unit disc and $z \sim w$ if $z, w \in \mathbb{T}$ and $z^k = w^k$. Then $H^2(B_k) \cong \mathbb{Z}_k$.

Let ω be a non-trivial complex line bundle over B_k . Then the Euler class of ω is nonzero and $k\omega \cong \theta_k$, i.e. the k-fold direct sum of ω is a trivial vector bundle.

Let B_k^{k-1} denote the (k-1)-fold Cartesian product of B_k with itself and let ρ_i : $B_k^{k-1} \to B_k$, $1 = i, \ldots, k-1$ denote the coordinate projections. Once again, let $(B_k^{k-1})^l$ denote the l-fold Cartesian product of B_k^{k-1} and let $\pi_j: (B_k^{k-1})^l \to B_k^{k-1}$, $j = 1, \ldots, l$, be the corresponding coordinate projections. Put

$$\zeta = \rho_1^*(\omega) \otimes \cdots \otimes \rho_{k-1}^*(\omega), \qquad \xi = \zeta^{\times l} \cong \pi_1^*(\zeta) \oplus \cdots \oplus \pi_l^*(\zeta).$$

Then ζ is a line-bundle over B_k^{k-1} , and ξ is a vector bundle over $(B_k^{k-1})^l$ of fiber dimension l. Successive applications of the isomorphism $k\omega \cong \theta_k \cong k\theta_1$ yields $k\zeta \cong \theta_k$, and this in turns implies that $k\xi \cong \theta_{kl}$.

We show that the Euler class $e((k-1)\xi)$ is nonzero. Using the product formula for the Euler class we get

$$e((k-1)\xi) = e(\xi)^{k-1} = \prod_{j=1}^{l} \pi_j^* (e(\zeta)^{k-1}).$$

From the definition of ζ it follows that

$$e(\zeta) = \sum_{i=1}^{k-1} \rho_i^*(e(\omega)),$$

and since $e(\omega)^2 = 0$ we get

$$e(\zeta)^{k-1} = (k-1)! \prod_{i=1}^{k-1} \rho_i^*(e(\omega)).$$

Let

$$\mu \colon \bigotimes_{1}^{(k-1)l} \mathrm{H}^{2}(B_{k}; \mathbb{Z}) \to \mathrm{H}((B_{k}^{k-1})^{l}; \mathbb{Z})$$

be given by

$$\mu(x_{11}\otimes\cdots\otimes x_{k-1,l})=\prod_{ij}\pi_j^*(\rho_i^*(x_{ij})).$$

By the Künneth Theorem for singular cohomology, μ is injective. Now,

$$e((k-1)\xi) = \mu(((k-1)!)^l e(\omega) \otimes e(\omega) \otimes \cdots \otimes e(\omega))$$

and since k does not divide $((k-1)!)^l$ it follows that $\mathrm{e}((k-1)\xi)$ is nonzero. Consider the C*-algebra

$$D = C(B_k^{(k-1)l}) \otimes \mathcal{K}.$$

Let $p \in D$ be a projection corresponding to a trivial bundle of dimension k, and let $q \in D$ be a projection which corresponds to the bundle ξ . Then k[q] = l[p] (these classes both correspond to the trivial bundle of dimension kl). Choose $a, b \in \mathbb{Z}$ such that 1 = ak + bl, and put $g = a[p]_0 + b[q]_0 \in K_0(D)$. Then $kg = [p]_0$ and $lg = [q]_0$.

We must show that $mg \notin K_0(D)^+$ if $m \notin \langle k, l \rangle$. By Lemma 2.3 it is enough to show that $(kl - k - l)g \notin K_0(D)^+$. Suppose, for a moment, that (kl - k - l)g is positive. Since

$$(kl - k - l)g = (k - 1)lg - kg = (k - 1)[q]_0 - [p]_0$$

it follows that $(k-1)[\xi] - [\theta_k]$ is positive in $K^0(B_k^{(k-1)l})$, and so, in particular, $(k-1)[\xi] - [\theta_1]$ is positive. Consequently, there exists a complex vector bundle θ and $d \in \mathbb{N}$ such that $(k-1)\xi \oplus \theta_d \cong \theta \oplus \theta_{d+1}$. Hence,

$$e((k-1)\xi) = e(\vartheta \oplus \theta_1) = e(\vartheta)e(\theta_1) = 0$$

in contradiction with the choice of ξ . \square

We shall consider the ordered K_0 -group of the free product $\mathcal{A} = M_k(\mathbb{C}) * M_l(\mathbb{C})$. It follows from Germain's theorem (quoted earlier in this section), that $K_0(\mathcal{A}) = \mathbb{Z}$ when k and l are relatively prime. We give below an elementary proof of this fact.

