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Abstract

This thesis examines the notions of quasidiagonality and AF-embeddability for C∗-algebras as
well as the related Blackadar-Kirchberg conjectures. The C∗-algebraic approximation property
of quasidiagonality is examined in detail, including permanence properties, obstructions as well
as the representation theoretic formulation. The Tikuisis-White-Winter theorem, which states
that, on separable, exact C∗-algebras satisfying the UCT, every faithful, amenable tracial state
is quasidiagonal, is proved following the extension theoretic proof of Schafhauser. Some of the
consequences of the theorem are studied, and connections to both the Blackadar-Kirchberg con-
jectures as well as Elliott’s classification programme are established. Moreover, in a recent paper,
Gabe showed that the Blackadar-Kirchberg conjectures hold true for traceless, exact C∗-algebras.
A part of the necessary background information including the concept of primitive ideal spaces
as well as Rørdam’s ASH-algebra A[0,1] will be examined, and Gabe’s proof will be reproduced.
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Introduction

The purpose of this thesis is, roughly speaking, to study the C∗-algebraic approximation property
known as quasidiagonality, some of the important results on the topic as well as related concepts.
Historically, quasidiagonality was first studied within single operator theory, where Halmos defined an
operator T to be quasidiagonal if there exists a sequence of finite-rank projections strongly converg-
ing to 1 and asymptotically commuting with T . We can hence view quasidiagonal operators as those
which are almost blockdiagonal, which explains the terminology. Using this definition, it is natural
to define that a C∗-algebra A is quasidiagonal if it has a faithful representation π such that π(A) is
a quasidiagonal set of operators, i.e., if we can faithfully realise A as a quasidiagonal set of operators
on some Hilbert space. It is not immediate how this translates into an approximation property for
C∗-algebras, but Voiculescu [72] proved that this representation theoretic definition is equivalent to
the existence of a net of asymptotically multiplicative and asymptotically isometric c.c.p. maps into
finite-dimensional C∗-algebras. In this way, quasidiagonal C∗-algebras can be understood as those
which can be asymptotically embedded into finite-dimensional C∗-algebras. This description of qua-
sidiagonality shows the finiteness of the property, and, in fact, it can be shown that quasidiagonality
implies stably finiteness. While not all stably finite C∗-algebras are quasidiagonal with C∗r (F2) being
the standard counterexample using Rosenberg’s theorem [31], no counterexamples has been found in
the class of nuclear C∗-algebras. Indeed, it is conjectured by Blackadar-Kirchberg, see [4, Question
7.3.1], that all separable, nuclear, stably finite C∗-algebras are quasidiagonal.

Another property closely related to quasidiagonality is AF-embeddability of C∗-algebras, that is,
which C∗-algebras can be realised as a C∗-subalgebra of an AF-algebra. It is easy to see that AF-
embeddable C∗-algebras are separable, quasidiagonal and exact, and in [4, Question 7.3.3] Blackadar
and Kirchberg conjectured that the converse is true. Both of the mentioned Blackadar-Kirchberg
conjectures remain unsolved, but there are on-going progress on resolving them. For example, the
Tikuisis-White-Winter theorem [70, Theorem A] provided the machinery to prove that nuclearity,
quasidiagonality and AF-embeddability are equivalent properties for the class of reduced group C∗-
algebras, and that these properties are satisfied exactly when the underlying group is amenable.

Another consequence of the Tikuisis-White-Winter theorem is that it resolves Rosenberg’s conjec-
ture. After proving that quasidiagonality of the reduced group C∗-algebra implies amenability of the
underlying group G [31], Rosenberg conjectured that the converse is true, which remained unknown
until the Tikuisis-White-Winter theorem provided a machinery with which one can easily prove that
it is true. This is not the only consequence of the theorem; it can be used to prove that stably
finiteness and quasidiagonality are equivalent properties for separable, nuclear, simple C∗-algebras
satisfying the UCT, and it allowed for a quasidiagonality assumption to be rendered superfluous in
Elliott’s classification program [19], completing the classification.

As alluded to in the previous paragraphs, the significance of the Tikuisis-White-Winter theorem
lies in the breadth and importance of its corollaries. For this reason, the theorem shall be a central
cornerstone for the entire thesis, and therefore we shall mention more precisely what it entails. The
theorem states that if A is a separable, exact C∗-algebra satisfying the UCT and admitting a faith-
ful, amenable tracial state, then this tracial state is quasidiagonal. As the existence of a faithful,
quasidiagonal tracial state implies quasidiagonality of the C∗-algebra, this provides a tool for proving
quasidiagonality of certain C∗-algebras. This is not the original result proved by Tikuisis-White-
Winter in [70], but instead a refined result due to Gabe [24]. We shall follow an extension theoretic
proof due to Schafhauser [66], and since the underlying idea of his proof is quite simple to state, let
us mention the proof structure.

Denote by Q the universal UHF-algebra, which is the unique UHF-algebra with K0(Q) = Q, and let
R be the unique hyperfinite II1-factor. Quasidiagonality, respectively amenability, of tracial states
can be characterised by the existence of a trace-preserving *-homomorphism into Qω with a c.c.p.
lift A → `∞(Q), respectively a trace-preserving *-homomorphism Rω with a c.c.p. lift A → `∞(R).
Let A be a separable, exact C∗-algebra in the UCT-class with an amenable tracial state τ , and let
ϕ : A→ Rω be a trace-preserving *-homomorphism with a c.c.p. lift A→ `∞(R). One can show that
there exists a short exact sequence 0 → J → Qω → Rω → 0, where J is the so-called trace-kernel
ideal. By considering the pullback, we can obtain the following commutative diagram
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0 J E A 0

0 J Qω Rω 0

ϕ

where E is the pullback. If we manage to prove the existence of a *-homomorphism A→ E splitting
the upper row, then the map ϕ can be lifted to a map ψ : A → Qω, and proving quasidiagonality of
τ then boils down to showing ψ can be lifted to a c.c.p. map A→ `∞(Q). In other words, answering
the following question in the affirmative gives a proof of the Tikuisis-White-Winter theorem: Does
the short exact sequence split in such a way that the induced *-homomorphism A → Qω can be
lifted to a c.c.p. map A→ `∞(Q)? We shall see that, up to some separability issues that need to be
resolved, faithfulness of the tracial state along with an assumption that A satisfies the UCT imply
the existence of such a map ψ : A → Qω, and exactness will provide the fact that ψ has a c.c.p. lift
A→ `∞(Q).

On the topic of the Blackadar-Kirchberg conjectures, Gabe recently published a preprint of a pa-
per [26] resolving the conjectures for the class of separable, exact and traceless C∗-algebras. In fact,
he characterised all C∗-subalgebras of a specific C∗-algebra A[0,1], which can be realised as an induc-
tive limit of cones over increasingly larger matrix algebras. This characterisation is based upon the
primitive ideal space, which is a certain non-commutative generalisation of the spectrum for Abelian
C∗-algebras.

The above paragraphs should give the reader a taste of the contents of this thesis, and of some
of the ongoing C∗-algebraic research in this area. To better introduce the reader to the thesis, we
provide a chapter-by-chapter overview.

• In Chapter 1, we establish some of the elementary facts on C∗-algebras and von Neumann-
algebras, including K-theory and group C∗-algebras, that are needed for understanding the
thesis. Moreover, we include a section on the classification theory of certain classes of C∗-
algebras to form a historical perspective on Elliott’s classification program, which motivates
the idea of classifying C∗-algebras by their K-theoretical data. The chapter is only meant as a
reference point, and most of the results are assumed to be well-known.

• In Chapter 2, we begin actually analysing quasidiagonality in depth. This chapter has two
purposes: Understand quasidiagonality as the interesting approximation property it is, but also
establish the background theory needed to understand and follow Schafhauser’s proof of the
Tikuisis-White-Winter theorem. Of course, these are not disjoint purposes by any means, but
the reader should be aware that not everything studied in this chapter is inherently related to
our interest in the Tikuisis-White-Winter theorem. Beyond quasidiagonality, we also briefly
discuss AF-embeddability with a focus on the associated Blackadar-Kirchberg conjecture.

• Then, in Chapter 3, we are setting the stage for Schafhauser’s proof of the Tikuisis-White-
Winter theorem. As the introduction has shown, the proof is extension theoretic at its core,
and a good starting point would therefore be to understand this subject. We shall develop the
theory of extensions of C∗-algebras, both in general by developing the Ext-semigroup structure,
and the specifics needed for the aforementioned proof.

• In Chapter 4, we finally turn our attention to the Tikuisis-White-Winter theorem and its proof,
and the chapter can thus be seen as the culmination of the previous chapters. While we have
laid the foundational work in the previous chapters, and the proof has been sketched in the
introduction, there are several results needed, some more subtle than others, which we shall
resolve. After proving the Tikuisis-White-Winter theorem, we then study a few of its corollaries.
More precisely, we show that the Rosenberg’s conjecture is true, and we look at connections to
both the Blackadar-Kirchberg conjectures on quasidiagonality and AF-embeddability as well as
Elliott’s classification program.

• Lastly, in Chapter 5, we study a recent paper of Gabe [26] in which he proves the Blackadar-
Kirchberg conjectures to be true for traceless C∗-algebras. We also study some of the back-
ground material, most notably the primitive ideal space of C∗-algebras and the topological
connection to the ideal lattice as well as Rørdam’s ASH-algebra A[0,1].

4



Notation and terminology

Since virtually every single mathematical paper differs in notation in some way, we shall establish some
of the notation used in this thesis. This is, obviously, not a complete list of the notation in the thesis,
as it only concerns the foundational notation that may be different from other papers — some of the
notation will be introduced in the thesis at due time and, consequently, we shall not mention this here.

We denote by N = {1, 2, . . .} the natural numbers, i.e., we do not consider 0 a natural number.
If we wish to adjoin 0, we shall denote the set by N0.

Given any set X with a subset S, we denote by χS : X → {0, 1} the characteristic function on
S. Moreover, we denote the identity function on X by idX .

C∗-algebras are usually denoted as A or B. We do not assume that C∗-algebras are unital un-
less explicitly mentioned. If H denotes a Hilbert space, then we denote by B(H) and K(H) the
bounded linear operators and the compact operators, respectively, on H, and we denote by C (H) the
Calkin algebra C (H) = B(H)/K(H). Whenever we refer to matrix algebras, we mean C∗-algebras of
the form Mn(C) for some integer n ≥ 1, unless we explicitly mention otherwise. We denote by Trn
the unique normalised tracial state on Mn(C).

If A,B are C∗-algebras, we denote by A�B the algebraic tensor product of A and B. The minimal,
or spatial, tensor product is denoted A ⊗ B, and the maximal tensor product is denoted A ⊗max B.
Moreover, all ideals of C∗-algebras are two-sided, and if not explicitly mentioned otherwise, e.g., by
writing algebraic ideal, we assume that they are closed.
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1 Preliminaries

It is impossible to start a thesis at square one; we must assume some things to be well-known. For
this thesis in particular, we assume elementary knowledge about C∗-algebras, including group C∗-
algebras, and knowledge about K-theory, and for motivational purposes it might be of interest to
know of Elliott’s classification program and its history. However, to ensure that everybody starts at
roughly the same page, and in order for the thesis to be somewhat self-contained, we shall briefly
discuss these subjects in this chapter. Consequently, this chapter is almost entirely void of proofs,
and we refer to elementary textbooks for them; the specific references will be mentioned at the start
of each section.

1.1 Elementary results on C∗-algebras and von Neumann-algebras

The theory of C∗-algebra is, as anyone who has ever studied it knows, very rich indeed, and it is thus
virtually impossible to include all the relevant background knowledge in one section. Consequently,
the topics discussed below are hand-picked by their relevance to the rest of the thesis. Most of the
proofs for the statements herein can be found in elementary textbooks on the subject, e.g., [47, 74],
and for statements about c.c.p. and u.c.p. maps and finite-dimensional approximation properties such
as nuclearity we refer to [11]. Another good reference containing a lot of the theory, although without
many proofs, is [3].

Let A be an arbitrary C∗-algebra. An element x ∈ A is called positive if x = y∗y for some y ∈ A,
and the collection of positive elements of A is denoted by A+. We can define a partial order on A by
x ≤ y if and only if y − x ∈ A+. An element p ∈ A is called a projection if p2 = p = p∗. Denote the
set of projections in A by P(A). We equip P(A) with the equivalence relation that p ∼ q if and only
if there exists v ∈ A with v∗v = p and vv∗ = q; this is called the Murray-von Neumann equivalence
relation. If v ∈ A is an element such that both v∗v and vv∗ are projections, then we say that v is a
partial isometry, and we call v∗v the support projection and vv∗ the range projection of v. Assume
now that A is unital with unit 1. An isometry is an element v ∈ A with 1 = v∗v. We further say that
v is unitary if v is invertible with v−1 = v∗. For any C∗-algebra A, unital or not, there exists a unital
C∗-algebra A†, which contains A as an ideal, and with the quotient A†/A ∼= C, i.e., it fits into a short
exact sequence 0→ A→ A† → C→ 0. It is often the case that properties of C∗-algebras, which are
inherently unital in nature, are extended to non-unital C∗-algebras by considering their unitisations.

No matter if A is unital or not, we can still approximate a unit in the sense that there exists an
approximate unit, that is, an increasing net (eα)α∈Λ of positive contractions such that ‖xeα − x‖ → 0
for each x ∈ A. In fact, if I is an ideal in A, then there exists an approximate unit (eα)α∈Λ in I
which is quasicentral for A, meaning that ‖eαa− aeα‖ → 0 for all a ∈ A; see [53, Theorem 3.12.14].
If the C∗-algebras are separable, these approximate units can be assumed to be sequences.

