ON THE ORDERED K,-GROUP OF
UNIVERSAL FREE PRODUCT C*-ALGEBRAS

MIKAEL RORDAM AND JESPER VILLADSEN

ABSTRACT. The ordered Kp-group of the universal, unital free product C*-algebra
Mg (C) * M;(C) is calculated in the case where k is prime and not a divisor in [. It
is shown that the positive cone of Ko(Mg(C) * M;(C)) is as small as possible in this
case. The article also contains results (full and partial) on the ordered Kg-group of
more general universal, unital free product C*-algebras.

1. Introduction

Let A x B denote the universal, unital free product C*-algebra of the unital C*-
algebras A and B. The purpose of this paper is to calculate the ordered Ky-group
(Ko(AxB),Ko(AxB)T), at least for some specific C*-algebras A and B. Along the
same line, we consider the question of what ordered abelian groups (G, G) arise as
the ordered Ky-groups of some C*-algebra with particular focus on the case where
G =7.

The Kg-groups — just as abelian groups — of these algebras have been calculated
by E. Germain in [G] when A and B are K-nuclear. The ordered Ky-group of the
reduced free product C*-algebra A %, B has been determined in [DR] (under some
stronger assumptions on A and B), and it has been shown that these Ky-groups
are weakly unperforated, ie. ng > 0 for some n € Z* and g € Ko(A * B) implies
g > 0. One can rephrase this result by the somewhat imprecise statement, that
the positive cone Ko(A #, B)T is as large as one can imagine. The results on the
ordered Ky-group of the universal, unital, free product C*-algebra referred to above
can similarly be rephrased by saying that Ko(A*B)* is as small as one can imagine.

2. Ordered abelian groups and Ky-groups

Recall that an ordered abelian group is a pair (G,GT) where G is an abelian
group, Gt C G and

Gt+GtcaGt, GT-Gt=G, Gtn-G*={o0.

An element u € G is called an order unit in G if for every x € G there exists
a k € N such that —ku < x < ku. If every u € GT \ {0} is an order unit, then
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(G,G7) is said to be simple. A simple ordered group (G,G™") is said to be weakly
unperforated if kx > 0 for some x € G and some k£ € N implies = > 0.

If A is a stably finite C*-algebra with an approximate unit consisting of pro-
jections then (Ko(A),Ko(A)T) is an ordered abelian group. If, in addition, A is
simple then so is (Ko(A),Ko(A)1). George Elliott has proved in [E] that every
simple, weakly unperforated, countable abelian ordered group is isomorphic to the
ordered Kg-group of a unital, separable, simple, stably finite, nuclear C*-algebra.
(This result fits into a program whereby the ordered Ky-group together with other
invariants are conjectured — and in specific cases proved — to be a complete in-
variant for nuclear, simple, unital, separable, stably finite C*-algebras.) The second
named author showed in [V] that the ordered Ky-group of a nuclear, simple, unital,
separable, stably finite C*-algebra need not be weakly unperforated. This raises
the following:

Question 2.1.

a) Which simple, countable ordered groups are isomorphic to the ordered K-
group of some stably finite C*-algebra?

b) Which such groups are isomorphic to the ordered Ky-group of some simple,
stably finite, unital C*-algebra?

¢) Which such groups are isomorphic to the ordered Ky-group of some simple,
stably finite, unital and nuclear C*-algebra?

We know of no examples of countable ordered groups (simple or not) that do
not arise as the Kg-group of a C*-algebra. The example below may illustrate the
complexity of ordered groups with perforation.

Ezample 2.2. Let n > 2 be an integer, and let ['y,...,I';,_1 be arbitrary subsets of
Z. Set G =7 @ 7Z and

Gt ={0,00}u{(n+j,2):0<j<n,zel;}U{(k,z):k>2n2zeZ}.

Then (G,G7) is a simple ordered group (which is not weakly unperforated).

In the following we shall primarily study the case where G = Z. In that case G
is either a subset of ZT (= {0,1,2,...}) or a subset of —Z*. We may assume the
former by replacing G* with —G*. If S C Z*, then (Z,S) is an ordered group if
and only if S is a subsemigroup of Z*,0€ S and S — S = Z.

Let ni,...,n, € ZT and set

S={ny,...,n.)={kinyi+---+keny: ky,.... k. € ZT}.

Then S is a subsemigroup of Z* and 0 € S. Moreover S — S = Z if and only if
ged(ny,ng,...,ny) = 1.