Proposition 3.5. Let $k, l \in \mathbb{N}$ be relatively prime, set $A = M_k(\mathbb{C}) * M_l(\mathbb{C})$, let

$$\phi_1 \colon \mathrm{M}_k(\mathbb{C}) \to \mathrm{M}_k(\mathbb{C}) \otimes \mathrm{M}_l(\mathbb{C}), \qquad \phi_2 \colon \mathrm{M}_l(\mathbb{C}) \to \mathrm{M}_k(\mathbb{C}) \otimes \mathrm{M}_l(\mathbb{C}),$$

be the natural homomorphisms, and let $\tau \colon \mathcal{A} \to \mathrm{M}_k(\mathbb{C}) \otimes \mathrm{M}_l(\mathbb{C})$ be the homomorphism induced by ϕ_1 and ϕ_2 .

Then $K_0(\tau)$ and $K_1(\tau)$ are isomorphisms, and in particular we have that $K_0(\mathcal{A}) \cong \mathbb{Z}$ and $K_1(\mathcal{A}) = 0$.

Proof. Let $\iota_1: M_k(\mathbb{C}) \to \mathcal{A}$ and $\iota_2: M_l(\mathbb{C}) \to \mathcal{A}$ denote the canonical inclusion mappings. Let $e_1 \in M_k(\mathbb{C})$ and $e_2 \in M_l(\mathbb{C})$ be one-dimensional projections, and set $f_j = \iota_j(e_j) \in \mathcal{A}$. Then $\tau(f_j) = \phi_j(e_j)$, and hence $\tau(f_1)$ has dimension l and $\tau(f_2)$ has dimension l. Since l and l are relatively prime, this shows that $K_0(\tau)$ is onto. The diagram,

where μ_k is given by $a \mapsto 1_k \otimes a$, commutes up to homotopy. Indeed, the diagram commutes exactly on the image of ι_2 , and it commutes up to homotopy on the

image of ι_1 (since the two canonical homomorphisms $M_k(\mathbb{C}) \to M_k(\mathbb{C}) \otimes M_k(\mathbb{C})$ are homotopic). It follows that the diagram commutes exactly at the level of K-groups, and therefore that

$$\operatorname{Ker}(K_j(\tau)) \subseteq \operatorname{Ker}(K_j(\mu_k)) = \operatorname{Ker}(k \cdot \operatorname{id}_{K_j(\mathcal{A})}).$$

By interchanging the roles of the first and second factor in A, we get

$$\operatorname{Ker}(K_j(\tau)) \subseteq \operatorname{Ker}(l \cdot \operatorname{id}_{K_j(A)}).$$

Since k and l are relatively prime,

$$\operatorname{Ker}(k \cdot \operatorname{id}_{K_i(\mathcal{A})}) \cap \operatorname{Ker}(l \cdot \operatorname{id}_{K_i(\mathcal{A})}) = 0,$$

and this proves that $K_j(\tau)$ is injective for j=0,1. \square

Theorem 3.6. Let $k, l \geq 2$ be integers with k prime and l not divisible by k. Put $\mathcal{A} = \mathrm{M}_k(\mathbb{C}) * \mathrm{M}_l(\mathbb{C})$. Then

- i) $(K_0(A), K_0(A)^+) \cong (\mathbb{Z}, \langle k, l \rangle),$
- ii) $K_0(\mathcal{A})^+ = \mu(K_0(M_k(\mathbb{C}))^+ \oplus K_0(M_l(\mathbb{C}))^+).$

Moreover, if $p \in M_k(\mathbb{C})$ and $q \in M_l(\mathbb{C})$ are projections with $p \neq 0$ and $q \neq 1$, then $p \not\preceq q$ in A.