Suppose that A is a unital C∗-algebra with unit 1. A state on A is a linear functional ρ : A → C
satisfying ρ(1) = 1. A tracial state is a state τ satisfying the tracial property τ(ab) = τ(ba) for
all a, b ∈ A. Note that there are many unital C∗-algebras, which do not admit tracial states, but
which still admit trace-like maps. Consider for example a separable, infinite-dimensional Hilbert
space H with orthonormal basis (en)n∈N, then B(H) admits no tracial state as it is a properly infi-
nite C∗-algebra; the proof may also be found in [47, Remark 6.2.2]. Nonetheless, the usual trace by
Tr(T ) =

∑∞
n=1 〈Ten, en〉 is still resembling of a trace, even though it is not defined everywhere. For

the next definition, we shall use the terminology that a subset S of a C∗-algebra A is called symmetric
if x∗x ∈ S implies xx∗ ∈ S.

Definition 1.1. A trace on a C∗-algebra A is a positive linear map τ : I → C, where I is a symmetric,
self-adjoint algebraic ideal in A, and where τ(x∗x) = τ(xx∗) for all x ∈ A with x∗x ∈ I.

We call I the domain of τ , but occasionally we shall just say that τ is a trace on I; this should
not be any cause of confusion. Alternatively, traces on a C∗-algebra A can be defined as additive,
homogeneous maps τ : A+ → [0,∞] such that τ(x∗x) = τ(xx∗) for all x ∈ A. The reader is warned
that the two definitions of traces are not equivalent, although we shall always make another assump-
tion on both types of traces, with which the two definitions agree. Define for each positive a ∈ A
and ε > 0 the ε-cutoff element (a− ε)+ in A by continuous functional calculus using the continuous
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function fε : [0,∞) → [0,∞) by fε(t) = max{t − ε, 0} for t ≥ 0. Note that if I is hereditary in A
and a ∈ I is positive, then (a− ε)+ ∈ I for all ε > 0. We say that a trace τ , in either picture, on A
is lower semi-continuous if τ(a) = supε>0 τ((a − ε)+) for all positive a in the suitable domain of τ .
Under the assumption that the traces are assumed to be lower semi-continuous, the two definitions
agree, see [63, Proposition 2.10] as well as the following discussion in the same paper.

One important class of C∗-algebras, which shows up quite often throughout the thesis as well as
in the study of C∗-algebra in general, is the class of Abelian C∗-algebras. They can be easily classi-
fied by the following proposition.

Proposition 1.2 (Gelfand). If A is an Abelian C∗-algebra, then A is is *-isomorphic C0(X) for
some locally compact Hausdorff space X. An Abelian C∗-algebra is unital if and only if it can be
realised as C(X) for some compact Hausdorff space X. Two Abelian C∗-algebras C0(X) and C0(Y )
are *-isomorphic if and only if X is homeomorphic to Y .

There is an explicit description of the underlying space for Abelian C∗-algebras, which we shall
briefly sketch — the details may be found in [47, Chapter 1.3]. Let A be an Abelian C∗-algebra and
consider the set Â of *-homomorphisms A → C, then Â is a locally compact Hausdorff space in the
weak*-topology and, if A is unital, Â is compact. The map Γ: A → C0(Â) by Γ(a)(ϕ) = ϕ(a) for
a ∈ A and ϕ ∈ Â is a *-isomorphism; we call Â the spectrum of A, and Γ the Gelfand transform.

Another important class is the class of finite-dimensional C∗-algebras, which also admits a very
nice classification.

Proposition 1.3. If A is a finite-dimensional C∗-algebra, then A = Mn1
(C)⊕· · ·⊕Mnr (C) for some

suitable integers r, ni > 0.

The class of finite-dimensional C∗-algebras is the smallest class containing C and which is closed
under finite direct sums and tensor products. However, it is not closed under inductive limits. We
define the class of AF-algebras to be the smallest class of C∗-algebras containing C and which is closed
under direct sums, tensor products and sequential inductive limits, and in this way AF-algebras is a
natural and small generalisation of finite-dimensional C∗-algebras. A perhaps more tangible definition
of AF-algebras is the following, which is closer to the original definition by Bratteli [5].

Definition 1.4. A C∗-algebra is said to be approximately finite-dimensional, usually shortened AF-
algebra, if it is the norm-closure of an increasing sequence of finite-dimensional C∗-algebras.

Note that with our definition, all AF-algebras are assumed to be separable — one can define a
notion of non-separable AF-algebras by considering arbitrary increasing unions of finite-dimensional
C∗-algebras, but we shall not do this here. Another characterisation of AF-algebras, with which it is
easy to verify that the class of AF-algebras is closed under inductive limits, is that AF-algebras are
precisely those arising as inductive limits of sequences of finite-dimensional C∗-algebras. Yet another
characterization is the following local one, see [64, Proposition 7.2.2]

Proposition 1.5 (Bratteli). A separable C∗-algebra A is an AF-algebra if and only if for each finite
number of elements a1, . . . , an ∈ A and tolerance ε > 0, there exist a finite-dimensional C∗-subalgebra
B of A and elements b1, . . . , bn ∈ B such that ‖ai − bi‖ < ε for all i = 1, . . . , n.

All of the three characterizations are useful to have in mind when studying AF-algebras.

An important AF-algebra is the C∗-algebra K(H) of compact operators on some separable, infinite-
dimensional Hilbert space H. One can realise this as the inductive limit of the sequence

C ϕ1−→M2(C)
ϕ2−→M3(C)

ϕ3−→ · · ·

where ϕn : Mn(C) → Mn+1(C) is given by ϕ(a) = diag(a, 0) for a ∈ Mn(C). If A is a C∗-algebra
such that A⊗K(H) ∼= A, we say that A is stable, and it is easily verified that K(H) itself is stable.

If A is an arbitrary C∗-algebra, then, for each n ∈ N, we can construct the matrix algebra Mn(A)
over A, which turns out to be a C∗-algebra. If ϕ : A→ B is a *-homomorphism, the n-amplification
ϕ(n) : Mn(A) → Mn(B) by ϕ(n)([aij ]) = [ϕ(aij)] is again a *-homomorphism. In fact, the n-
amplification of any linear map is again linear. Note that *-homomorphisms are always contractive,
that is, ‖ϕ‖ ≤ 1 for all *-homomorphisms ϕ : A → B, and they take positive elements to positive
elements.
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Definition 1.6. Let A and B be C∗-algebras. A linear map ϕ : A→ B is called:

• contractive if ‖ϕ‖ ≤ 1;

• completely contractive if
∥∥ϕ(n)

∥∥ ≤ 1 for all n ∈ N;

• positive if ϕ(A+) ⊆ B+;

• completely positive if ϕ(n)(Mn(A)+) ⊆Mn(B)+ for all n ∈ N.

• unital if, under the additional assumptions that A and B are unital, ϕ(1A) = 1B .

We shall abbreviate ”completely positive” by c.p., ”complete positive and contractive” by c.c.p., and
”unital and completely positive” by u.c.p..

Note that while one might be cautious of the above notation, since c.c.p. could mean either
completely contractive, positive or contractive, completely positive, we only adopt the latter meaning
and, hence, there is no ambiguity. Note moreover that we do not assume any contractive property
on u.c.p. maps, since this is automatic. It is also the case that *-homomorphisms are c.c.p. and, in
the unital case, u.c.p..

Proposition 1.7. Let A,B be C∗-algebras, and let ϕ : A→ B be a c.c.p. map. Then the set

Aϕ = {a ∈ A |ϕ(a∗a) = ϕ(a)∗ϕ(a) and ϕ(aa∗) = ϕ(a)ϕ(a)∗}

is a C∗-subalgebra of A. For any a, b ∈ A and x ∈ Aϕ, we have

ϕ(axb) = ϕ(a)ϕ(x)ϕ(b)

We call the C∗-subalgebra Aϕ defined above the multiplicative domain of A, and it is the largest
C∗-subalgebra C of A on which ϕ|C is a *-homomorphism. The latter property in Proposition 1.7 will
be referred to as the bimodule property of c.c.p. maps. There is a generalisation, see [11, Proposition
1.5.7], but the above shall suffice for our purposes.

The following proposition gives a description of c.p. maps with codomain in B(H) for some Hilbert
space H.

Proposition 1.8 (Stinespring). Let A be a unital C∗-algebra, let H be a Hilbert space, and suppose
ϕ : A → B(H) is a c.p. map. Then there exists a Hilbert space H ′ , an operator V : H → H ′ and a
*-homomorphism π : A→ B(H ′) such that

ϕ(a) = V ∗π(a)V, a ∈ A.

The norm of ϕ is given by ‖ϕ‖ = ‖ϕ(1)‖ = ‖V ∗V ‖. Conversely, if ϕ : A → B(H) is of the form
ϕ(a) = V ∗π(a)V for some operator V : H → H ′ and a *-homomorphism π : A → B(H ′), then ϕ is
c.p..

A proof may be found in [11, Theorem 1.5.3]. We shall actually need a more general result later
by weakening the conditions on the codomain of ϕ; this is of importance in extension theory.

One important fact about c.c.p. and u.c.p. maps is that we can often extend them in certain ways.
In order to make this statement precise, we need a definition.

Definition 1.9. An operator system is a closed subspace of a unital C∗-algebra A, which is self-
adjoint and contains the unit of A.

The following proposition shows that we can extend c.c.p. and u.c.p. maps from an operator system
E to the C∗-algebra A, which E is an operator subsystem of, if we map into bounded operators on
a Hilbert space. A proof can be found in [11, Theorem 1.6.1].

Proposition 1.10 (Arveson’s extension theorem). Let A be a unital C∗-algebra A, and suppose
E ⊆ A is an operator subsystem. Then every c.c.p. (or u.c.p.) map ϕ : E → B(H) extends to a c.c.p.
(or u.c.p.) map ϕ : A→ B(H).
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Some of the most important approximation properties of C∗-algebra are the notions of nucle-
arity and exactness, which studies whether certain maps — the identity map or some faithful *-
representation, respectively — can be factored through finite-dimensional C∗-algebras.

Definition 1.11. Let A and B be C∗-algebras. A map θ : A → B is nuclear if there exist nets of
c.c.p. maps ϕα : A→Mkα(C) and ψα : Mkα(C)→ A for some integers kα ∈ N such that

lim
α
‖θ(a)− ψα ◦ ϕα(a)‖ = 0

for all a ∈ A.

In other words, nuclear maps are those factorised by c.c.p. maps through finite-dimensional C∗-
algebras.

Definition 1.12. Let A be a C∗-algebra. We say that

(i) A is nuclear if the identity map idA : A→ A is nuclear.

(ii) A is exact if there exists a faithful *-representation π : A→ B(H), which is nuclear. Equivalently,
A is exact if and only if there exists a C∗-algebraB and an injective *-homomorphism ϕ : A→ B,
which is nuclear.

Note that this is not the original algebraic formulation of exactness, which we shall encounter
soon, and note also that the equivalence of being nuclearly embeddable and being exact is a deep
result due to Kirchberg, see [3, IV.3.4.18].

There is another description of nuclearity and exactness, which is based on tensor products of C∗-
algebras. We shall not define neither the minimal tensor product ⊗ nor the maximal tensor product
⊗max in this thesis; the details can be found in [11, Chapter 3]. One thing we point out is that given
a short exact sequence 0→ I → A→ A/I → 0 of C∗-algebras and a C∗-algebra B, the sequence

0→ I ⊗max B → A⊗max B → A/I ⊗max B → 0

is always exact. However, this is not the case for the minimal tensor product; generally, exactness of
the sequence may fail in the middle in the sense that the kernel of the map A⊗ B → A/I ⊗ B may
be strictly larger than the image of the map I ⊗B → A⊗B.

Theorem 1.13. A C∗-algebra A is

(i) exact if and only if the functor A⊗− preserves short exact sequences;

(ii) nuclear if and only if, for any C∗-algebra B, the algebraic tensor product A � B has a unique
C∗-norm.

This characterisation of exactness is the original one, and the terminology coincides with exact-
ness as a term in homological algebra. Nuclearity and exactness are both pleasant properties of
C∗-algebras, as they limit the exoticness that a general C∗-algebra may have, and this is also the
reason why, for classification purposes, one often only considers nuclear C∗-algebras. While exactness
passes to C∗-subalgebras, which is easily seen using the notion of nuclear embeddability, the same
does not hold for nuclear C∗-algebras. Hence one has to be careful when passing to C∗-subalgebras;
passing to hereditary C∗-subalgebras, in particular ideals, does, however, preserve nuclearity.

Given a C∗-algebraA, it is desirable to understand its *-representations, that is, the *-homomorphisms
A → B(H) for Hilbert spaces H. An important fact is that any C∗-algebra admits a faithful, non-
degenerate representation on B(H) for some Hilbert space H, which entails that we can characterise
C∗-algebras as norm-closed *-subalgebras of B(H). The canonical way of showing this is through the
GNS-construction.

Theorem 1.14 (Gelfand-Neimark-Segal). If ϕ is a state on a C∗-algebra A, then there exists a Hilbert
space Hϕ, a non-degenerate *-homomorphism πϕ : A → Hϕ and a cyclic unit vector ξϕ ∈ Hϕ such
that ϕ(x) = 〈πϕ(x)ξϕ, ξϕ〉 for all x ∈ A. We refer to the tripe (Hϕ, πϕ, ξϕ) as the GNS-representation
associated to ϕ.

9



By cyclicity of ξϕ, we mean that πϕ(A)ξϕ is norm-dense in Hϕ. Observe that the state ϕ is
faithful if and only if the induced representation πϕ is faithful. Taking the direct sum of all GNS-
representations associated to states on A, one achieves a faithful *-representation of A on some Hilbert
space as desired.