Lemma 2.3. Let integers k,l > 2 with ged(k,l) = 1 be given. Set N =kl — k — 1.
Then N ¢ (k,1), but {N +1,N +2,N +3,...} C (k,1).

Moreover, if S is a subsemigroup of Z*, then S = (k,l) if (and only if) k,l € S
and N ¢ S.

Proof. Each m € Z can in a unique way be written as m = ak + bl where a,b € Z
and 0 < a < I. Clearly, m € (k,l) if and only if b > 0 in this decomposition.
Since N = (I — 1)k — 1 it follows that N ¢ (k,l). Assume that m > N. Then
bl=m—ak >N — (I — 1)k = (—1)l, whence b > 0 and m € (k,1).

Assume now that S is a subsemigroup of Z™, that k,l € S, and that N ¢ S.
Then (k,I) C S. Suppose (k,l) # S, and choose m € S\ (k,l). Then, by the
argument above, we can write m = ak + bl where a,b € Z,0 < a < [, and b < 0.
Hence

N-m=((Il-1)—ak+((-b)—1)l € (k1) CS.

But then N = m+ (N —m) € S, in contradiction with our assumptions. [

Proposition 2.4. Let S be a subsemigroup of ZT with 0 € S and S — S = Z.
Then

i) there exits N € Z* such that {N +1,N+2, N+3,...} CS,
ii) there exists a finite set ny,...,n, € Z1 such that S = (ny,...,n,).

Proof. 1). By assumption 1 € S — S which entails that k,k 4+ 1 € S for some k. Set
N =k(k+1)—2k —1. Then by Lemma 2.3,

{N+1,N+2,N+3,...} C(k,k+1)CS.
ii). Let k and N be as above, and let ni,ng,...,n, be the elements of the
set SN{1,2,...,N}. Then clearly (ni,...,n,) C S, and SN {1,2,...,N} C
(nq,...,mn.). Since k, k 4+ 1 belong to {n1,...,n,} it follows from i) that

{N+1,N+2,N+3,...} C(k,k+1) C{(ny,...,n.),

and therefore S = (nq,...,n,) as desired. O
Proposition 2.5. Let S be a subsemigroup of ZT with 0 € S and S — S = Z.
Then S has a (unique) smallest generating set (ny,...,n,), ie. S = (ny,...,n,.),
and if S = (mq,...,mgs) then {ny,...,n.} C {mq,...,ms}.

Moreover, if ny,...,n, are listed increasingly with respect to the usual order on
Z, then

(2.1) ny = min S \ {0}, n; =minS \ (n1,...,nj-1), 2<j<r

Proof. Let S be given, and let ny, ng, ... be the finite or infinite set given recursively
by (2.1). (It will follow that this set is actually finite.) By Proposition 2.4 there

3



exists a finite set (m1,...,ms) € Z™ such that S = (m1,...,ms). We may assume
that m; < mg < --- < my, and for the purpose of proving the given statement, we

may refine this set in such a way that m; ¢ (mq,...,m;_q) for alli =2,3,...,s.
To prove the proposition, it suffices to show that {ny,ns,...} = {my,ma,...,ms}.

Notice first that m; = min S\ {0} = n,. Assume that m; = ny,...,m;—1 = n;_1,
where 2 < < s. Let ¢ be an element in S\ (mq,...,m;_1). Then

t:k1m1+"'+ki—1mi—1+kimi+"'+ksms 2 kzmz++ksmsa
for some ki,...,ks € Z* where at least one of k;, k;iy1,...,ks is nonzero. Hence
t > m; and so
m; =minS \ (mq,...,m;_1) =min S\ (nq,...,nj_1) = n;.

It follows by induction that {ni,ng,...} = {my, ma,...,my} as desired. O

Notice that there are countably infinitely many orderings on Z by the two previ-
ous propositions. The proposition below shows (among other things) that only one
of these orderings is weakly unperforated.

Recall that an ordered group (G,G™) is said to have the Riesz Interpolation
Property if whenever z1, z2,y1,y2 € G satisfy z; < y;, for 7,5 = 1,2, there exists
an element z € G such that z; <z <y; for 4,5 =1,2.

Proposition 2.6. Let S a subsemigroup of Z* which satisfies0 € S and S—S = Z.
Then the following three conditions are equivalent:
i) S =27,
ii) (Z,S) is weakly unperforated,
iii) (Z,S) has the Riesz Interpolation Property.