Proof. Let $\tau: \mathcal{A} \to \mathrm{M}_k(\mathbb{C}) \otimes \mathrm{M}_l(\mathbb{C})$ be as in Proposition 3.5. Identify $\mathrm{K}_0(\mathrm{M}_k(\mathbb{C}))$, $\mathrm{K}_0(\mathrm{M}_l(\mathbb{C}))$ and $\mathrm{K}_0(\mathrm{M}_k(\mathbb{C}) \otimes \mathrm{M}_l(\mathbb{C}))$ with \mathbb{Z} in the natural way. Let μ be as in (3.1), and set $\mu'(x,y) = lx + ky$. Then by Proposition 3.5 the diagram

$$K_{0}(M_{k}(\mathbb{C})) \oplus K_{0}(M_{l}(\mathbb{C})) \xrightarrow{\mu} K_{0}(\mathcal{A})$$

$$= \bigvee_{\mathbb{Z}} \bigoplus_{\mathbb{Z}} K_{0}(\tau)$$

$$\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\mu'} \mathbb{Z}$$

commutes, and hence

$$(3.3) \qquad (K_0(\tau) \circ \mu) \left(K_0(M_k(\mathbb{C}))^+ \oplus K_0(M_l(\mathbb{C}))^+ \right) = \mu'(\mathbb{Z}^+ \oplus \mathbb{Z}^+) = \langle k, l \rangle.$$

Put $S = K_0(\tau)(K_0(\mathcal{A})^+) \subseteq \mathbb{Z}^+$. Then, by (3.1) and (3.3), $\langle k, l \rangle \subseteq S$. We proceed to show that $S \subseteq \langle k, l \rangle$, and this will prove i) and ii).

Let $D, p, q \in D$ and $g \in \mathrm{K}_0(D)$ be as in Theorem 3.4. Upon replacing D with a corner of $D \otimes \mathcal{K}$, we may assume that D is unital and that $l[p] = k[q] = [1_D]$. Let $e_1 \in \mathrm{M}_k(\mathbb{C})$ and $e_2 \in \mathrm{M}_l(\mathbb{C})$ be 1-dimensional projections. By the choice of p and q there exist unital *-homomorphisms $\psi_1 \colon \mathrm{M}_k(\mathbb{C}) \to \mathcal{A}$ and $\psi_2 \colon \mathrm{M}_l(\mathbb{C}) \to \mathcal{A}$ such

that $\psi_1(e_1) = q$ and $\psi_2(e_2) = p$. By the universal property of \mathcal{A} , ψ_1 and ψ_2 factor through a unital *-homomorphism $\psi \colon \mathcal{A} \to D$:

At the level of K-theory, we have the following commuting diagram

$$S \xrightarrow{V(\tau)} V(\mathcal{A}) \xrightarrow{V(\psi)} V(D)$$

$$\subseteq \downarrow \qquad \downarrow$$

$$\mathbb{Z} \xrightarrow{\cong} \mathrm{K}_{0}(\tau) \mathrm{K}_{0}(\mathcal{A}) \xrightarrow{\mathrm{K}_{0}(\psi)} \mathrm{K}_{0}(D).$$

Let $h \in K_0(A)$ be the element satisfying $K_0(\tau)(h) = 1$. Viewing e_1 and e_2 as elements of \mathcal{A} , we have $\psi(e_1) = q$, $\psi(e_2) = p$, $K_0(\tau)([e_1]_0) = l$, and $K_0(\tau)([e_2]_0) = k$. Hence $lh = [e_1]_0$ and $kh = [e_2]_0$, and so

$$l \cdot \mathrm{K}_0(\psi)(h) = \mathrm{K}_0(\psi)([e_1]_0) = [q]_0 = lg, \quad k \cdot \mathrm{K}_0(\psi)(h) = \mathrm{K}_0(\psi)([e_2]_0) = [p]_0 = kg,$$

which implies that $K_0(\psi)(h) = g$.

Assume $m \in S$, and find $x \in V(A)$ which is mapped to m. Then $mh = \eta(x)$, and therefore

$$mg = K_0(\psi)(mh) = K_0(\psi) \circ \eta(x) = \eta \circ V(\psi)(x) \in K_0(D)^+.$$

By Theorem 3.4 this implies that $m \in \langle k, l \rangle$. We have now shown that $S = \langle k, l \rangle$ and the proof of i) and ii) is complete.