To end the discussion on C∗-algebras, we define a quite useful tool, whose construction is due to
Pedersen, see [53, Theorem 5.6.1].

Proposition 1.15. For each C∗-algebra A, there exists a unique minimal norm-dense algebraic ideal
in A.

The ideal is called the Pedersen ideal and is denoted Ped(A). If A = C0(X) is an Abelian C∗-
algebra, then Ped(A) = Cc(A) is the collection of continuous, compactly supported functions X → C,
see [3, II.5.2.5]. One fact that we need to know is the following, the proof of which follows from the
construction in [53, Theorem 5.6.1].

Proposition 1.16. Let A be a C∗-algebra. Then for each positive element x ∈ A and ε > 0, the
element (x− ε)+ belongs to Ped(A).

Now we turn our attention to the theory of von Neumann-algebras. Recall that a von Neumann-
algebra M is a non-degenerate *-subalgebra of B(H) for some Hilbert space H, which is closed in the
strong operator topology. There are many equivalent characterisations of von Neumann-algebras, the
most important being the following, which is part of the von Neumann bicommutant theorem. Recall
that we for any set M ⊆ B(H) denote by M ′ = {T ∈ B(H) |TS = ST for all S ∈M} the commutant
of M .

Theorem 1.17. Let M be a non-degenerate *-subalgebra of B(H). Then the following are equivalent:

(i) M = M ′′;

(ii) M is closed in the strong operator topology;

(iii) M is closed in the weak operator topology.

We refrain from defining the topologies in detail; the definitions may be found in [3, Chapter I.3]. A
linear map ϕ : M → N between von Neumann-algebras is called normal if it is ultrastrong-ultrastrong
continuous, see [3, Proposition III.2.2.2].

Definition 1.18. A von Neumann-algebra M is called a factor if the center Z(M) = M ∩M ′ is
trivial, that is, if Z(M) = C.

A von Neumann-algebra being a factor is similar to a C∗-algebra being simple. Most of the von
Neumann-algebras appearing in this thesis will be factors, as they admit a lot of pleasant structures.
For example, the possible properties of the projections in a factor give rise to a type decomposition.

Definition 1.19. Let M be a von Neumann-algebra, and let p ∈M be a projection. We say that:

(i) p is finite if p ∼ q ≤ p implies that p = q;

(ii) p is infinite if p is not finite;

(iii) p is Abelian if pMp is Abelian;

(iv) p is minimal if pMp = C.

We call M finite if its unit 1 is finite, and we call M infinite if 1 is infinite.

Note that minimal projections are always Abelian. A projection p ∈M is central if p ∈M ∩M ′.
We shall only explain the type decomposition for factors and disregard the general definitions, which
may be found in [74, Definition 26.3].

Definition 1.20. Assume that M is a factor. We say that:

(i) M is of type I if M admits a non-zero minimal projection. Equivalently, M is isomorphic to
B(H) for some, possibly finite-dimensional, Hilbert space H. If M is isomorphic to Mn(C) for
some n ∈ N, we say that M is of type In.
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(ii) M is of type II if there are no minimal projections, but there are non-zero finite projections.
Moreover, if M is finite, we say that M is of type II1, and if M is infinite, it is of type II∞.

(iii) M is of type III, if M is not of type I or type II.

By construction, this is a type decomposition in the sense that any factor is of either type I, type
II1, type II∞ or type III. Any von Neumann-algebra factor of type III is necessarily infinite, and
the only finite factors are those of type In for some n ∈ N or of type II1. Another important fact
regarding factors is that we can always compare projections. If M is a von Neumann-algebra, then
we write p - q for projection p, q ∈ M if p is Murray-von Neumann equivalent to a subprojection of
q. If p - q, but p 6∼ q, we write p ≺ q.

Proposition 1.21. Let M be a von Neumann-algebra factor, and let p, q ∈M be projections. Then
either p ≺ q, p ∼ q or p � q.

Tracial states preserve this ordering in the sense that if p - q and τ is a tracial state, then
τ(p) ≤ τ(q).

As stated before, the von Neumann-algebras of interest for the purposes in this thesis are mostly
factors, and specifically we are interested in II1-factors. It is hence advantageous to have some more
tangible characterisations of II1-factors.

Proposition 1.22. If M is an infinite-dimensional factor with a faithful tracial state, then M is of
type II1.

The condition that M admits a faithful tracial state implies that M is finite, such that M is either
of type In for some n ∈ N, or of type II1, and the infinite-dimensionality assumption provides that
the former cannot hold. In fact, the converse also holds; a II1-factor is always infinite-dimensional
with a faithful tracial state, and the tracial state is actually unique.

The next proposition shows how projections in a II1-factor may effectively be halved, which is an
important property of such von Neumann-algebras.

Proposition 1.23. If M is a II1-factor and p ∈ M is a projection, then there exists n mutually
orthogonal and Murray-von Neumann equivalent projections q1, . . . , qn ∈M such that q1+· · ·+qn = p.
Moreover, if τ denotes the unique tracial state on M , then τ(P(M)) = [0, 1].

The following definition is closely related to that of AF-algebras, cf. Definition 1.4.

Definition 1.24. A von Neumann-algebra M is called hyperfinite if there exists an increasing se-
quence of finite-dimensional von Neumann-algebras M1 ⊆M2 ⊆ · · · such that the union

⋃
n∈NMn is

strongly dense in M .

For this thesis, the single-most important von Neumann algebra is the unique hyperfinite II1-factor
R, see [3, Theorem III.3.4.3].

1.2 Brief introduction to K-theory

Briefly stated, the idea behind K-theory is to introduce, for each C∗-algebra, a pair of Abelian groups,
which carry some of the information of the original C∗-algebra. They do not carry all the information
— K-theory is not a complete classification tool by itself — but being an isomorphism invariant, if
two C∗-algebras have non-isomorphic K-theory, they are non-isomorphic C∗-algebras. This is true
for all isomorphism invariants, but the success of K-theory lies in the breadth of topics, which can
advantageously be studied using K-theory. For instance, the AF-algebras are classified completely
by their ordered K0-groups, and K-theory played an important role in the classification of essentially
normal operators within single operator theory. We shall discuss the former later on in the thesis, and
the latter can be studied in [33]. Since we shall extensively use K-theory in this thesis, we present
below an overview of the most important aspects. The proofs can, along with further details, be
found in [64].

Let A be an arbitrary C∗-algebra, and denote for each n ∈ N the collection of projections on Mn(A)
by Pn(A). Let P∞(A) =

⋃
n∈N Pn(A) and define an equivalence relation ∼0 on P∞(A) by the follow-

ing: Let p ∈ Pn(A) and q ∈ Pm(A), then we say that p ∼0 q if and only if p = v∗v and q = vv∗ for
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some v ∈Mm,n(A). Denote the equivalence class of p ∈ P∞(A) by [p]0, and let D(A) be the collection
of equivalence classes. This is easily verified to be an Abelian semigroup with addition defined by
[p]0 + [q]0 = [p ⊕ q]0, and with the equivalence class of the zero projection being the identity. By
the Grothendieck construction, which is a generalisation of the construction of Z from N0, we get
an Abelian group K0(A). If 0 → A → A† → C → 0 is the short exact sequence associated to the
unitisation of A, one can verify that the corresponding sequence K0(A) → K0(A†) → K0(C) is an
exact sequence of Abelian groups. Now we define the Abelian group K0(A) = ker(K0(A†)→ K0(C)).
If A is already unital, one can check that K0(A) = K0(A), but in the non-unital case, the two Abelian
groups may be widely different.

In order to describe the elements of K0(A) for a general C∗-algebra, we define the map s : A† → A†

by s(a+ λ1) = λ1 for a ∈ A and λ ∈ C; this map is known as the scalar map.

Proposition 1.25 (The standard picture of K0). If A is a C∗-algebra, unital or not, then

K0(A) = {[p]0 − [s(p)]0 | p ∈ P∞(A†)}.

Also, if ϕ : A → B is a *-homomorphism, then it induces a group homomorphism K0(ϕ) : K0(A) →
K0(B) by

K0(ϕ)([p]0 − [s(p)]0) = [ϕ†(p)]0 − [s(ϕ†(p)]0,

for all p ∈ P∞(A†), where ϕ† : A† → B† is the *-homomorphism given by ϕ†(a+ λ1) = ϕ(a) + λ1 for
a ∈ A and λ ∈ C.

In the case where the C∗-algebra in question is unital, we do not have to go through the unitisation
to make a sensible functor and as such we have the following description of K0:

Proposition 1.26 (The standard picture of K0, unital case). If A is a unital C∗-algebra, then

K0(A) = {[p]0 − [q]0 | p, q ∈ P∞(A)},

and if ϕ : A → B is a *-homomorphism between unital C∗-algebras, then it induces a group homo-
morphism K0(ϕ) : K0(A)→ K0(B) given by

K0(ϕ)([p]0 − [q]0) = [ϕ(p)]0 − [ϕ(q)]0

for all p, q ∈ P∞(A).

In both Proposition 1.25 and Proposition 1.26, we have abused notation and denoted by ϕ the
induced map on matrix algebras.

Let us discuss some properties of the functor K0.

Proposition 1.27 (Properties of K0). The functor K0 from the category of C∗-algebras to the
category of Abelian groups satisfy the following:

(i) K0 is half-exact;

(ii) K0 is split-exact;

(iii) K0 is a homotopy invariant, i.e., if A and B are homotopically equivalent C∗-algebras, then
K0(A) = K0(B);

(iv) K0 preserves direct sums, i.e., K0(A⊕B) = K0(A)⊕K0(B) for all C∗-algebras A and B;

(v) K0 is stable in the sense that for each n ∈ N and C∗-algebra A, the inclusion A ↪→ Mn(A)
induces a group isomorphism K0(Mn(A)) ∼= K0(A). In fact, for any Hilbert space H, the
inclusion A ↪→ A⊗K(H) induces a group isomorphism K0(A) ∼= K0(A⊗K(H));

(vi) K0 is continuous in the sense that it commutes with inductive limits.
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Note that (iii) and (v) explicitly implies that K0 cannot be a classification invariant, since there
exists non-isomorphic C∗-algebras which are homotopically equivalent. For instance, if A is any C∗-
algebra, then the cone CA = C0((0, 1]) ⊗ A is homotopically equivalent to the zero C∗-algebra, see
[64, Example 4.1.5]. Nevertheless, the K0-functor plays a role in classification theory, but we need to
use the fact that the K0-group naturally can admit more structure than what we have established so
far.

Definition 1.28. A pair (G,G+), where G is an Abelian group, and G+ is a subset of G, is called
an ordered Abelian group if

(i) G+ +G+ ⊆ G+;

(ii) G+ ∩ (−G+) = {0};

(iii) G = G+ −G+.

If (G,G+) only satisfies (i) and (iii), we call it a preordered Abelian group.

The terminology should not be the cause of any confusion, since if (G,G+) is a (pre)ordered group,
it induces a (pre)order on G by x ≤ y if y − x ∈ G+.

Definition 1.29. If (G,G+) is an ordered Abelian group and u ∈ G+ satisfies that for each h ∈ G,
there exists n ∈ N with −nu ≤ h ≤ nu, then u is called an order unit. The triple (G,G+, u) is then
called an ordered Abelian group with a distinguished order unit.

It turns out that K0(A) is often an ordered Abelian group. By considering that constructing the
group K0(A) mimics the construction of Z from N0, and as the canonical positive cone of Z is exactly
N0, it is natural to define the positive cone of K0(A) to be

K0(A)+ = {[p]0 | p ∈ P∞(A)}.

Note that K0(A)+ coincides with D(A).

Proposition 1.30. If A is a unital C∗-algebra, then (K0(A),K0(A)+, [1]0) is a preordered Abelian
group with a distinguished order unit. If, in addition, A is stably finite, the triple is an ordered Abelian
group.

The above triple is precisely a classification invariant for unital AF-algebras, see Theorem 1.39.
However, note that non-unital C∗-algebra may have an ordered K0-group, as any AF-algebra A,
unital or not, satisfy that the pair (K0(A),K0(A)+) is an ordered Abelian group. We shall discuss
the classification and the structure of the ordered K0-groups of AF-algebras in a later section.

We now turn our attention to the K1-functor. Let A be a unital C∗-algebra for now, and de-
note for each n ∈ N the collection of unitary elements on Mn(A) by Un(A). Define moreover
U∞(A) =

⋃
n∈N Un(A). Define on U∞(A) the equivalence relation ∼1 by the following: If u ∈ Un(A)

and v ∈ Um(A), then u ∼1 v if and only if there exists an integer k such that u⊕1k−n is homotopically
equivalent to v ⊕ 1k−m inside Uk(A). Denote the equivalence classes of u ∈ U∞(A) by [u]1. For any
C∗-algebra A, we define K1(A) = {[u]1 |u ∈ U∞(A†)}, which is an Abelian group when equipped with
the addition [u]1 + [v]1 = [u⊕ v]1. One finds that K1 is a functor from the category of C∗-algebras to
the category of Abelian groups. It turns out that K1 satisfies all the same properties of Proposition
1.27 as K0, and hence we shall not repeat them here.

One viewpoint, which is sometimes advantageous to consider, is that K1(A) can be seen as the
K0-group of the suspension of A. If A is any C∗-algebra, define the suspension SA = C0(R, A).

Proposition 1.31. For any C∗-algebra A, we have K1(A) ∼= K0(SA).

The reason this viewpoint is helpful, is that it phrases K1 in terms of K0 which, in some circum-
stances, can be useful. Generalising this idea, we can define Kn(A) = K(SnA) for all C∗-algebras A,
which on the surface introduces a countably infinite number of different K-groups. But we need not
worry; there are only two K-groups for C∗-algebras as the following proposition shows.