Proof. The implications i) = ii) and i) = iii) are trivial.

ii) = i). Since S — S = Z there is k € S with k > 0. Accordingly, k-1 € S, and
so if (Z, S) is weakly unperforated, then 1 € S. This entails that S = Z*.

iii) = i). Suppose that S # Z*. We show that (Z, S) does not have the Riesz
decomposition property, and hence not the Riesz interpolation property. To do so
we must find a,b,c > 0 such that a + b > ¢ and so that there is no pair a1,b; € Z
with 0 < a; <a, 0 < by <b, and ¢ = ay + by. (All inequalites are with respect to
the ordering on Z given by S.)

Let n be the smallest (with respect to the usual order) number in S\ {0}. Then
n # 1, and therefore S is not contained in the set {kn | k € ZT}. Let m be the
smallest (with respect to the usual order) number in S\ {kn | k € ZT}. Let k be
the smallest (with respect to the usual order) integer such that kn —m € S, and
note that k € {2,3,4,...}. Put a=mn, b= (k—1)n, and ¢ = m. Assume that there
were aq,b1 € Z with 0 < a1 <a,0<by <b, and ¢ = a1 + by. Then either a; =0
or a; = a = n. In the first case, m = ¢ = b; < b = (k — 1)n, in contradiction with
the choice of k. In the other case, m —n =c—a; = b; € S, in contradiction with
the choice of m. [



3. The ordered Ky-groups of free products of matrix algebras

Let A and B be unital C*-algebras, and let A = A x B be the universal free
product of A and B (in the category of unital C*-algebras). There are inclusion
maps t4: A - A and 1g: B — A; and for each unital C*-algebra D with unital
sx-homomorphisms ¢p4: A — D and ¢p: B — D there is a unique *-homomorphism
¢: A — D making the diagram

commutative. Define maps

by
A(k) = (k[1a]o, —k[1B]o), u(g,h) =Ko(ta)(g) + Ko(tB)(h),

and consider the sequence:
(3.1) 7 —2 > Ko(A) ® Ko(B) —2> Ko(A) — 0.

Then, obviously, Im(A) C Ker(u). E. Germain has proved, in [G], that if A and
B are K-nuclear, then we have an exact six-term sequence:

Ko(C) —> Ko(A4) @ Ko(B) —> Kq(A)

| |

In particular (3.1) is exact. Notice that

(32) p(Ko(A)* @ Ko(B)*) C Ko(A)™.

Question 3.1. Is
Ko(A)T = p(Ko(4)* @ Ko(B)™)

for all (K-nuclear) unital C*-algebras A and B?
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Question 3.2. Let p € A and q € B be projections, and suppose that p # 0 and that
there exists no subprojection of ¢ which is equivalent to 1p, i.e.1f ¢ in B. Does it
follow that ¢4 (p)X tB(g) in A?

In other words, if p € A and g € B are projections such that t4(p) < tp(q) in A,
does it then follow that either p =0 or 1 3 q7

Remark 3.3. Recall that a projections p in a C*-algebra D is called properly infinite
if there exist sub-projections pi,p2 of p such that p; ~ ps ~ p and p; L ps.

Assume that e1,es € D are projections such that e; ~ es and e; L es. It is not
known if e; + ey is properly infinite implies that e; (and e;) are properly infinite.
If the answer to Question 3.2 is affirmative, then there do exist e; and ey as above
with e; + es properly infinite and with e; and ey not properly infinite as shown
below:

Let A be the Cuntz algebra O,, and set B = M3(C) with p = 1, the unit of
O and g a l-dimensional projection in B. Set e; = tp(q) and es = tp(1 — q).
Then e; ~ eq, €1 L es, and e; + e3 = 1 is properly infinite because the unit of O,
is properly infinite. If e; is properly infinite in A, then there exist subprojections
fi,fo € Aof ey with fi L fo, and f1 ~ fo ~ e1 ~ es. Hence

ta(p)=1=e1+ea~ f1+ fo<er=15(q),

in which case we could answer Question 3.2 in the negative.

Note added in proof: The existence of non properly infinite (actually finite) pro-
jections ey, es in some C*-algebra D with e; ~ ea, e1 L e, and e; + es properly
infinite, has subsequently been found in [R].