Let $p \in M_k(\mathbb{C})$ and $q \in M_l(\mathbb{C})$ be given such that $p \neq 0$ and $q \neq 1$. Then $[p]_0 = x[e_1]_0$ and $[q]_0 = y[e_2]_0$ where $x, y \in \mathbb{Z}$ satisfy $1 \leq x \leq k$ and $0 \leq y < l$. Since

$$K_0(\tau)([q]_0 - [p]_0) = yk - xl \notin \langle k, l \rangle = S,$$

it follows that $[q]_0 - [p]_0 \notin K_0(\mathcal{A})^+$, and so $p \not \preceq q$ in \mathcal{A}

Remark 3.7. It would be interesting to know if

$$K_0(M_k(\mathbb{C}) * M_l(\mathbb{C}))^+ = \mu(K_0(M_k(\mathbb{C}))^+ \oplus K_0(M_l(\mathbb{C}))^+)$$

for all integers $k, l \geq 2$. It should be noted that if gcd(k, l) = m > 1, then $K_0(M_k(\mathbb{C}) * M_l(\mathbb{C})) \cong \mathbb{Z} \oplus \mathbb{Z}/m$.

Remark 3.8. It would also be interesting to know if one to each subsemigroup S of \mathbb{Z}^+ with $0 \in S$ and $S - S = \mathbb{Z}$ can find a C^* -algebra A with $(K_0(A), K_0(A)^+) \cong (\mathbb{Z}, S)$.

One obvious generalization of Theorem 3.6 is as follows: Let $k_1, k_2, \ldots, k_r \geq 2$ be integers and consider the unital C*-algebra

$$\mathcal{A} = \mathrm{M}_{k_1}(\mathbb{C}) * \mathrm{M}_{k_2}(\mathbb{C}) * \cdots * \mathrm{M}_{k_r}(\mathbb{C}),$$

where the free product, *, is the universal free product in the category of unital C^* -algebras. By Germain s theorem (see below (3.1)), $K_0(A) \cong \mathbb{Z}$ if and only if $gcd(k_i, k_j) = 1$ whenever $i \neq j$.

Assume now that $gcd(k_i, k_j) = 1$ for all $i \neq j$. Set

$$(3.4) n_j = \prod_{i \neq j} k_i.$$

Set $S = \langle n_1, n_2, \dots, n_r \rangle$. One can show that $(K_0(\mathcal{A}), K_0(\mathcal{A})^+) \cong (\mathbb{Z}, S)$ provided that S satisfies the following condition:

(S) For each $m \in \mathbb{Z}^+ \setminus S$ there exist a C*-algebra B and homomorphisms $\beta \colon S \to V(B)$ and $\gamma \colon \mathbb{Z} \to K_0(B)$ such that

$$S \xrightarrow{\beta} V(B)$$

$$\subseteq \bigvee_{\chi} \eta$$

$$\mathbb{Z} \xrightarrow{\gamma} K_0(B)$$

commutes, and such that $\gamma(m) \notin K_0(B)^+$.

Only rather special semi-groups S arise from such a set k_1, k_2, \ldots, k_r . For example, if S has minimal generating set (n_1, n_2, \ldots, n_r) , where $r \geq 3$ and $\gcd(n_i, n_j) = 1$ for some $i \neq j$, then (n_1, n_2, \ldots, n_r) cannot be obtained from any set k_1, k_2, \ldots, k_r as in (3.4).

We sketch below another construction which to an arbitrary subsemigroup S of \mathbb{Z}^+ with $0 \in S$ and $S - S = \mathbb{Z}$ associates a C^* -algebra $\mathcal{F}(S)$, whose ordered K_0 -group is likely to be isomorphic to (\mathbb{Z}, S) .

Let $(n_1, n_2, ..., n_r)$ be the minimal generating set for S (cf. Proposition 2.5). For each pair of indices i, j with $1 \le i, j \le r, i \ne j$, set $m_j^i = n_i / \gcd(n_i, n_j)$ and find projections $e_j^i \in \mathcal{K}$ with $\dim(e_j^i) = m_j^i$ and such that the projections

$$e_i^1, e_i^2, \dots, e_i^{j-1}, e_i^{j+1}, e_i^{j+2}, \dots, e_i^r$$

are mutually orthogonal for every j = 1, 2, ..., r.