Proposition 1.32 (Bott periodicity). For every C∗-algebra A, we have an isomorphism K1(SA) =
K0(A).
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Bott periodicity implies that, for any C∗-algebra A, we have

Kn(A) =

{
K0(A) if n is even

K1(A) if n is odd
.

Consequently, there are only two K-groups. Recall that neither of the functors Ki for i = 0, 1 preserve
short exact sequences in general, but that they are half-exact. The following proposition generalises
this result by showing that any short exact sequence of C∗-algebras induces a six-term exact sequence
in K-theory, which is highly useful in calculating the K-theory of C∗-algebras fitting in a short exact
sequence.

Proposition 1.33 (Six-term exact sequence in K-theory). Let 0 → I → E → A → 0 be a short
exact sequence of C∗-algebras. Then there exists a six-term exact sequence in K-theory:

K0(I) K0(E) K0(A)

K1(I)K1(E)K1(A)

∂0∂1

The exponential map ∂0 and the index map ∂1 in the above diagram are called the boundary
maps; the precise definitions of both maps can be found in [64].

1.3 Groups and C∗-algebras

One way of constructing C∗-algebras with specific properties is by considering C∗-algebras constructed
from groups in natural ways. The question of how the structure of a group C∗-algebra is influenced
by the structure of the underlying group is an important question. We emphasise that this section
by no means is a thorough study of the subject, as we shall only briefly discuss the construction of
the reduced and the full group C∗-algebras and study the notion of amenability of groups. The go-to
textbook for the subject of discrete groups within C∗-algebraic theory is [11].

Let G be a discrete group with unit e, and denote by λ : G → B(`2(G)) the left regular repre-
sentation λg(δh) = δgh, where {δg | g ∈ G} is the canonical orthonormal basis for B(`2(G)). Define
the group ring C[G] as the collection of formal sums

∑
g∈G agg with ag ∈ C non-zero only for finitely

many g ∈ G. Equip the group ring with multiplication and involution given by(∑
g∈G

agg

)(∑
h∈G

bhh

)
=
∑
g,h∈G

agbhgh and

(∑
g∈G

agg

)∗
=
∑
g∈G

agg
−1.

Equipped with these two algebraic operations and the obvious addition, the group ring C[G] be-
comes a *-algebra, and we can extend the left regular representation to an injective *-homomorphism
λ : C[G]→ B(`2(G)) in an obvious way. There are two canonical ways of completing the group ring.
The full group C∗-algebra of G is denoted by C∗(G) and is the completion of the group ring C[G] with
respect to the norm ‖x‖ = supπ ‖π(x)‖ with the supremum taken over all cyclic *-representations of
the group ring. For the purposes of this thesis, we shall mostly be interested in the reduced group
C∗-algebra.

Definition 1.34. The reduced group C∗-algebra of G, denoted C∗r (G), is the completion of the group
ring C[G] with respect to the norm ‖x‖ = ‖λ(x)‖, with the right-hand norm being the usual norm
on B(`2(G)).

In this way, the reduced group C∗-algebra is the completion of the group ring when viewed as
a *-subalgebra of B(`2(G)); this viewpoint is meaningful as the left regular representation is an
embedding C[G] ↪→ B(`2(G)). Both of these group C∗-algebras have interesting structure based upon
the structure of the underlying discrete group. We shall study the connection between amenability of
the group and quasidiagonality of the corresponding reduced group C∗-algebra, as it turns out that
the two are equivalent. One important fact regarding the reduced group C∗-algebra is that it always
admits faithful tracial states.

Proposition 1.35. The function τ : C∗r (G) → C given by τ(x) = 〈xδe, δe〉 is a faithful tracial state
on C∗r (G).
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Let us now see how the structure of the underlying group can impact the structure of a cor-
responding group C∗-algebra by way of an example, which is both of great importance in general
C∗-algebraic study as well as in this thesis. We define an action of G on `∞(G) by s.f(t) = f(s−1t)
for all s, t ∈ G and f ∈ `∞(G).

Definition 1.36. A group G is amenable if there exists a left-invariant mean on G, i.e., if there exists
a state µ : `∞(G)→ C such that µ(s.f) = µ(f) for all f ∈ `∞(G) and s ∈ G.

There are several equivalent formulations of amenability. We only mention a few C∗-algebraic
characterizations here out of interest.

Proposition 1.37. If G is a discrete group, then the following are equivalent.

(i) G is amenable;

(ii) C∗r (G) is nuclear;

(iii) C∗r (G) admits a one-dimensional representation.

Even more characterisations can be found in [11, Theorem 2.6.8]. After proving the Tikuisis-
White-Winter theorem, we shall add another equivalent formulation, namely that C∗r (G) is quasidi-
agonal. What this means, and how the notion of amenability and quasidiagonality are related, will
be established in the later chapters.

We end this section with a result stating that the functor C∗r (·) commutes with taking inductive
limits.

Proposition 1.38. If (Gα)α∈Λ is an inductive system of groups with the assumption that there exists
an embedding Gα ↪→ Gβ whenever α ≤ β, then we have an isomorphism of C∗-algebras

C∗r (lim
→
Gα) ∼= lim

→
C∗r (Gα).

Proof. Define G to be the limit of the inductive system (Gα)α∈Λ. Note that if H is a subgroup of
H ′, then we have a natural embedding C∗r (H) ↪→ C∗r (H ′), see [11, Proposition 2.5.9]. In particular,
this implies that whenever α ≤ β, we have an injective *-homomorphism ϕβ,α : C∗r (Gα) → C∗r (Gβ).
Hence we have constructed an inductive system (C∗r (Gα))α∈Λ with injective connecting maps in the
category of C∗-algebras. Denote by A the inductive limit of this system, and let ϕα : C∗r (Gα) → A
be the boundary maps; these are all injective by injectivity of each ϕα,β . Since we can also realise
each Gα as a subgroup of G, there exist injective *-homomorphisms ψα : C∗r (Gα) → C∗r (G). Since
the embeddings are canonical, it follows that ψα = ψβ ◦ϕβ,α. By the universal property of inductive
limits, there exists a *-homomorphism ψ : A→ C∗r (G) such that the following diagram commutes for
each α ∈ Λ:

C∗r (Gα) A

C∗r (G)

ϕα

ψα ψ

We claim that ψ is a *-isomorphism. First we show that ψ is injective by showing that it is isometric.
Note that we can realise A as the closure of

⋃
α∈Λ C

∗
r (Gα) since each ϕα is injective. Let a ∈ A be

arbitrary, then we can realise a as the limit of a sequence (an)n∈N with an ∈ C∗r (Gαn) for each n.
Invoking injectivity of ψα for each α as well as the above commutative diagram, we get

‖ψ(a)‖ = lim
n→∞

‖ψαn(an)‖ = lim
n→∞

‖an‖ = ‖a‖

proving injectivity of ψ.

Lastly, we prove that ψ is surjective. Using that G is the inductive limit of the inductive sequence
(Gα)α∈Λ, we can realise each element in C∗r (G) as the norm-limit of linear combinations of elements
in C[Gα] for α ∈ Λ. Since the latter C∗-algebras naturally embeds into A, as A is the closure of⋃
α∈Λ C

∗
r (Gα), one easily verifies, using the above commutative diagram as well as continuity and

linearity of the maps involved, that ψ is surjective.
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1.4 Classification of C∗-algebras

A prevalent idea throughout many mathematical disciplines is the idea of classifying things such
as algebraic structures, their elements or certain morphisms. For C∗-algebras in particular it is
no different, and the classification theory of C∗-algebras have a rich history indeed. Some of the
more elementary classification results are those for Abelian C∗-algebras, Proposition 1.2, and finite-
dimensional C∗-algebras, Proposition 1.3. In both of these cases, the classification results are not
particularly deep and can be proved with relative ease, but this is not always the case. In the last
couple of decades, there has been an on-going classification programme due to Elliott, which seeks to
classify a large class of C∗-algebras via their K-theoretic data as well as their tracial state simplices.
In this section, we shall discuss the historical context of this classification programme and in a later
chapter, we shall see how this classification is, in some sense, almost complete.

The first class of C∗-algebras to be classified explicitly by their K-theoretic data was the class of
AF-algebras. Historically, this was not the first classification of AF-algebras, since Bratteli in a paper
[5] from 1972, in which he defined the AF-algebras, classified them combinatorially by introducing
certain graphs now known as Bratteli diagrams. A few years later, Elliott provided a different classi-
fication of the AF-algebras, this time precisely by using their K-theoretic data. This was effectively
the first time K-theory had been used explicitly as a classification tool, and it marked the beginning
of Elliott’s classification program. Before we can state the classification, we need to define what is
turning out to be a crucial part of the classification invariant. If A is any C∗-algebra, we define the
dimension range D0(A) by D0(A) = {[p]0 | p ∈ P(A)}. The following theorem is formulated as in [59,
Theorem 1.3.3], and the original proof can be found in [17].

Theorem 1.39 (Elliott, 1976). Let A and B be AF-algebras.

(i) If there exists a group isomorphism α : K0(A) → K0(B) such that α(D0(A)) = D0(B), then
there exists a *-isomorphism ϕ : A→ B with K0(ϕ) = α.

(ii) In the case A and B are both unital, then if there exists a group isomorphism α : K0(A)→ K0(B)
with α(K0(A)+) = K0(B)+ and α([1A]0) = [1B ]0, then there exists a *-isomorphism ϕ : A→ B
with K0(ϕ) = α.

The classification invariant, at least in the unital case, actually has a very nice and intrinsic
structure, as the classification invariant are Riesz groups.

Definition 1.40. Let (G,G+) be an ordered Abelian group. We say that

(i) G is unperforated if ng ≥ 0 implies g ≥ 0 for all n ∈ N and g ∈ G;

(ii) G has Riesz interpolation if for every g1, g2, h1, h2 ∈ G with gi ≤ hj for i, j = 1, 2, there exists
k ∈ G with gi ≤ k ≤ hj for i, j = 1, 2.

(iii) G is almost unperforated if, whenever (n + 1)g ≤ nh for some g, h ≥ 0 and n ∈ N0, we have
g ≤ h;

(iv) G is weakly unperforated if ng > 0 implies g > 0 for all n ∈ N and g ∈ G.

If (G,G+) satisfy (i) and (ii), we call the pair a Riesz group. Note that a weakly unperforated
ordered Abelian group is unperforated if and only if it is torsion-free.

Proposition 1.41 (Effros-Handelmann-Shen, 1980). If A is an AF-algebra, then (K0(A),K0(A)+) is
a Riesz group. Conversely, every countable Riesz group can be realised as (K0(A),K0(A)+) for some
AF-algebra A. If, additionally, (G,G+) has an order unit u, then there exists a unital AF-algebra A
such that (K0(A),K0(A)+, [1]0) ∼= (G,G+, u).

For the proof, we refer to [16, Theorem 2.2] and [64, Proposition 7.2.8]. The case in which the
ordered Abelian group admits an order unit follows from the previous results by invoking [29, Corol-
lary 3.18].

When we say that AF-algebras were the first class of C∗-algebras to be classified explicitly by their
K-theoretic data, there are valid objections to be made, as there is a subclass of AF-algebras, namely
UHF-algebras, which was classified prior to AF-algebras, and where the classification invariant is in
fact based on K-theoretic data, although this is somewhat anachronistic.
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Definition 1.42. A C∗-algebra A is a UHF-algebra if it is isomorphic to a sequential inductive limit
of simple finite-dimensional C∗-algebras with unital connecting maps.

An important fact about UHF-algebras is that they always admit a unique tracial state, which is
the one induced by the unique tracial state on simple finite-dimensional C∗-algebras. Observe that a
trace on a UHF-algebra is always faithful by simplicity.

UHF-algebras were first introduced by Glimm in 1960 [28], where he classified them by finding a
way to associate to each UHF-algebra a unique supernatural number, that is, a number of the form∏
p p

np with np ∈ N0 ∪ {∞}, and the product to be taken over the prime numbers; note that this
generalises the idea behind the uniqueness of prime factorisation. As UHF-algebras are clearly AF-
algebras, we can classify them completely by Theorem 1.39, and one can derive Glimm’s classification
by supernatural numbers via Elliott’s classification — for more details on this, we refer to [64, Chap-
ter 7.4]. One UHF-algebra of particular importance in this thesis is the universal UHF-algebra Q,
which is the unique UHF-algebra with K0(Q) = Q or, using the notion of supernatural numbers, it is
the UHF-algebra associated to the supernatural number

∏
p p
∞. This is the universal UHF-algebra

in the sense that it contains an isomorphic copy of all UHF-algebras and hence, in a sense, contains
the information of each. Another way of expressing the universal UHF-algebra is as an infinite tensor
product Q =

⊗∞
n=1Mn(C), which is to be understood as the inductive limit of the tensor products⊗N

n=1Mn(C). Since all UHF-algebras admit unique tracial states, there exists a unique tracial state
τQ on Q, induced by the unique tracial states on matrix algebras over C. There exists, for any n ∈ N,
a conditional expectation En : Q →Mn(C), which is trace-preserving in the sense that τQ = Trn ◦En.

As stated several times in this section, AF-algebras were classified completely by their K-theoretic
data — in fact, only by the data of their ordered K0-groups. In [18], Elliott classified a larger class
of C∗-algebras, and, again, the classification was only by K-theoretic data, this time including the
K1-groups. We follow the definition given in [59, Definition 3.2.1].

Definition 1.43. An AT-algebra is a C∗-algebra, which can be realised as an inductive limit of
C∗-algebras of the form C(T)⊗ F , where F is a finite-dimensional C∗-algebra.