For a C*-algebra D let V(D) be the ordered semi-group of Murray-von Neumann
equivalence classes of projections in D®K. If p € D®K is a projection, then [p] and
[plo will denote its classes in V(D) and Kg(D) respectively. Let n: V(D) — Ko(D)
be the canonical map. Then n([p]) = [p]o-

Theorem 3.4. Let k,l > 2 be integers with k prime and | not divisible by k. There
exists a C*-algebra D, projections p,q € D, and an element g € Ko(D) such that
ii) [p] = kld],
iii) mg ¢ Ko(D)* if m ¢ (k,l) (the semi-group generated by k and l).

It follows in particular from Theorem 3.4 that
{n €Z:ng € Ko(D)"} = (k,1).

Proof. Set By = D/~, where D C C is the unit disc and z ~ w if z,w € T and
zF = w*. Then H?(B}) & Zj.

Let w be a non-trivial complex line bundle over By. Then the Euler class of w
is nonzero and kw = 0, i.e. the k-fold direct sum of w is a trivial vector bundle.



Let B’,z_l denote the (k — 1)-fold Cartesian product of By with itself and let p; :

B,’j_l — Bg, 1 =14,...,k — 1 denote the coordinate projections. Once again, let
(BF~1)! denote the I-fold Cartesian product of Bf~* and let m; : (BF ')} — BF ™1,
j=1,...,1, be the corresponding coordinate projections. Put

(=pW)® - ®p1w), == e ()
Then (¢ is a line-bundle over B’,:_l, and ¢ is a vector bundle over (B,’z_l)l of fiber
dimension /. Successive applications of the isomorphism kw = 60 = k6, yields
k¢ = 0k, and this in turns implies that k& = 0;.

We show that the Euler class e((k — 1)&) is nonzero. Using the product formula
for the Euler class we get

l
e((k = 1)¢) = e(&)* " = [ [ w5 (e(O)* )

From the definition of ( it follows that

k—1
e(¢) = - i (e(w))

and since e(w)? = 0 we get

k—1
e(Q)* 7t = (k1) H p; (e(w))-

Let
(k—1)1

i R HA(BiZ) - H((BE )4 2)

be given by
pEr11 @ ®@xp_1y) = HWJ*(P:(”:ZJ))
ij

By the Kiinneth Theorem for singular cohomology, i is injective. Now,

e((k— 1)) = p(((k — ))'e(w) ®e(w) ® - @ e(w))

and since k does not divide ((k — 1)!)! it follows that e((k — 1)¢) is nonzero.
Consider the C*-algebra

D=C(BF M ek
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Let p € D be a projection corresponding to a trivial bundle of dimension k, and let
g € D be a projection which corresponds to the bundle £&. Then k[g] = I[p] (these
classes both correspond to the trivial bundle of dimension kl). Choose a,b € Z such
that 1 = ak + bl, and put g = a[p]o + b[q]o € Ko(D). Then kg = [plo and lg = [g]o-

We must show that mg ¢ Ko(D)' if m ¢ (k,1). By Lemma 2.3 it is enough to
show that (kl — k —1)g ¢ Ko(D)™. Suppose, for a moment, that (kl — k —1)g is
positive. Since

(kl—k—1)g=(k—1)lg—kg=(k—1)[qlo — [plo

it follows that (k — 1)[¢] — [fk] is positive in KO(B,(Ck_l)l), and so, in particular,
(k — 1)[&] — [01] is positive. Consequently, there exists a complex vector bundle ¥
and d € N such that (k— 1) 0; =2 9 @ 0441. Hence,

e((k — 1)€) = e(9 @ 01) = e(W)e(f) =0

in contradiction with the choice of £&. [

We shall consider the ordered Ky-group of the free product A = My (C) x M;(C).
It follows from Germain’s theorem (quoted earlier in this section), that Ko(A) = Z
when k£ and [ are relatively prime. We give below an elementary proof of this fact.

Proposition 3.5. Let k,l € N be relatively prime, set A = My(C) x M;(C), let
b1 Mk((C) — Mk(C) X Ml((C), ha: MZ(C) — Mk((C) ® Ml((C),

be the natural homomorphisms, and let 7: A — My (C) ® M;(C) be the homomor-
phism induced by ¢, and ¢s.

Then Ko(7) and K1 (7) are isomorphisms, and in particular we have that Ko(A) =
Z and K4 (A) = 0.