Put $\mathcal{F}_r = \mathcal{K} * \mathcal{K} * \cdots * \mathcal{K}$ (with r copies of \mathcal{K} , and where * denotes universal free product with no amalgamation). Let $\phi'_1, \phi'_2, \ldots, \phi'_r \colon \mathcal{K} \to \mathcal{F}_r$ be the canonical inclusions. Let I be the closed two-sided ideal in \mathcal{F}_r generated by the set

$$\{\phi_i'(e_i^j) - \phi_j'(e_j^i) : 1 \le i, j \le r, i \ne j\}.$$

Set $\mathcal{F}(S) = \mathcal{F}_r/I$, let $\pi \colon \mathcal{F}_r \to \mathcal{F}(S)$ be the quotient mapping, and set $\phi_j = \pi \circ \phi_j' \colon \mathcal{K} \to \mathcal{F}(S)$.

Then $\mathcal{F}(S) = C^*(\phi_1(\mathcal{K}), \phi_2(\mathcal{K}), \dots, \phi_r(\mathcal{K}))$, ie., $\mathcal{F}(S)$ is generated by r copies of \mathcal{K} . Moreover, it can be shown that

$$(K_0(\mathcal{F}(S)), K_0(\mathcal{F}(S))^+) \cong (\mathbb{Z}, S)$$

provided that the semi-group S satisfies the condition (S) described above, and provided that

$$K_0(\mathcal{F}(S)) = K_0(\phi_1)(K_0(\mathcal{K})) + \cdots + K_0(\phi_r)(K_0(\mathcal{K})).$$

4. Comparison of projections in free products

Combining Theorem 3.6 with Propositions 4.1 and 4.2 below we shall show that one can answer Questions 3.1 and 3.2 in the affirmative for a rather large class of pairs of C^* -algebras. To systematize our treatment, let \mathcal{C}_1 denote the class of all pairs of K-nuclear C^* -algebras (A, B) such that

$$K_0(A * B)^+ = \mu(K_0(A)^+ \oplus K_0(B)^+),$$

(cf. (3.1) and (3.2)). Let C_2 denote the class of pairs of C^* -algebras (A, B) such that for every pair of projections $p \in A$ and $q \in B$, if $p \neq 0$, $q \neq 0$, $1 \not \lesssim p$, and $1 \not \lesssim q$, then p and q are incomparable in A * B, i.e., $p \not \lesssim q$ and $q \not \lesssim p$ in A * B.

If follows from Theorem 3.6 that $(M_k(\mathbb{C}), M_l(\mathbb{C})) \in \mathcal{C}_j$ for j = 1, 2 when k is prime and gcd(k, l) = 1 (or vice versa).

Recall that a (unital) C^* -algebra A is said to be *finite* if for every pair of projections $p, q \in A$, $p \preceq q \leq p$ implies p = q. If A and B are finite C^* -algebras, then $(A, B) \in \mathcal{C}_2$ if and only if for every pair of projections $p \in A$ and $q \in B$, $p \preceq q$ implies that either p = 0 or q = 1 (and vice versa).

Proposition 4.1.

- i) If $(A, B) \in \mathcal{C}_1$, then $(B, A) \in \mathcal{C}_1$.
- ii) If $(A_1, B), (A_2, B) \in \mathcal{C}_1$, then $(A_1 \oplus A_2, B) \in \mathcal{C}_1$.
- iii) If A is the inductive limit of a sequence of unital C^* -algebras

$$A_1 \to A_2 \to A_3 \to \cdots$$

with unital connecting maps, and if $(A_n, B) \in \mathcal{C}_1$ for all n, then $(A, B) \in \mathcal{C}_1$.

Proposition 4.2.