In order to understand the classification theorem on AT, we need to briefly define what is known
as graded K-theory. For any C∗-algebra, we define the graded K-group K∗(A) = K0(A)⊕K1(A), as
well as the graded dimension range

D∗(A) = {([p]0, [u]1) | p ∈ P(A), u ∈ U(pAp)}.

Note that D∗(A) clearly lies in K∗(A). We say that a map α : K∗(A) → K∗(B) is a graded group
homomorphism, if it is a group homomorphism such that α(Ki(A)) ⊆ Ki(B) for i = 0, 1. With this
terminology in mind, we mention the classification result on AT-algebras due to Elliott. We express
it as formulated in [59, Theorem 3.2.6], where it is stated without proof; a proof can be found in the
original paper [18, Theorem 7.1].

Theorem 1.44 (Elliott, 1989). Let A and B be AT-algebras of real rank zero. Then A and B are
isomorphic as C∗-algebras if and only if there exists a graded group isomorphism α : K∗(A)→ K∗(B)
satisfying that α(D∗(A)) = D∗(B)). In the affirmative case, there exists a *-isomorphism ϕ : A→ B
such that K∗(ϕ) = α.

Note the similarities to the classification of AF-algebras, Theorem 1.39. This led to the conjecture
that one can use K-theory as a classification tool, and Elliott’s classification program was exactly to
classify C∗-algebras by the data from their K-theory and tracial simplex. We shall, in a later chapter,
examine the classification program in higher detail and explicitly mention what the classification
invariant, known as Elliott’s invariant, actually is, and how it is supposed to be understood. Moreover,
we shall mention how this all relates to the Tikuisis-White-Winter theorem.
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2 Quasidiagonality and related concepts

Having recapped the most central aspects of C∗-algebraic theory for this thesis, we are now ready
to study new material. More specifically, and as the title suggests, we shall study quasidiagonality
of C∗-algebras. It turns out that, in studying quasidiagonality, it is a fruitful idea to understand
ultrafilters and ultrapowers, since quasidiagonality can be understood in terms of the ultrapower Qω
of the universal UHF-algebra Q. For this reason, we shall dedicate a section to study ultrafilters
and corresponding ultrapowers. Subsequently, we shall examine quasidiagonality in greater detail,
including establishing a link between the approximation property for C∗-algebras and the concept in
single operator theory from where the terminology originates. The concept of AF-embeddability is
also discussed with the intention of introducing the reader to this area of on-going research, which
is examined in more depth in later chapters. Lastly, we study quasidiagonality and amenability of
tracial states, which are closely related to the similarly named properties of C∗-algebras, and which
are essential for the Tikuisis-White-Winter theorem.

2.1 Ultrafilters and ultrapowers

In both the original as well as in Schafhauser’s proof of the Tikuisis-White-Winter theorem, ul-
trapowers play an important role, partially due to appearances in important characterisations of
quasidiagonality, which arises from the fact that approximative properties, informally speaking, be-
come exact when passing to ultrapowers. We shall formalise this idea by giving a few examples in
the following, but first we shall define the concept of an ultrafilter and subsequently of ultraproducts
of C∗-algebras.

Definition 2.1. A filter ω on N is a non-empty family of subsets with the following properties:

(i) ∅ 6∈ ω;

(ii) For each A,B ∈ ω, there exists C ∈ ω with C ⊆ A ∩B;

(iii) For each A ∈ ω and A ⊆ B ⊆ N, we have B ∈ ω.

We say that a filter ω is an ultrafilter if it is maximal in the sense that if ω′ is a filter such that
ω ⊆ ω′, then ω = ω′. A free filter is a filter ω for which

⋂
A∈ω A = ∅.

Condition (ii) above is called the finite intersection property, and (iii) is called upwards directed-
ness. The following proposition gives a different and often useful characterisation of maximality of
filters in terms of partitions of N.

Proposition 2.2. Let ω be a filter on N. The following are equivalent:

(i) ω is an ultrafilter;

(ii) If A ⊆ N, then either A ∈ ω or Ac ∈ ω;

(iii) For all partitions N = A1 ∪ A2 ∪ . . . ∪ An with Ai ∩ Aj = ∅ for i 6= j, there exists a unique
j ∈ {1, . . . , n} with Aj ∈ ω.

Proof. (i)⇒(ii): Let A ⊆ N be arbitrary and suppose that Ac 6∈ ω. Note that, in particular, we have
A 6= ∅. Consider the set

ω′ = {B ⊆ N | ∃A0 ∈ ω : A0 ∩A ⊆ B}.

One easily verifies that ω′ is a filter and that ω ⊆ ω′, and hence by assumption ω = ω′. Since A ∈ ω′
and ω′ = ω, we find that A ∈ ω.

(ii)⇒(i): Suppose that for any A ⊆ N, either A ∈ ω or Ac ∈ ω, and let ω′ be a filter containing
ω. If ω 6= ω′, then there exists A ∈ ω′ \ ω, and consequently Ac ∈ ω. However, then Ac ∈ ω′,
which is impossible, as this in conjunction with the finite intersection property would imply that
∅ = A ∩Ac ∈ ω′.
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(ii)⇒(iii): Let N = A1 ∪ A2 ∪ · · · ∪ An be a partition and assume that Aj 6∈ ω for all j ∈ {1, . . . , n}.
Then Acj ∈ ω for all j, and as

N = A1 ∪A2 ∪ · · · ∪An = (Ac1 ∩Ac2 ∩ · · · ∩Acn)c

we find that ∅ ∈ ω, which is impossible. Consequently, there exists at least one j with Aj ∈ ω, and
the finite intersection property along with the fact that the empty set does not belong to any filter
proves that this j is unique.

(iii)⇒(ii): This is immediate, just take n = 2.

Let us look at some examples.

Example 2.3. The following families of subsets on N are all filters on N.

(i) For each fixed n ∈ N, the principal filter defined by ωn = {A ⊆ N |n ∈ A} is an ultrafilter. It
is not free.

(ii) The Fréchet filter, also known as the cofinite filter, defined by ω∞ = {A ⊆ N |Ac is finite} is a
free filter. In fact, one can easily verify that a filter is free if and only if it contains the cofinite
filter.

The following proposition is an easy application of Zorn’s lemma.

Proposition 2.4. All filters on N are contained in an ultrafilter. In particular, there exists a free
ultrafilter on N.

The reason we are interested in filters is that they give us a way of generalising convergence of
sequences or, in general, of nets. We only phrase this in terms of metric spaces.

Definition 2.5. Let (M,d) be a metric space, and let ω be a filter on N. We say that a sequence
(xn)n∈N ⊆ M converges along ω if there exists x ∈ M such that for any ε > 0, we have {n ∈
N | d(xn, x) < ε} ∈ ω. We denote this by limn→ω xn = x.

Note that the limit point of a sequence, if it exists, is unique by the finite intersection property.
Convergence along a free filter coincide with the usual notion of convergence whenever the latter
exists by the remark in Example 2.3(ii). Convergence of sequences along ultrafilters is particularly
pleasant by the following proposition.

Proposition 2.6. If (M,d) is a compact metric space and ω is an ultrafilter on N, then for any
sequence (xn)n∈N ⊆M , the limit limn→ω xn exists.

Proof. Assume that the limit along ω does not exist, that is, for all y ∈M there exists some ε > 0 such
that {n ∈ N | d(xn, y) < ε} 6∈ ω. Using upwards directedness of filters, we can phrase this as saying
that, for any y ∈ M , there exists an open neighbourhood Uy of y such that {n ∈ N |xn ∈ Uy} 6∈ ω.
Since (Uy)y∈M is an open cover of M , it follows by compactness that there exists a finite subcover, say,
Uy1 , . . . , Uym . For each n ∈ N, we can find some i = 1, . . . ,m such that xn ∈ Uyi ; if xn ∈ Uyi ∩ Uyj ,
choose the minimum of i and j. Then we have constructed a partition of N where each part, by
construction, cannot lie in ω; but such a construction is impossible by the equivalences of (i) and (iii)
in Proposition 2.2.

Since any free filter contains the cofinite filter ω∞, and as convergence along ω∞ is precisely the
same as normal sequential convergence, we immediately get the following corollary.

Corollary 2.7. If (xn)n∈N ⊆ C is a bounded sequence, then its limit along any ultrafilter exists.
Moreover, if ω is a free ultrafilter and limn→∞ xn = x, then limn→ω xn = x.

We now turn our attention to examining how we can use ultrafilters in the theory of operator
algebras. For the remainder of this thesis, we let ω be a fixed free ultrafilter ω on N. Let A1, A2, . . .
be C∗-algebras and consider the product algebra

`∞(An,N) =

{
(an)n∈N | an ∈ An, sup

n∈N
‖an‖ <∞

}
.
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This is easily verified to be a C∗-algebra with the norm ‖(an)n∈N‖ = supn∈N ‖an‖. Let cω(An,N) be
the set

cω(An,N) =

{
(an)n∈N ∈ `∞(An,N) | lim

n→ω
‖an‖ = 0

}
.

Then cω(An,N) is a closed two-sided ideal in `∞(An,N); for example, if (an)n∈N, (bn)n∈N ∈ cω(An,N),
then as

0 ≤ ‖an + bn‖ ≤ ‖an‖+ ‖bn‖

for all n ∈ N, one easily finds that limn→ω ‖an + bn‖ = 0 and hence cω(An,N) is additively closed,
and in a similar fashion one can show that cω(An,N) is multiplicatively closed as well as a two-sided

ideal in `∞(An,N). In order to show that cω(An,N) is norm-closed, assume that ((a
(k)
n )n∈N)k∈N is a

sequence in cω(An,N) converging in norm to some element (an)n∈N ∈ `∞(An,N). Fix ε > 0 and find

K ∈ N such that
∥∥∥a(k)

n − an
∥∥∥ < ε for all k ≥ K and n ∈ N. Then,

0 ≤ ‖an‖ ≤
∥∥∥a(k)

n − an
∥∥∥+

∥∥∥a(k)
n

∥∥∥ < ∥∥∥a(k)
n

∥∥∥+ ε

for k ≥ K and n ∈ N. Consequently, by taking the limit along ω, we see that 0 ≤ limn→ω ‖an‖ < ε
for all ε > 0 and hence (an)n∈N ∈ cω(An,N).

All in all, this entails that we can take the quotient

`ω(An,N) = `∞(An,N)/cω(An,N)

which we call the ultraproduct of the sequence. Note that, in general, limits along ultrafilters depend
on the choice of ultrafilter, and hence an ultraproduct depends on the choice of ultrafilter — this is
the reason for keeping ω fixed throughout the thesis. The case where the sequence of C∗-algebras is
constant, i.e., where An = A for all n, is of great interest to us. We introduce the simplified notation

`∞(A) = `∞(A,N), cω(A) = cω(A,N), Aω = `ω(A,N)

and call Aω the ultrapower of A.

As mentioned before, one of the primary interests in ultrapowers is the fact that approximate prop-
erties of C∗-algebras hold exactly in the ultrapower. Let us give an explicit example to show what
we mean; later in the thesis we shall use this to see how an ultrafilter formulation encompasses the
approximative behaviour of quasidiagonality as an exact property. Suppose that ϕn : A → B is a
sequence of c.c.p. map between separable C∗-algebras, which is approximately multiplicative, that is,
for all a, b ∈ A, we have

lim
n→∞

‖ϕn(ab)− ϕn(a)ϕn(b)‖ = 0.

We can take the direct products of the c.c.p. maps ϕn, i.e., define a c.c.p. map ϕ : A → `∞(B) by
ϕ(a) = (ϕn(a))n∈N for a ∈ A. This, in turn, defines a map ϕω : A → Bω by ϕω = πω ◦ ϕ, where
πω : `∞(B)→ Bω is the quotient map. Then it follows directly from the approximate multiplicativity
of the sequence (ϕn)n∈N that ϕω is a multiplicative c.c.p. map, that is, ϕω is a *-homomorphism.
This example is just one of many such approximate properties, which are exact in the ultrapower.

One very nice, and quite abstract, result on ultrapowers is the following proposition called Kirchberg’s
ε-test, which in some sense is a generalisation of diagonal arguments. The reader should note the
high level of generality in the proposition, which is part of its beauty. The proof follows that of [40,
Lemma 3.1].

Proposition 2.8 (Kirchberg’s ε-test). Let X1, X2, . . . be a sequence of non-empty sets. Suppose that,

for each k ∈ N, there exists a sequence (f
(k)
n )n∈N of functions f

(k)
n : Xn → [0,∞). Define for each

k ∈ N the function f
(k)
ω : `∞(Xn,N)→ [0,∞] by

f (k)
ω (s1, s2, . . .) = lim

n→ω
f (k)
n (sn).

Suppose that, for each ε > 0 and m ∈ N, there exists an element s = (s1, s2, . . .) ∈ `∞(Xn,N) such

that f
(k)
ω (s) < ε for all k = 1, . . . ,m, then there exists an element t = (t1, t2, . . .) ∈ `∞(Xn,N) such

that f
(k)
ω (t) = 0 for all k ∈ N.
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Proof. Observe first of all that the functions f
(k)
ω exist by Proposition 2.6. For each n ∈ N, we define

a sequence of subsets (Xn,m)m∈N0
of Xn by the following: Put Xn,0 = Xn and, for m ≥ 1, define

Xn,m =

{
s ∈ Xn | max{f (1)

n (s), . . . , f (m)
n (s)} < 1

m

}
.

Note that (Xn,m)m∈N0 is a decreasing sequence of subsets of Xn. Define the map m : N → N by
m(n) = max{` ≤ n |Xn,` 6= ∅}.