Proof. Let t1: Mg (C) — A and ¢2: M;(C) — A denote the canonical inclusion map-

pings. Let e; € Mg(C) and es € M;(C) be one-dimensional projections, and set

f; = tj(ej) € A. Then 7(f;) = ¢;(e;), and hence 7(f1) has dimension I and 7(f2)

has dimension k. Since k and [ are relatively prime, this shows that Ko(7) is onto.
The diagram,

A a M (C) ® A

\M

M (C) @ M;(C)

where py is given by a — 15 ® a, commutes up to homotopy. Indeed, the diagram
commutes exactly on the image of 13, and it commutes up to homotopy on the
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image of ¢ (since the two canonical homomorphisms Mg (C) — M (C) @ Mg (C) are
homotopic). It follows that the diagram commutes exactly at the level of K-groups,
and therefore that

Ker(K;(7)) C Ker(K;(ux)) = Ker(k - idk; (a))-
By interchanging the roles of the first and second factor in A, we get
Ker(K;(7)) C Ker(l - idk (4))-
Since k£ and [/ are relatively prime,
Ker(k - idk,(4)) N Ker(l - idk; 1)) = 0,

and this proves that K;(7) is injective for j = 0,1. O
Theorem 3.6. Let k,l > 2 be integers with k prime and | not divisible by k. Put
.A == Mk((C) * Ml ((C) Then

i) (Ko(A),Ko(A)F) = (Z, (k,1)),

if) Ko(A)T = p(Ko(Mg(C))* @ Ko(M(C)) ).
Moreover, if p € Mg (C) and q € M;(C) are projections with p # 0 and q # 1, then
pX qin A.
Proof. Let 7: A — Mg (C) ® M;(C) be as in Proposition 3.5. Identify Kq(Mg(C))

1

Ko(M;(C)) and Ko(Mg(C) @ M;(C)) with Z in the natural way. Let u be as in (3.1),
and set p/(z,y) = lz + ky. Then by Proposition 3.5 the diagram

Ko (Mg (C)) ® Ko(M;(C)) —2> Ko (A)

Z\L ElKo(T)

7 ® L Z

’

commutes, and hence
(3.3) (Ko(7) o 1) (Ko(My(C))* @ Ko(My(0)F) = 1 (Z* @ Z7) = (k, ).

Put S = Ko(7)(Ko(A)™) C Z™T. Then, by (3.1) and (3.3), (k,I) C S. We proceed
to show that S C (k,[), and this will prove i) and ii).

Let D, p,q € D and g € Ko(D) be as in Theorem 3.4. Upon replacing D with a
corner of D ® K, we may assume that D is unital and that I[p] = k[q] = [1p]. Let
e1 € Mg(C) and es € M;(C) be 1-dimensional projections. By the choice of p and
q there exist unital *-homomorphisms 1 : Mg (C) — A and ¢9: M;(C) — A such
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that 11(e1) = ¢ and ¥2(ez) = p. By the universal property of A, 17 and 1, factor
through a unital *-homomorphism ¢: A — D:

My (C)
1 P1
AR
M;(C)

At the level of K-theory, we have the following commuting diagram
S
g L
A

Let h € Ko(A) be the element satisfying Ko(7)(h) = 1. Viewing e; and ey as
elements of A, we have ¢(e1) = ¢, ¥(e2) = p, Ko(7)([e1]o) = 1, and Ko (7)([e2]o) = k.
Hence lh = [e1]o and kh = [e2]o, and so

1-Ko(¥)(h) = Ko(¥)([er]o) = [dlo = lg, K -Ko(¥)(h) = Ko(¢¥)([e2]o) = [plo = kg,

which implies that Ko(1)(h) = g.
Assume m € S, and find x € V(A) which is mapped to m. Then mh = n(x),
and therefore

V(4 L% (D)

!

-—K ——K
Ko(r) o(A) Ko($) ©

<
R ||2T¢

).

mg = Ko(¢)(mh) = Ko(¢) o n(z) = no V(y)(z) € Ko(D)™.

By Theorem 3.4 this implies that m € (k,l). We have now shown that S = (k,I)
and the proof of i) and ii) is complete.

Let p € Mg(C) and ¢ € M;(C) be given such that p # 0 and ¢ # 1. Then
[plo = z[e1]o and [¢]o = y[ez2]o where z,y € Z satisfy 1 <z < k and 0 <y < [. Since

Ko(7)([qlo — [plo) = yk — =l ¢ (k,1) = 5,
it follows that [glo — [plo ¢ Ko(A)*, and so p g in A O
Remark 3.7. 1t would be interesting to know if
Ko(M(C) * My(C))" = u(Ko(Mi(C))™ ® Ko(M;(C)) ™)
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for all integers k,l > 2. It should be noted that if ged(k,l) = m > 1, then
Ko(My(C) xM;(C)) 2 Z @ Z/m.