- i) If $(A, B) \in \mathcal{C}_2$, then $(B, A) \in \mathcal{C}_2$.
- ii) If $(A_1, B), (A_2, B) \in C_2$, then $(A_1 \oplus A_2, B) \in C_2$.
- iii) If A is the inductive limit of a sequence of unital C^* -algebras

$$A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \cdots$$

with unital connecting maps, and if $(A_n, B) \in \mathcal{C}_2$ for all n, then $(A, B) \in \mathcal{C}_2$. iv) Assume A and B are finite C^* -algebras with $(A, B) \in \mathcal{C}_2$. Then $(A_0, B_0) \in \mathcal{C}_2$ for all sub- C^* -algebras A_0 of A and B_0 of B with $A_0 \in A_0$ and $A_0 \in B_0$.

We prove Propositions 4.1 and 4.2 simultaneously, and we note that part i) of these propositions is trivial. To prove part ii) we shall need the following:

Lemma 4.3. Assume $(A, B) \in \mathcal{C}_1$, let $x \in K_0(A)$, $y \in K_0(B)$, and set

$$g = K_0(\iota_A)(x) + K_0(\iota_B)(y) \in K_0(A * B).$$

Then $g \in K_0(A * B)^+$ if and only if $x + n[1_A]_0 \in K_0(A)^+$ and $y - n[1_B]_0 \in K_0(B)^+$ for some integer n.

Proof. The "if" part follows from (3.2) and the exactness of (3.1). Assume $g \in K_0(A*B)^+$. Then, by the assumption that $(A,B) \in \mathcal{C}_1$, there exist $x' \in K_0(A)^+$ and $y' \in K_0(B)^+$ such that $g = K_0(\iota_A)(x') + K_0(\iota_B)(y')$. Hence

$$K_0(\iota_A)(x'-x) + K_0(\iota_B)(y'-y) = 0.$$

By exactness of the sequence (3.1) there is an integer n such that $x' - x = n[1_A]_0$ and $y' - y = -n[1_B]_0$. This completes the proof. \square

Proof of part ii) of Propositions 4.1 and 4.2. From the universal property of the free product, the maps $A_1 \oplus A_2 \to A_j \to A_j * B$ factor through *-homomorphisms $\phi_j : (A_1 \oplus A_2) * B \to A_j * B$.

To show that $(A_1 \oplus A_2, B) \in \mathcal{C}_1$ it suffices to show that

$$K_0((A_1 \oplus A_2) * B)^+ \subseteq \mu(K_0(A_1 \oplus A_2)^+ \oplus K_0(B)^+).$$

Let $g \in K_0((A_1 \oplus A_2) * B)^+$. By exactness of the sequence (3.1), there exist $x_1 \in K_0(A_1), x_2 \in K_0(A_2)$, and $y \in K_0(B)$, such that

$$g = K_0(\iota_{A_1 \oplus A_2})(x_1, x_2) + K_0(\iota_B)(y).$$

Now,

$$K_0(\iota_{A_i})(x_i) + K_0(\iota_B)(y) = K_0(\phi_i)(g) \in K_0(A_i * B)^+.$$

By Lemma 4.3 this entails that $x_j + n_j[1_{A_j}]_0 \ge 0$ and $y - n_j[1_B]_0 \ge 0$ for some integers n_1 and n_2 . Set $n = \max\{n_1, n_2\}$. Then

$$x' = (x_1 + n[1_{A_1}]_0, x_2 + n[1_{A_2}]_0) \in K_0(A_1 \oplus A_2)^+, \quad y' = y - n[1_B]_0 \in K_0(B)^+,$$
$$g = K_0(\iota_{A_1 \oplus A_2})(x') + K_0(\iota_B)(y') \in \mu(K_0(A_1 \oplus A_2)^+ \oplus K_0(B)^+)$$

as desired.

We proceed to show that $(A_1 \oplus A_2, B) \in \mathcal{C}_2$ if $(A_1, B), (A_2, B) \in \mathcal{C}_2$. Let $p = (p_1, p_2)$ be a projection in $A_1 \oplus A_2$, let q be a projection in B, and assume that $p \lesssim q$ in $(A_1 \oplus A_2) * B$. Then $p_j = \phi_j(p) \lesssim \phi_j(q) = q$ in $A_j * B$. Hence either $p_j = 0$ or $1 \lesssim q$ for j = 1, 2. This entails that either p = 0 or $1 \lesssim q$. \square

Part iii) of Propositions 4.1 and 4.2 are easy consequences of the following:

Lemma 4.4. Let

$$A_1 \to A_2 \to A_3 \to \cdots$$

be a sequence of unital C^* -algebras with unital connecting *-homomorphisms, and let B be a unital C^* -algebra. Then there exists an isomorphism ψ making the diagram

commutative. (The maps $\lambda_m * id_B$ and λ'_m are the natural maps arising from the functoriality of the free products and the inductive limits.)