Let k ≥ 1 be arbitrary, then, by assumption, there exists some s = (sn)n∈N ∈ `∞(Xn,N) satis-

fying that f
(j)
ω (s) < 1

k for j = 1, . . . , k. Hence, for each k ∈ N, we find that the set

Zk = {n ∈ N | max{f (1)
n (sn), . . . , f (k)

n (sn)} < 1

k
}.

necessarily belongs to ω, and, in particular, is non-empty. Observe that if n ∈ Zk, then sn ∈ Xn,k

and, hence Xn,k 6= ∅ for all k whenever n ∈ Zk. This gives the inequalities min{k, n} ≤ m(n) ≤ n for
n ∈ Zk. Define, for each k ∈ N, the set Yk = {n ∈ N | k ≤ m(n)}, then we get the inclusion

Zk \ {1, . . . , k − 1} ⊆ Yk.

Since ω is a free filter, it contains the cofinite filter, which — along with the fact that ω is an ultrafilter
— implies that Yk ∈ ω for each k ≥ 1; in particular, Yk is never empty. Since k ≤ m(n) for each
n ∈ Yk, we calculate explicitly that

lim
n→ω

1

m(n)
= lim inf

n→ω

1

m(n)
≤ lim sup

n→ω

1

m(n)
= inf
A∈ω

sup
n∈A

1

m(n)
≤ inf
k∈N

sup
n∈Yk

1

m(n)
≤ inf
k∈N

1

k
= 0.

By definition of the function n 7→ m(n), we find that for each n ∈ N there exists some element
tn ∈ Xn,m(n) ⊆ Xn. Put t = (tn)n∈N ∈ `∞(Xn,N), then one finds that

0 ≤ f (k)
ω (t) = lim

n→ω
f (k)
n (tn) ≤ lim

n→ω

1

m(n)
= 0

which completes the proof.

We shall use this result shortly to show that approximately unitarily equivalent maps ϕ,ψ : A→
Bω, where A is a separable C∗-algebra, and B is a unital C∗-algebra, are actually unitarily equivalent;
this is yet another approximate property, which is exact by passing to ultrapowers. However, before
we are able to prove this result, we need a few lemmas, which are also of independent interest.

Lemma 2.9. Let A be a C∗-algebra, and let πω : `∞(A)→ Aω be the ultrapower quotient map. Then
for each a = (an)n∈N ∈ `∞(A), we have ‖πω(a)‖ = limn→ω ‖an‖.

Proof. The map πω(a) 7→ limn→ω ‖an‖ defines a C∗-norm on Aω, and uniqueness of C∗-norms implies
the desired result.

Recall for the next proposition that a surjection need not lift projections, isometries or unitaries
to elements with similar properties.

Lemma 2.10. Let A be a C∗-algebra, and let πω : `∞(A) → Aω be the quotient map onto the
ultrapower. Then each projection in Aω lifts to a projection on `∞(A). If, moreover, A is unital, then
each isometry and each unitary element in Aω lifts to an isometry, respectively, a unitary element in
`∞(A).

Proof. We only prove it for the unitaries, as the other statements are proved in similar ways. Let
u ∈ Aω be a unitary element, and let a = (an)n∈N ∈ `∞(A) be any lift. Then,

0 = ‖πω(a∗a)− 1‖ = lim
n→ω
‖a∗nan − 1‖

and, similarly, limn→ω ‖ana∗n − 1‖ = 0. Let X ∈ ω be some element in the free ultrafilter for which
‖a∗nan − 1‖ < 1 and ‖ana∗n − 1‖ < 1 for all n ∈ X. In particular, an ∈ A is invertible for all n ∈ X,
and hence, by polar decomposition of invertible elements in a C∗-algebra, we can write an = wn |an|
for each n ∈ X, where wn is unitary in A. If n 6∈ X put wn = 1. Then w = (wn)n∈N ∈ `∞(A) is
unitary, and a standard continuous functional calculus trick proves that limn→ω ‖wn − an‖ = 0, and
hence πω(w) = u as desired.
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Definition 2.11. Let A,B be C∗-algebras and assume that B is unital. Let ϕ,ψ : A → B be *-
homomorphisms. We say that ϕ and ψ are approximately unitarily equivalent if there is a net of
unitaries (uα)α∈Λ in B such that Ad(uα) ◦ ϕ→ ψ in the point-norm topology.

In the separable case, we can restrict ourselves to considering sequences of unitaries. The following
proposition is the promised showcase of Kirchberg’s ε-test.

Proposition 2.12. Let A be a separable C∗-algebra, and let B be a unital C∗-algebra. Suppose
that ϕ,ψ : A→ Bω are approximately unitarily equivalent *-homomorphisms, then they are unitarily
equivalent.

Proof. We shall use Kirchberg’s ε-test, see Proposition 2.8. By separability of A, let {x(1), x(2), . . .}
be a countable, dense subset of A, and find for each k ∈ N lifts (a

(k)
n )n∈N ∈ `∞(B) of ϕ(x(k)) and

(b
(k)
n )n∈N ∈ `∞(B) of ψ(x(k)). Let Xn = U(B) for each n ∈ N, and let f

(k)
n : Xn → [0,∞) be given by

f (k)
n (u) =

∥∥∥Ad(u) ◦ a(k)
n − b(k)

n

∥∥∥ , u ∈ Xn

for each k, n ∈ N. Using Lemma 2.9, we find that

f (k)
ω (u) = lim

n→ω

∥∥∥Ad(un) ◦ a(k)
n − b(k)

n

∥∥∥ =
∥∥∥Ad(πω(u)) ◦ ϕ(x(k))− ψ(x(k))

∥∥∥
for all u = (un)n∈N ∈ `∞(Xn,N). Since ϕ and ψ are approximately unitarily equivalent, and since
unitaries in Bω lift to unitaries in `∞(B) by Lemma 2.10, we have for each ε > 0 and m ∈ N that

there exists u = (un)n∈N ∈ `∞(Xn,N) such that f
(k)
ω (u) < ε for all k = 1, . . . ,m. Then Kirchberg’s

ε-test, Proposition 2.8, states that there exists some element v = (vn)n∈N ∈ `∞(Xn,N) such that

0 = f (k)
ω (v) =

∥∥∥Ad(πω(v)) ◦ ϕ(x(k))− ψ(x(k))
∥∥∥

for all k ∈ N. Since the collection {x(1), x(2), . . .} is dense in A, we conclude that ϕ and ψ are unitarily
equivalent.

We end the examination of ultrapowers of C∗-algebras by examining some specific properties of
the ultrapower Qω, which we shall use later on in the thesis. If we denote by τQ the unique tracial
state on Q, then we can induce a tracial state τω in Qω by τω(x) = limn→ω τQ(xn) for x ∈ Qω where
(xn)n∈N ∈ `∞(Q) is a lift of x. In fact, this is the only tracial state on Qω by [50, Theorem 8]. The
next result states that any corner of a matrix algebra over Q (or Qω) is automatically isomorphic to
Q (or Qω).

Proposition 2.13. Let n ∈ N be arbitrary, then the following hold:

(i) If p ∈Mn(Q) is any non-zero projection, then pMn(Q)p ∼= Q;

(ii) If p ∈Mn(Qω) is any non-zero projection, then pMn(Qω)p ∼= Qω.

Proof. (i): As UHF-algebras are simple, any non-zero projection in an UHF-algebra, in particular p,
is necessarily full. In other words, pMn(Q)p is a full corner in the separable C∗-algebra Mn(Q), and
[6, Corollary 2.6] provides an isomorphism pMn(Q)p⊗K(H) ∼= Mn(Q)⊗K(H). Note that, being the
universal UHF-algebra, we have the isomorphism Mn(Q) ∼= Q, and hence stability of K-theory, see
Proposition 1.27(v), provides the following chain of isomorphisms:

K0(pMn(Q)p) ∼= K0(pMn(Q)p⊗K(H)) ∼= K0(Mn(Q)⊗K(H)) ∼= K0(Q⊗K(H)) ∼= K0(Q) = Q.

Identify [p]0 with some non-zero q ∈ Q under this identification, then the linear map Q→ Q defined
by 1 7→ q provides an isomorphism of the pairs (K0(Q), [1]0) and (K0(pMn(Q)p), [p]0), but such pairs
form a classification invariant of UHF-algebras by [64, Theorem 7.4.5].

(ii): Use Lemma 2.10 and the isomorphism Mn(Q) ∼= Q to find a sequence of projections (pn)n∈N in
`∞(Q) lifting the projection p. Since taking ultrapowers commutes with taking matrix algebras, we
can use (i) to obtain the following chain of isomorphisms

Qω ∼= `ω(Mn(Q)) ∼= `ω(pkMn(Q)pk,N) ∼= `ω(Mn(pkQpk),N) ∼= Mn(`ω(pkQpk,N)) ∼= pMn(Qω)p

as desired.
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While these isomorphisms may seem inconsequential, we shall use them in an important charac-
terisation of quasidiagonal tracial states in a later chapter.

We now turn our attention to ultrapowers of von Neumann-algebras, as the construction changes
slightly compared to the C∗-algebraic analogue, and as there are some specific results we need to
study. Let M be a von Neumann-algebra with a faithful tracial state τ . Define the tracial norm ‖·‖2
on M by ‖x‖2 = τ(x∗x)1/2 for all x ∈M and consider the closed two-sided ideal

cω(M) =

{
(xn) ∈ `∞(M) | lim

n→ω
‖xn‖2 = 0

}
.

We define the tracial ultrapower Mω as the quotient Mω = `∞(M)/cω(M) and the map τω : Mω → C
by τω(x) = limn→ω τ(xn), where (xn)n∈N ∈ `∞(M) is any lift of x. Then τω defines a faithful tracial
state on Mω.

Proposition 2.14. If M is a von Neumann-algebra with a faithful tracial state τ , then the tracial
ultrapower Mω is a von Neumann-algebra equipped with the normal faithful tracial state τω.

Proof. It suffices to prove that Mω is isometrically isomorphic to the von Neumann-algebra generated
by the GNS-representation (Hτ , πτ , ξτ ) associated to τω; then normality of τω follows automatically.
Since ‖x‖2 = ‖πτ (x)ξτ‖ for all x ∈Mω, it suffices by [74, Corollary 19.6] to show that the closed unit
ball in Mω is complete in the tracial norm ‖·‖2.

Let (x(k))k∈N be any Cauchy sequence in the closed unit ball of Mω with respect to the norm ‖·‖2.
By passing to a subsequence, we may as well assume that

∥∥x(k+1) − x(k)
∥∥

2
< 2−k for all k ∈ N. Find,

for each k ∈ N, a lift (x
(k)
n )n∈N of x(k) inside the closed unit ball of `∞(M). It follows that the set

Fk =

{
n ∈ N

∣∣∣∣ ∥∥∥x(j+1)
n − x(j)

n

∥∥∥
2
< 2−j for j = 1, 2, . . . , k

}
belongs to ω for each k ∈ N. Put Gk = Fk \ {1, 2, . . . , k} for k ∈ N, and let G0 = N. Note that since
ω is a free filter, it contains the cofinite filter ω∞ and, hence, Gk ∈ ω for every k ∈ N0. Moreover,
we clearly have a descending chain G0 ⊇ G1 ⊇ G2 ⊇ · · · with

⋂
k∈N0

Gk = ∅. For each n ∈ N,
we have two options: Either n 6∈ G1, in which case we put xn = 0, or there exists k ∈ N such

that n ∈ Gk \ Gk−1, in which case we put xn = x
(k)
n . By construction, the image of the element

x = (xn)n∈N inside Mω belongs to the closed unit ball in Mω. Moreover, for each k ∈ N, we have∥∥∥x− x(k)
∥∥∥

2
≤ sup
n∈Gk

∥∥∥xn − x(k)
n

∥∥∥
2

= sup
m≥k

sup
n∈Gm\Gm−1

∥∥∥xn − x(k)
n

∥∥∥
2

= sup
m≥k

sup
n∈Gm\Gm−1

∥∥∥x(m)
n − x(k)

n

∥∥∥
2
≤ 2−k+1.

This proves that limn→ω
∥∥x− x(k)

∥∥
2
, which completes the proof.

Having established that the tracial ultrapower of a von Neumann-algebra is, again, a von Neumann-
algebra, we now wish to determine how ultrapowers preserve von Neumann-algebraic structures. Our
goal is to prove that if M is a II1-factor, then so is its ultrapower Mω; in particular, if R denotes the
unique hyperfinite II1-factor, then the ultrapower Rω is, again, a II1-factor. First, we need a lemma
which characterises factors:

Lemma 2.15. Let M be a von Neumann-algebra with a faithful tracial state τ . Then M is a factor
if and only if for any non-zero projection p ∈ P(M) with τ(p) ≤ 1

2 we have p � 1− p.

Proof. Note that as M admits a faithful tracial state, it is a finite von Neumann-algebra. Suppose
that M is a factor and let p ∈ P(M) be a projection with τ(p) ≤ 1

2 . By comparability of projections
in a factor, see Proposition 1.21, at least one of 1− p � p and p � 1− p must be true. We claim that
1−p ≺ p is never true, and hence it necessarily follows that p � 1−p. Assume hence for contradiction
that 1 − p ≺ p, then there exists a proper subprojection q ≤ p such that 1 − p ∼ q. Consider first
the case that τ(p) = 1

2 , then τ(p) = τ(1 − p) = τ(q) and faithfulness implies that p = q. However,
then p is Murray-von Neumann equivalent to a proper subprojection of itself, which is impossible by
finiteness of M . On the other hand, if τ(p) < 1

2 , then since τ preserves the order induced by �, we
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easily reach a contradiction.