Remark 3.8. It would also be interesting to know if one to each subsemigroup S of
Z* with 0 € S and S — S = Z can find a C*-algebra A with (K¢(A),Ko(A4)™) =
(Z,5).

One obvious generalization of Theorem 3.6 is as follows: Let kq,ko,..., k. > 2
be integers and consider the unital C*-algebra

A= Mk1 ((C) * Mk2((C) X oo *MkT(C),

where the free product, *, is the universal free product in the category of unital
C*-algebras. By Germain s theorem (see below (3.1)), Ko(A) = Z if and only if
ged(k;, kj) = 1 whenever i # j.

Assume now that ged(k;, k;) =1 for all ¢ # j. Set

i#]
Set S = (ny,na,...,n,). One can show that (Ko(A),Ko(A)T) = (Z,S) provided
that S satisfies the following condition:
(S) For each m € Z*\S there exist a C*-algebra B and homomorphisms 3: S —
V(B) and 7: Z — Ko(B) such that
B
S ——=V(B)
1)
Z (

Y B)

—>KO

commutes, and such that y(m) ¢ Ko(B)™.

Only rather special semi-groups S arise from such a set k1, ks, . . ., k.. For exam-
ple, if S has minimal generating set (nq, ng,...,n,), where r > 3 and ged(n;, n;) =1
for some i # j, then (n1,ns,...,n,) cannot be obtained from any set k1, ko, ...,k
as in (3.4).

We sketch below another construction which to an arbitrary subsemigroup S
of ZT with 0 € S and S — § = Z associates a C*-algebra F(S), whose ordered
Ko-group is likely to be isomorphic to (Z, S).

Let (n1,na,...,n,) be the minimal generating set for S (cf. Proposition 2.5). For
each pair of indices 7,5 with 1 < 4,7 < r, i # j, set mz = n;/ ged(n;, n;) and find

projections e’ € K with dim(e%) = m’ and such that the projections

1,2 j—1 j+1 _j+2 r
€51 €jrer oy € L€ L€ ..., €5
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are mutually orthogonal for every 7 =1,2,...,r.

Put 7, = K« K x---x I (with r copies of K, and where * denotes universal
free product with no amalgamation). Let ¢}, ¢5,...,¢.: K — F, be the canonical
inclusions. Let I be the closed two-sided ideal in F, generated by the set

{¢i(e]) — dj(el) : 1 < j < i # j}.
Set F(S) = F./I, let m: F, — F(S) be the quotient mapping, and set ¢; =
mo ¢y K — F(S).

Then F(S) = C*(¢1(K), p2(K), ..., ¢-(K)), ie., F(S) is generated by r copies of
K. Moreover, it can be shown that

(Ko(F(8)), Ko(F(5))T) = (Z,5)

provided that the semi-group S satisfies the condition (S) described above, and
provided that

Ko(F(5)) = Ko(61) (Ko(K)) + - - - + Ko(¢) (Ko(K))-

4. Comparison of projections in free products

Combining Theorem 3.6 with Propositions 4.1 and 4.2 below we shall show that
one can answer Questions 3.1 and 3.2 in the affirmative for a rather large class of
pairs of C*-algebras. To systematize our treatment, let C; denote the class of all
pairs of K-nuclear C*-algebras (A, B) such that

Ko(A* B)" = u(Ko(A)" @ Ko(B)™),

(cf. (3.1) and (3.2)). Let Cy denote the class of pairs of C*-algebras (A, B) such
that for every pair of projections p € Aand g € B,ifp#0,q¢# 0, 1¥ p, and 1 ¢,
then p and ¢ are incomparable in A * B, ie., p£ ¢ and ¢ p in A * B.

If follows from Theorem 3.6 that (Mg (C),M;(C)) € C; for j = 1,2 when k is
prime and ged(k,l) =1 (or vice versa).

Recall that a (unital) C*-algebra A is said to be finite if for every pair of pro-
jections p,q € A, p 2 q < p implies p = q. If A and B are finite C*-algebras, then
(A, B) € Cq if and only if for every pair of projections p € A and ¢ € B, p 3 ¢
implies that either p = 0 or ¢ =1 (and vice versa).