Proof. We have *-homomorphisms α_n and α and the commuting diagram

$$A_{1} \longrightarrow A_{2} \longrightarrow \cdots \longrightarrow \varinjlim A_{n}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}} \qquad \downarrow^{\alpha}$$

$$A_{1} * B \longrightarrow A_{2} * B \longrightarrow \cdots \longrightarrow \varinjlim (A_{n} * B)$$

which yields a *-homomorphism ψ :

Moreover, ψ makes the diagram in the lemma commutative. (One can check this for example by inspecting elements in A_m and in B separately.)

By commutativity of the diagram:

we get a *-homomorphism $\varphi \colon \underline{\lim}(A_n * B) \to (\underline{\lim} A_n) * B$, which makes

commutative. Finally, $\psi \circ \varphi$ is the identity on the image of λ'_m , and $\varphi \circ \psi$ is the identity on the image of $\lambda_m * \mathrm{id}_B$ for each m. This shows that ψ and φ are each others inverses. Hence ψ is an isomorphism. \square

Proof of Proposition 4.2 iv). Let $A_0 \subseteq A$ and $B_0 \subseteq B$ with $1_A \in A_0$ and $1_B \in B_0$ be given, and let $\varphi \colon A_0 * B_0 \to A * B$ be the canonical *-homomorphism arising from these inclusions. Let $p \in A_0$ and $q \in B_0$ be projections, and assume that $p \lesssim q$ in $A_0 * B_0$. Then $p = \varphi(p) \lesssim \varphi(q) = q$ in A * B. Since B is assumed to be finite, and since $(A, B) \in \mathcal{C}_2$, this implies that p = 0 or q = 1. Reverting the roles of A and B yields the other case. \square

If we knew that $(M_k(\mathbb{C}), M_l(\mathbb{C})) \in \mathcal{C}_1$ for all positive integers k and l, then we could conclude from Proposition 4.1 that $(A, B) \in \mathcal{C}_1$ for all unital AF-algebras A and B. With the present restrictions on k and l in Theorem 3.6 we can still use Proposition 4.1 to reach conclusions about the ordered K_0 -group at least for some non-trivial AF-algebras:

Corollary 4.5. Let $\tilde{\mathcal{K}}$ denote the C^* -algebra of compact operators on a separable Hilbert space with a unit adjoined. Then $(\tilde{\mathcal{K}}, \tilde{\mathcal{K}}) \in \mathcal{C}_1$, ie.,

$$K_0(\tilde{\mathcal{K}}*\tilde{\mathcal{K}})^+ = \mu(K_0(\tilde{\mathcal{K}})^+ \oplus K_0(\tilde{\mathcal{K}})^+).$$

Proof. Let $\{p_n\}$ and $\{q_n\}$ be two increasing, disjoint, sequences of primes, set

$$A_n = \mathrm{M}_{p_n}(\mathbb{C}) \oplus \mathbb{C}, \qquad B_n = \mathrm{M}_{q_n}(\mathbb{C}) \oplus \mathbb{C}.$$

Then $\tilde{\mathcal{K}} \cong \varinjlim A_n \cong \varinjlim B_n$ (with appropriate choices of unital connecting *-homomorphisms $A_n \to A_{n+1}$ and $B_n \to B_{n+1}$). By Proposition 4.1 (ii) and Theorem 3.6

we have that $(A_n, B_m) \in \mathcal{C}_1$ for all n and m. Two applications of Proposition 4.1 (iii) yield $(\tilde{\mathcal{K}}, B_m) \in \mathcal{C}_1$ for all m, and $(\tilde{\mathcal{K}}, \tilde{\mathcal{K}}) \in \mathcal{C}_1$. \square