Conversely, suppose that M is not a factor and find a non-trivial central projection p ∈ P(M).
We can, without loss of generality, assume that τ(p) ≤ 1

2 , because if τ(p) > 1
2 , then we can just

consider the non-trivial central projection 1− p, whose trace is τ(1− p) < 1
2 , instead. Suppose that

q ∈ P(M) is a projection Murray-von Neumann equivalent to p, and let v ∈M be a partial isometry
such that v∗v = p and vv∗ = q. Then, using centrality of p, we find

q = q2 = vv∗vv∗ = vpv∗ = vp2v∗ = pvv∗p ≤ p.

Since q ≤ p, it is immediate that q is not a subprojection of 1 − p which implies that p cannot be
Murray-von Neumann equivalent to a subprojection of 1− p.

Proposition 2.16. If M is a factor, then so is the ultrapower Mω. If M , moreover, is of type II1,
then so is Mω.

Proof. Assume that M is a factor. Let p ∈ P(Mω) be an arbitrary non-zero projection with τ(p) ≤ 1
2 .

Since ‖a‖2 ≤ ‖a‖ for all a ∈ M by contractivity of linear functionals, we can invoke Lemma 2.10 to
lift p to a sequence (pn)n∈N ∈ `∞(M) of projections in M . In particular, the set

G =

{
n ∈ N | τ(pn) ≤ 1

2

}
belongs to ω. For each n ∈ G, we can use Lemma 2.15 to find a partial isometry vn ∈ M such that
pn = v∗nvn and vnv

∗
n ≤ 1− p. We can extend this to a partial isometry wn ∈M for each n ∈ N by

wn =

{
vn if n ∈ G
1 else

and the induced partial isometry w inside Mω implements that w∗w = p and ww∗ ≤ 1−p as desired.
We conclude by another use of Lemma 2.15 that Mω is a factor.

Now suppose further that M is a II1-factor. Since Mω admits a tracial state τω, it is a finite von
Neumann-algebra, and hence it is either of type In for some integer n ∈ N or of type II1. We claim
that it cannot be the former. Let n ∈ N be an arbitrary integer, then we can find n + 1 non-trivial
mutually orthogonal projections p1, . . . , pn+1 inside M , since M is a II1-factor. Mapping these to Mω

gives n+ 1 mutually orthogonal projections inside Mω, which implies that Mω cannot be of type In.
Since this holds for any n ∈ N, we conclude that Mω is necessarily of type II1.

2.2 Quasidiagonal C∗-algebras and properties thereof

We now study quasidiagonality, which is an important C∗-algebraic approximation property and one
of the central concepts in this thesis. The property of quasidiagonality was, as we mentioned in the
introduction of the thesis, originally not related to C∗-algebras, but was a property in single oper-
ator theory, and this concept was later translated to an approximation property of C∗-algebras by
Voiculescu. We shall consider the C∗-algebraic approximation property of quasidiagonality and both
study this concept and establish the link connecting quasidiagonality of C∗-algebras and quasidiag-
onality of operators, demonstrating the historical context of both quasidiagonality as a property as
well as the terminology. We do this to study quasidiagonality for its own sake, but note that our
general study of quasidiagonality has a specific goal in mind, namely the Tikuisis-White-Winter the-
orem. For the purpose of proving this theorem, we also introduce some ultrapower-theoretic notions
of quasidiagonality, which also gives a link between the previous and the present section. Our main
reference for quasidiagonality is [11, Chapter 7].

Our starting point for this section is the definition of quasidiagonality as an approximation prop-
erty for C∗-algebras.

Definition 2.17. A C∗-algebra A is quasidiagonal if there exists a net of c.c.p. maps ϕα : A →
Mnα(C) for nα ∈ N which is asymptotically multiplicative and asymptotically isometric, that is, for
all a, b ∈ A, we have

lim
α
‖ϕα(ab)− ϕα(a)ϕα(b)‖ = 0, and lim

α
‖ϕα(a)‖ = ‖a‖ .
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One can intuitively think of quasidiagonality of C∗-algebras as being the existence of asymptotic
embeddings in finite-dimensional C∗-algebras. Indeed, since the only C∗-algebraic structure not
preserved by c.c.p. maps are multiplication and the norm, which are preserved asymptotically, this
point of view makes sense in an intuitive and informal fashion. Hence, we can view quasidiagonality
as a finite concept for C∗-algebras. In fact, as we shall see later, quasidiagonal C∗-algebras are always
stably finite. Before we show this, however, let us look a bit more in depth at quasidiagonality in
itself. It should come as no surprise that quasidiagonality can be characterised locally.

Proposition 2.18. A C∗-algebra A is quasidiagonal if and only if for any finite subset F ⊆ A and
ε > 0 there exists a c.c.p. map ϕ : A→Mn(C) such that

‖ϕ(ab)− ϕ(a)ϕ(b)‖ < ε and ‖ϕ(a)‖ > ‖a‖ − ε

for all a, b ∈ F .

Proof. The proof is similar to other local characterisations of finite-dimensional approximation prop-
erties, so we only sketch the proof. Suppose A is quasidiagonal, and let ϕα : A→Mnα(C) be a net of
c.c.p. maps indexed by Λ witnessing the quasidiagonality. Let F ⊆ A be a finite subset and let ε > 0
be an arbitrary tolerance. As the net (ϕα)α∈Λ is asymptotically multiplicative and asymptotically
isometric, it is easily seen that there exists some α ∈ Λ such that

‖ϕα(ab)− ϕα(a)ϕα(b)‖ < ε and ‖ϕα(a)‖ > ‖a‖ − ε

for all a, b ∈ F . For the opposite direction, assume that A is locally quasidiagonal in the above
sense. Consider the family F of pairs (F, ε) with finite subsets F ⊆ A and arbitrary tolerances
ε > 0 and direct this family with the lexicographical ordering. Find for each pair (F, ε) a c.c.p. map
ϕ(F,ε) : A→ Mk(F,ε)(C) which is both multiplicative and isometric on F up to an ε tolerance. Then
the net ϕ(F,ε) is asymptotically multiplicative and asymptotically isometric on A.

Since quasidiagonality is actually a local property, the following proposition follows immediately.

Proposition 2.19. If A is a separable C∗-algebra, then A is quasidiagonal if and only if there exists a
sequence of asymptotically multiplicative and asymptotically isometric c.c.p. maps ϕn : A→Mkn(C).

Whenever we work with unital C∗-algebras, we can always consider u.c.p. maps instead of general
c.c.p. maps. The proof is a quite cumbersome one and uses a lot of continuous functional calculus
and spectral theory.

Proposition 2.20. If A is a unital C∗-algebra, then A is quasidiagonal if and only if there exists a
net of asymptotically multiplicative and asymptotically isometric u.c.p. maps ϕα : A→Mkα(C).

Proof. Note that as u.c.p. maps are always contractive, we only need to show one direction. We prove
it in the separable case — the non-separable case follows by a similar argument. By quasidiagonality,
we can find a sequence of asymptotically multiplicative and asymptotically isometric c.c.p. maps
ψn : A → Mkn(C). Observe that

∥∥ψn(1)2 − ψn(1)
∥∥ < εn for each n ∈ N, where εn → 0 as n → ∞.

Since each ψn is c.c.p., we find that the spectrum of each ψn(1) is contained in [0, 1]. Moreover,
we have the following equality for every n ∈ N by invoking the spectral mapping theorem with the
continuous function t 7→ t2 − t:

σ(ψn(1)2 − ψn(1)) = σ(ψn(1))2 − σ(ψn(1))

This implies that if λ ∈ σ(ψn(1)), then
∣∣λ2 − λ

∣∣ < εn. Hence there exists some δn such that
λ ∈ [0, δn) ∪ (1 − δn, 1], and as εn → 0 as n → ∞, it necessarily follows that δn → 0 as n → ∞.
By passing to another subsequence, we may as well assume that δn < 1

2 for all n. In particular,
[0, δn) ⊆ [0, 1/2) and (1− δn, 1] ⊆ (1/2, 1], and hence σ(ψn(1)) ⊆ [0, 1/2) ∪ (1/2, 1] for all n ∈ N.

Denote by f the restriction of the indicator function χ[1/2,1] onto σ(ψn(1)). If λ ∈ σ(ψn(1)), then

|λ− f(λ)| = |λ− 1|χ[1/2,1](λ) + |λ|χ[0,1/2)(λ) < δn.

Define the projection Pn = χ[1/2,1](ψn(1)) of ψn(1) corresponding to the interval [1/2, 1]; for this we
use that χ[1/2,1] is a continuous, positive and idempotent function on σ(ψn(1)). Another use of the
continuous functional calculus gives us that ‖ψn(1)− Pn‖ < δn, which implies that

‖ψn(1)Pn − Pn‖ ≤ ‖Pn‖ ‖ψn(1)− Pn‖ < δn.
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Since δn < 1, we find that ψn(1)Pn is a positive and invertible element in PnMkn(C)Pn for each n ∈ N,
meaning that we can consider the element (ψn(1)Pn)−1/2 in this C∗-algebra. Another use of the con-
tinuous functional calculus on the function λ 7→ λ−1/2 implies the inequality

∥∥(ψn(1)Pn)−1/2 − Pn
∥∥ <

δn, and, in particular, the norms
∥∥(ψn(1)Pn)−1/2

∥∥ are uniformly bounded by, say, 2. Let `n be the
rank of the projection Pn, then the maps ϕn : A→M`n(C) given by

ϕn(a) = (ψn(1)Pn)−1/2ψn(a)(ψn(1)Pn)−1/2

can be shown to be a sequence of asymptotically multiplicative and asymptotically isometric u.c.p.
maps as desired.

All the characterisations of quasidiagonality mentioned at this point will be used in different
ways throughout the thesis without explicitly mentioning the different propositions, since most of the
results are just technicalities. In fact, we shall right away see how these different characterisations
can be used in different contexts in order to prove various permanence properties of quasidiagonality.

Proposition 2.21. The following permanence properties hold:

(i) C∗-subalgebras of quasidiagonal C∗-algebras are again quasidiagonal;

(ii) If (Aα)α∈Λ is an inductive system of quasidiagonal C∗-algebras with the property that Aα ⊆ Aβ
whenever α ≤ β, then A =

⋃
α∈ΛAα is quasidiagonal. In particular, quasidiagonality passes to

inductive limits under the assumption that the connecting maps are all injective;

(iii) If {Aα}α∈Λ is a collection of quasidiagonal C∗-algebras, then the product `∞(Aα,Λ) is quasidi-
agonal;

(iv) Quasidiagonality passes to unitisations;

(v) If A and B are quasidiagonal C∗-algebras, then the minimal tensor product A ⊗ B is quasidi-
agonal.

Proof. (i): Trivial, just take restrictions of the c.c.p. maps witnessing the quasidiagonality.

(ii): Extend by Arveson’s extension theorem, Proposition 1.10, for each α ∈ Λ the c.c.p. map
Ai →Mk(i,α)(C) to a c.c.p. map A→Mk(i,α)(C); these are asymptotically multiplicative and asymp-
totically isometric.

(iii): Follows by the same line of thinking as in (ii).

(iv): If ϕα : A→Mnα(C) are c.c.p. maps witnessing quasidiagonality of A, then the net of u.c.p. maps
ϕ†α : A† →Mnα(C) by ϕ†α(a+λ1) = ϕ(a)+λ1 for a ∈ A and λ ∈ C is easily seen to be asymptotically
multiplicative and asymptotically isometric.

(v): We postpone the proof, as the representation theoretic notion of quasidiagonality provides ma-
chinery with which the proof becomes almost trivial.

The reader is asked to note that we, for example, only explicitly mentioned inductive limits with
injective connecting maps. The reason for this is not just that the proof is easier in this case —
it fails in the general sense. In the following remark, we establish a few constructions under which
quasidiagonality is not preserved, or where the question remains unanswered. Note that we refer to
later results and constructions below.

Remark 2.22.

(i) Quasidiagonality does not pass to quotients. The cone and the suspension of any C∗-algebra
can be shown to be quasidiagonal by homotopy invariance of quasidiagonality, Theorem 2.24,
and if A is any non-quasidiagonal C∗-algebra, the isomorphism A ∼= CA/SA provides a coun-
terexample.

(ii) Quasidiagonality does not pass to extensions. Let H be a separable, infinite-dimensional Hilbert
space with orthonormal basis (en)n∈N, and define the unilateral shift u ∈ B(H) by uen = en+1.
Define the Toeplitz algebra T = C∗(u), which can be realised as an extension of C(T) by K(H).
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Both C(T) and K(H) are quasidiagonal — the former as it is Abelian, the latter as it is an AF-
algebra, see Proposition 2.23 — but T is not stably finite, which all quasidiagonal C∗-algebras
are by Proposition 2.26.

(iii) If A is an inductive limit of a sequence of quasidiagonal C∗-algebras with non-injective connect-
ing maps, then A need not be quasidiagonal. A counterexample may be found in [11, Section
17.3].

(iv) It is unknown if quasidiagonality is preserved by the maximal tensor product.

Of course, knowing permanence properties of quasidiagonality is of no use if we do not have any
examples of quasidiagonal C∗-algebras to build new examples from.

Proposition 2.23. The following C∗-algebras are all quasidiagonal.

(i) Finite-dimensional C∗-algebras;

(ii) Abelian C∗-algebras;

(iii) AF-algebras.

Proof. (i): If A is a finite-dimensional C∗-algebra, we can, by the classification of finite-dimensional
C∗-algebras, identify A = Mn1

(C) ⊕ · · · ⊕Mnr (C) for suitable integers r, ni > 0. Let N =
∑r
i=1 ni,

then the canonical embedding A ↪→ MN (C) is an injective *-homomorphism witnessing the quasidi-
agonality of A.