Proposition 4.1.
1) If (A,B) S Cl, then (B,A) € Cl.
ll) If (Al,B), (Az,B) € Cq, then (Al S AQ,B) € (.
iii) If A is the inductive limit of a sequence of unital C*-algebras

Al—)AQ—)A3—>"'

with unital connecting maps, and if (A, B) € Cy for all n, then (A, B) € C;.
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Proposition 4.2.
l) If (A,B) € Cy, then (B,A) € Cs.
ll) If (Al, B), (AQ,B) S C2, then (Al (&) AQ,B) € Cs.
iii) If A is the inductive limit of a sequence of unital C*-algebras

A1—>A2—)A3—>"'

with unital connecting maps, and if (A, B) € Cy for all n, then (A, B) € C5.
iv) Assume A and B are finite C*-algebras with (A, B) € Cy. Then (Ag, By) €
C, for all sub-C*-algebras Ay of A and By of B with 14 € Ag and 1 € By.

We prove Propositions 4.1 and 4.2 simultaneously, and we note that part i) of
these propositions is trivial. To prove part ii) we shall need the following:

Lemma 4.3. Assume (A, B) € Cq, let z € Ko(A), y € Ko(B), and set

9 =Ko(ta)(x) + Ko(tB)(y) € Ko(A * B).
Then g € Ko(A =+ B)" if and only if z +n[la]o € Ko(A)* and y — n[lp]o € Ko(B)*
for some integer n.

Proof. The “if” part follows from (3.2) and the exactness of (3.1). Assume g €
Ko(A x B)*. Then, by the assumption that (A4, B) € C;, there exist 2’ € Ko(A)™T
and y' € Ko(B)* such that g = Ko(ea)(z') + Ko(¢5)(y'). Hence

Ko(ea)(z' — 2) + Ko(en) (v —y) = 0.

By exactness of the sequence (3.1) there is an integer n such that z’ — x = n[la]o
and y' —y = —n[1p]o. This completes the proof. [

Proof of part ii) of Propositions 4.1 and 4.2. From the universal property of the
free product, the maps Ay ® Ay - A; — A; * B factor through *-homomorphisms
¢j: (Al@AQ)*B —>AJ*B

To show that (A1 @ As, B) € C; it suffices to show that

Ko((A1 @ A2) * B)" C u(Ko(A1 @ A2)* @ Ko(B)™).

Let g € Ko((A1 @ A2) * B)T. By exactness of the sequence (3.1), there exist
z1 € Ko(A1), 22 € Kog(A2), and y € Ko(B), such that

9 =Ko(ta,04,)(1,72) + Ko(tB)(y)-

Now,
Ko(ea;)(z;) + Ko(tn)(y) = Ko(;)(9) € Ko(4; * B)T.

13



By Lemma 4.3 this entails that z; + nj[l14,Jo > 0 and y — n;[1glo > 0 for some
integers nq, and ng. Set n = max{ni,na}. Then

&' = (x1+n[la,]o, 22 + n[la,)o) € Ko(41 ® A2)", ¢ =y —n[lglo € Ko(B)7,

9 =Ko(ta,@a,)(@) +Ko(tB)(¥) € n(Ko(A1 @ A2)T @ Ko(B)™)

as desired.

We proceed to show that (A1 @ Ag, B) € Cy if (A1, B), (A2, B) € Ca. Let p =
(p1,p2) be a projection in A; & As, let ¢ be a projection in B, and assume that
p 2 qin (A1 ®As)xB. Then p; = ¢;(p) X ¢;(¢) = ¢ in A;* B. Hence either p; =0
or 1 X g for j =1,2. This entails that either p=0or 1 3¢q. O

Part iii) of Propositions 4.1 and 4.2 are easy consequences of the following:

Lemma 4.4. Let
Al—)A2—>A3—>"'

be a sequence of unital C*-algebras with unital connecting *~homomorphisms, and
let B be a unital C*-algebra. Then there exists an isomorphism 1 making the
diagram

A, *B
(lig A,) * B ; ling(An * B)

commutative. (The maps A, *idp and X, are the natural maps arising from the
functoriality of the free products and the inductive limits.)