We have $K_0(\tilde{\mathcal{K}}) = \mathbb{Z}[1]_0 + \mathbb{Z}[e]_0$, where e is a 1-dimensional projection in \mathcal{K} . Hence we can identify $(K_0(\tilde{\mathcal{K}}), K_0(\tilde{\mathcal{K}})^+)$ with $(\mathbb{Z} \oplus \mathbb{Z}, G)$, where

$$G = \{(0, y) : y \ge 0\} \cup \{(x, y) : x \ge 1\}.$$

By Corollary 4.5 we get that $(K_0(\tilde{\mathcal{K}}*\tilde{\mathcal{K}}), K_0(\tilde{\mathcal{K}}*\tilde{\mathcal{K}})^+)$ equals $(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}, H)$, where

$$H = \{(0, y, z) : y \ge 0, z \ge 0\} \cup \{(1, y, z) : y \ge 0 \text{ or } z \ge 0\} \cup \{(x, y, z) : x \ge 2\}.$$

We call a unital C^* -algebra A non-divisible if there for no integer $n \geq 2$ exists $g \in K_0(A)$ such that $[1_A]_0 = ng$.

Corollary 4.6. Every pair of unital C^* -algebras, each of which can be unitally embedded into unital, simple, non-divisible AF-algebras, belong to C_2 (cf. the first paragraph of this section).

Proof. Find four mutually disjoint sequences of primes $\{p_n\}$, $\{p'_n\}$, $\{q_n\}$ and $\{q'_n\}$ such that if

$$A_n = \mathrm{M}_{p_n}(\mathbb{C}) \oplus \mathrm{M}_{p'_n}(\mathbb{C}), \qquad B_n = \mathrm{M}_{q_n}(\mathbb{C}) \oplus \mathrm{M}_{q'_n}(\mathbb{C}),$$

then there exist unital connecting maps $A_n \to A_{n+1}$ and $B_n \to B_{n+1}$ which map each non-zero element of A_n , respectively, B_n , to a full element of A_{n+1} , respectively, B_{n+1} . Set $A = \varinjlim A_n$ and $B = \varinjlim B_n$. Arguing as in the proof of Corollary 4.5 we see that $(A, B) \in \mathcal{C}_2$.

The AF-algebras A and B are unital, simple and infinite-dimensional. The ordered K_0 -groups of a unital, simple and infinite-dimensional AF-algebra has the property that for each non-zero positive element g and for each set of positive integers d_1, d_2, \ldots, d_r , with greatest common divisor equal to 1, there exist non-zero positive elements g_1, g_2, \ldots, g_r such that $g = d_1g_1 + d_2g_2 + \cdots + d_rg_r$.

Using this property it can be shown that every unital, simple, non-divisible AF-algebra can be unitally embedded into A and B (first at the level of K-theory, and then, by the classification theorem for AF-algebras, at the level of algebras). Hence any pair (A', B') of C^* -algebras that can be unitally embedded into unital, non-divisible AF-algebras can be unitally embedded into A and B. Therefore $(A', B') \in \mathcal{C}_2$ by Proposition 4.2 (iv). \square

Remark 4.7. Whereas the conclusions of Corollary 4.6 may apply to a very large class of unital, separable, exact C^* -algebras, it does not give us information about infinite C^* -algebras, cf. Remark 3.3.

REFERENCES

- [DR] K. Dykema and M. Rørdam, Projections in free product C*-algebras, Geom. Funct. Anal. 8 (1998), 1–16.
- [E] G. A. Elliott, An invariant for simple C*-algebras, Canadian Math. Soc. 3 (1996), 61-90.
- [G] E. Germain, KK-theory of the full free product of unital C*-algebras, J. Reine Angew. Math. 485 (1997), 1–10.
- [R] M. Rørdam, On sums of finite projections, preprint.
- [V] J. Villadsen, Simple C*-algebras with perforation, J. Funct. Anal. 154 (1998), 110-116.

Mathematics Institute, Universitetsparken 5, University of Copenhagen, 2100 Copenhagen \emptyset , Denmark.

E- $mail\ address$: rordam@math.ku.dk

DEPARTMENT OF MATHEMATICS, LADE, NTNU, 7034 TRONDHEIM, NORWAY E-mail address: jesperv@math.ntnu.no