Proof. We have *-homomorphisms «a,, and « and the commuting diagram

Al A2 ]&n}An
\Lal la2 \La
AixB—— Ay x B lim (A, * B)

which yields a *-homomorphism :

/\

(limg Ap ) # B oo > lim (A, * B)

\/
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Moreover, ¢ makes the diagram in the lemma commutative. (One can check this
for example by inspecting elements in A,, and in B separately.)
By commutativity of the diagram:

’m*B m+1*B

m /@B

(ling Ay,)
we get a *-homomorphism ¢: lim(A, * B) — (lim A,) * B, which makes

/ Wj

lig(A,, * B) (liy 4,) * B

commutative. Finally, ¢ o ¢ is the identity on the image of A/, and ¢ o4 is the
identity on the image of )\, *idp for each m. This shows that ¢ and ¢ are each
others inverses. Hence v is an isomorphism. [

Proof of Proposition 4.2 iv). Let Ao C Aand By C Bwith14 € Agand 15 € By
be given, and let ¢: Ag * By — A * B be the canonical *-homomorphism arising
from these inclusions. Let p € Ag and q € By be projections, and assume that p < ¢
in Ag * Bg. Then p = ¢(p) 2 ¢(q) = g in A * B. Since B is assumed to be finite,
and since (A, B) € Co, this implies that p = 0 or ¢ = 1. Reverting the roles of A
and B yields the other case. [

If we knew that (My(C),M;(C)) € C; for all positive integers k and [, then we
could conclude from Proposition 4.1 that (A, B) € C; for all unital AF-algebras A
and B. With the present restrictions on k£ and / in Theorem 3.6 we can still use
Proposition 4.1 to reach conclusions about the ordered Ky-group at least for some
non-trivial AF-algebras:

Corollary 4.5. Let K denote the C *-algebra of compact operators on a separable
Hilbert space with a unit adjoined. Then (K, K) € Cy, ie.,

Ko(K + K)T = u(Ko(K)" & Ko(K)™).
Proof. Let {p,} and {q,} be two increasing, disjoint, sequences of primes, set
An=M, (C)@®C,  B,=M, (C)aC.

Then K 2 lim A, = lim B,, (with appropriate choices of unital connecting *-homo-
morphisms A,, - A,4+1 and B, — By, +1). By Proposition 4.1 (ii) and Theorem 3.6

15



we have that (An, Bp) € Cy for all n and m. Two applications of Proposition 4.1
(iii) yield (K, B,,) € Cq for all m, and (K,K) € C;. O

We have K (K) = Z[1]o + Z|e]o, where e is a 1-dimensional projection in . Hence

we can identify (Ko (K),Ko(K)T) with (Z & Z,G), where
G={00,y):y>0}U{(z,y):z > 1}.
By Corollary 4.5 we get that (Ko(K %K), Ko(K+K)1) equals (Z@®Z @ Z, H), where

H={0,y,2):y>0, 2>0}U{(1,y,2) : y > 0o0r 2> 0} U{(z,y,2) : © > 2}.

We call a unital C*-algebra A non-divisible if there for no integer n > 2 exists
g € Ko(A) such that [14]p = ng.

Corollary 4.6. Every pair of unital C*-algebras, each of which can be unitally
embedded into unital, simple, non-divisible AF-algebras, belong to Co (cf. the first
paragraph of this section).

Proof. Find four mutually disjoint sequences of primes {p,}, {p..}, {¢.} and {q}
such that if

An =My, (OK= Mp’n (©), B, = Mg, © e Mq; (©),

then there exist unital connecting maps A,, — A,4+1 and B,, = B,+1 which map
each non-zero element of A,,, respectively, B,,, to a full element of A,, 1, respectively,
Byt1. Set A =lim A, and B = lim B,,. Arguing as in the proof of Corollary 4.5
we see that (A, B) € Cs.

The AF-algebras A and B are unital, simple and infinite-dimensional. The or-
dered Ky-groups of a unital, simple and infinite-dimensional AF-algebra has the
property that for each non-zero positive element g and for each set of positive in-
tegers dy,ds,...,d,, with greatest common divisor equal to 1, there exist non-zero
positive elements g1, g2, ..., g, such that ¢ = d1g1 + dags + - - - + d,-g,.

Using this property it can be shown that every unital, simple, non-divisible AF-
algebra can be unitally embedded into A and B (first at the level of K-theory, and
then, by the classification theorem for AF-algebras, at the level of algebras). Hence
any pair (A’, B') of C*-algebras that can be unitally embedded into unital, non-
divisible AF-algebras can be unitally embedded into A and B. Therefore (A', B') €
C by Proposition 4.2 (iv). O

Remark 4.7. Whereas the conclusions of Corollary 4.6 may apply to a very large
class of unital, separable, exact C*-algebras, it does not give us information about

infinite C*-algebras, cf. Remark 3.3.
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