(ii): If A is an Abelian C∗-algebra, it follows from Proposition 1.2 that A = C0(X) for some lo-
cally compact Hausdorff space X. Define for each x ∈ X the *-homomorphism evx : C0(X) → C to
be the evaluation map at x, i.e., evx(f) = f(x) for all f ∈ C0(X). For each finite subset F ⊆ X,
define the *-homomorphism ϕF : C0(X) → MF (C) by ϕF =

⊕
x∈F evx. Direct the family F of

finite subsets of X by set inclusion, then one readily verifies that the net (ϕF )F∈F is asymptotically
multiplicative and asymptotically injective.

(iii): All AF-algebras are of the form
⋃
n∈NAn, where A1 ⊆ A2 ⊆ · · · are nested finite-dimensional

C∗-algebras, hence it follows by (i) and Proposition 2.21(ii) that all AF-algebras are quasidiagonal.

These examples and permancence properties are highly elementary. A deep result is homotopy
invariance of quasidiagonality. Recall that two *-homomorphisms ϕ,ψ : A→ B are said to be homo-
topic if there exist *-homomorphisms σt : A→ B for t ∈ [0, 1] such that σ0 = ϕ and σ1 = ψ, and which
satisfy that the map t 7→ σt(a) is continuous for all a ∈ A. In this case we write ϕ ∼h ψ. We then
say that two C∗-algebras A,B are homotopy equivalent if there exist *-homomorphism ϕ : A → B
and ψ : B → A such that ϕ ◦ ψ ∼h idB and ψ ◦ ϕ ∼h idA.

Theorem 2.24 (Voiculescu, 1991). If A,B are homotopy equivalent C∗-algebras and A is quasidi-
agonal, then B is also quasidiagonal. In particular, if A is any C∗-algebra, then the cone CA of A
and the suspension SA of A are quasidiagonal.

The proof of the homotopy invariance is quite technical, and we refer to [11, Theorem 7.3.6] or
the original paper by Voiculescu [72, Theorem 5] for the proof. The latter part of the theorem follows
by the well-known fact that, for any C∗-algebra A, the cone CA is homotopy equivalent to zero, see
[64, Example 4.1.5]. Observe that the theorem implies that any C∗-algebra A, quasidiagonal or not,
can be realised as a quotient of quasidiagonal C∗-algebras by the isomorphism A ∼= CA/SA.

At this point we have no tools to actually verify the existence of non-quasidiagonal C∗-algebras
— we have only alluded to their existence in Remark 2.22, where we stated that all quasidiago-
nal C∗-algebras are stably finite. We shall now develop some intrinsic properties of quasidiagonal
C∗-algebras. Our first goal is to show that all quasidiagonal C∗-algebras are stably finite.

Lemma 2.25. If a net aα ∈Mnα(C) satisfies that ‖a∗αaα − 1‖ → 0, then ‖aαa∗α − 1‖ → 0.

Proof. By polar decomposition in finite-dimensional C∗-algebras, we can write aα = uα |aα|, where
each uα is unitary. Then Ad(uα)(a∗αaα) = aαa

∗
α, and consequently we have

‖aαa∗α − 1‖ = ‖Ad(uα)(a∗αaα − 1)‖ = ‖a∗αaα − 1‖ → 0

as desired.
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Proposition 2.26. If a C∗-algebra A is quasidiagonal, then it is stably finite.

Proof. If A is quasidiagonal, then the unitisation A† as well as all matrix algebrasMn(A) = Mn(C)⊗A
over A are all quasidiagonal. It thus suffices to show that all quasidiagonal C∗-algebras are finite. Let
A be an arbitrary unital quasidiagonal C∗-algebra, and assume the existence of a proper isometry,
that is, an element s ∈ A with s∗s = 1 and ss∗ 6= 1. Let (ϕα)α∈I be a net of u.c.p. maps witnessing
the quasidiagonality of A. Then,

‖1− ϕα(s∗)ϕα(s)‖ = ‖ϕα(s∗s)− ϕα(s∗)ϕα(s)‖ → 0.

However, this implies by Lemma 2.25 that

‖1− ϕα(s)ϕα(s∗)‖ → 0.

which cannot be possible, as ss∗ 6= 1 and hence ϕα(ss∗) 6= 1.

This is one of only two known obstructions of quasidiagonality — the other being that unital,
quasidiagonal C∗-algebras admit amenable tracial states, which is a property of tracial states to be
defined in Definition 2.47. For the sake of not postponing this obstruction of quasidiagonality, we
state and prove the result here.

Proposition 2.27. Any unital, quasidiagonal C∗-algebra has an amenable tracial state.

Proof. Let ϕα : A→ Mnα(C) be a net of u.c.p. maps witnessing quasidiagonality of A. Consider for
each α the state ρα = Trnα ◦ ϕα on A. One can then verify that if τ is any accumulation point of
the net ρα in the weak*-topology — the existence of an accumulation point is guaranteed by the
compactness of the state space — then τ is an amenable tracial state.

Finally, we can provide some examples of non-quasidiagonal C∗-algebras.

Example 2.28 (Examples of non-quasidiagonal C∗-algebras). The following C∗-algebras are not
quasidiagonal.

(i) The Toeplitz algebra T as defined in Remark 2.22 is obviously not finite, as it is generated by
a proper isometry, and, consequently, is not quasidiagonal. Since the Toeplitz algebra can be
realized as an extension of quasidiagonal algebras

0→ C∗(T)→ T → K(H)→ 0,

this example shows that quasidiagonality is not preserved by taking extensions.

(ii) For each n ≥ 2 define the Cuntz algebra On by the following construction: Let H be a separable
infinite-dimensional Hilbert space, find n isometries s1, . . . , sn ∈ B(H) with the constraint that∑n
i=1 sis

∗
i = 1, and define On = C∗(s1, . . . , sn). Then On is not finite, and hence it is not

quasidiagonal.

Note that the converse of Proposition 2.26 is not true, as there exist stably finite C∗-algebras,
which are not quasidiagonal. The canonical counterexample is C∗r (F2), which, as F2 is not amenable,
is not quasidiagonal by Rosenberg’s theorem, see Theorem 4.25 later in the thesis. However, C∗r (F2)
is stably finite. In order to see this, we prove that the existence of a faithful tracial state implies
stably finiteness.

Lemma 2.29. If A,B are unital C∗-algebras and τA, τB are tracial states on A and B, respectively,
then there exists a tracial state τ on A ⊗ B extending the product τA ⊗ τB on A � B. Moreover, if
both τA and τB are faithful, then so is τA ⊗ τB.

Proof. One easily verifies that τ is a tracial state on A⊗B by continuity. Assume that τA and τB are
faithful tracial states, but that τ is not faithful. Consider the non-zero ideal I = {a ∈ A | τ(a∗a) = 0}
in A ⊗ B. Invoking Kirchberg’s slicing lemma, see [59, Lemma 4.1.9], we find a non-zero element
z ∈ A ⊗ B such that z∗z = a ⊗ b for some a ∈ A and b ∈ B, and such that zz∗ ∈ I. However, then
faithfulness of τA and τB implies that

0 = τ(zz∗) = τ(z∗z) = τ(a⊗ b) = τA(a)τB(b) > 0,

which is a clear contradiction.
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Lemma 2.30. If A is a unital C∗-algebra admitting a faithful tracial state τ , then A is stably finite.

Proof. Since τ ⊗Trn is a faithful tracial state on Mn(A) by Lemma 2.29, it suffices to show that the
existence of a faithful tracial state implies finiteness. Suppose s ∈ A is a proper isometry, i.e., assume
that it satisfies that s∗s = 1 and ss∗ 6= 1. Then faithfulness of τ implies that

0 < τ(1− ss∗) = τ(1)− τ(ss∗) = τ(s∗s)− τ(ss∗) = 0

and as such we reach a contradiction. We conclude that A is stably finite.

Since C∗r (G) admits a faithful tracial state for any discrete group G by Proposition 1.35, all re-
duced group C∗-algebras, in particular C∗r (F2), are stably finite.

The above arguments imply that quasidiagonality is an inherently stronger property than stably
finiteness. Note that as F2 is not amenable, the reduced group C∗-algebra C∗r (F2) is not nuclear
by Proposition 1.37. There are no known examples of separable, nuclear, stably finite and non-
quasidiagonal C∗-algebras. This led Blackadar-Kirchberg, see [4, Question 7.3.1] to conjecture that
there in fact exists no such C∗-algebra.

Conjecture 2.31 (Blackadar-Kirchberg, 1997). In the class of separable, nuclear C∗-algebra, being
stably finite is equivalent to being quasidiagonal.

In Chapter 4, we shall provide some partial answers to this conjecture by invoking the Tikuisis-
White-Winter theorem.

We now turn our attention to understanding the connection between quasidiagonality, as we have
phrased it as an abstract approximation property, to its origins as a property in single operator the-
ory. Let us first properly define the notion of quasidiagonality in operator theory; we shall consider
quasidiagonality of sets of operators, which generalises the concept in single operator theory, and
which is more closely related to the C∗-algebraic approximation property. The following definition
could be called a local characterisation of quasidiagonality of operators, but we shall take it as our
definition of quasidiagonality of operators in general.

Definition 2.32. Let H be a Hilbert space, and let Ω ⊆ B(H) be an arbitrary set of bounded linear
operators on H. We say that the set Ω is quasidiagonal if for each finite set F ⊆ Ω, for each finite
set V ⊆ H and for each tolerance ε > 0, there exists a finite-rank projection P ∈ B(H) such that

‖[P, T ]‖ < ε and ‖Pv − v‖ < ε

for all T ∈ F and v ∈ V .

We shall refer to the conditions in the definition as P almost commuting with T , and as P almost
fixing v.

In order to alleviate the issues with the terminology clash of quasidiagonality for C∗-algebras and sets
of operators, we shall exclusively refer to the latter as quasidiagonality of operators. Unfortunately,
the two notions do not agree exactly, but we shall see how they are related. As we have mentioned
several times in this chapter, the connection is representation theoretic in nature, and it is related to
the following natural definition.

Definition 2.33. A representation π : A→ B(H) is said to be quasidiagonal if π(A) is a quasidiagonal
set of operators.

Again, and unfortunately, the terminology is not as nice as one could have hoped, since π being a
quasidiagonal representation is not equivalent to π(A) being a quasidiagonal C∗-algebra. We shall see
that A being quasidiagonal as a C∗-algebra is equivalent to the existence of a faithful quasidiagonal
representation, which gives the desired link. However, we shall not get ahead of ourselves, as we still
have to understand several things including the structure of quasidiagonal sets of operators before we
can attempt to prove this connection. The first result is, a priori, not related to quasidiagonality of
operators, but is instead a purely C∗-algebraic result on projections.

Lemma 2.34. Let A be a unital C∗-algebra, and let p, q ∈ A be projections.
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(i) If ‖p− q‖ < 1, then there exists u ∈ U(A) such that uqu∗ = p and ‖1− u‖ ≤ 4 ‖p− q‖;

(ii) If ‖q − pq‖ < 1/4, then there exists u ∈ U(A) such that uqu∗ ≤ p and ‖1− u‖ ≤ 10 ‖q − pq‖.

Proof. The proof is quite technical with loads of calculations, so we shall skip most of these.

(i): Since ‖p− q‖ < 1, it is a well-known fact, see for instance [64, Proposition 2.2.4 and Propo-
sition 2.2.7], that p ∼ q. Let v ∈ A be a partial isometry such that v∗v = q and vv∗ = p. Likewise,
we can find a partial isometry w ∈ A such that w∗w = 1− q and ww∗ = 1− p. Put u = v + w, then
u is a unitary element in A satisfying uqu∗ = p and ‖1− u‖ ≤ 4 ‖p− q‖.

(ii): Suppose that ‖q − pq‖ < 1/4 and put y = pq. Then y∗y = qAq, and one easily verifies
that ‖y∗y − q‖ < 1. Consequently, the element |y| = (y∗y)1/2 is invertible in qAq, say with in-

verse |y|−1
q . Let v ∈ A be a partial isometry implementing the polar decomposition of y, i.e., put

v = y |y|−1
q , then v∗v = q and vv∗ ≤ p. Define the projection p0 = vv∗. A brief calculation shows

that ‖q − v‖ ≤ 2 ‖q − pq‖, which in turn implies that ‖q − p0‖ ≤ 4ε < 1. Since the distance between
q and p0 is the same as the distance between 1− q and 1− p0, we can find a partial isometry w ∈ A
such that w∗w = 1− q and ww∗ = 1− p0. Then u = v + w is a unitary element in A satisfying that
uqu∗ = p0 ≤ p and ‖1− u‖ ≤ 10 ‖q − pq‖ as desired.

The above technical result is used in the following proposition, which gives a global characterisation
of quasidiagonality of operators in terms of a quasicentral-esque approximate unit of projections. The
following characterisation is a generalisation of Halmos’ definition of quasidiagonality to arbitrary sets
of operators, see [32].

Proposition 2.35. Let Ω ⊆ B(H) be a separable set of operators on a separable Hilbert space H. Then
Ω is quasidiagonal in the sense of Definition 2.32 if and only if there exists an increasing sequence
of finite-rank projections P1 ≤ P2 ≤ · · · in B(H) converging strongly to 1 such that ‖[Pn, T ]‖ → 0 as
n→∞ for all T ∈ Ω.

Proof. Sufficiency is trivial, so let us focus on necessity. Using the perturbations provided in Lemma
2.34, we shall actually prove that the definition of quasidiagonal sets of operators can be slightly
refined without loss of generality. In fact, we shall prove that the condition that P almost fixes the
elements of the set V in Definition 2.32 can be altered to ensure that P , in fact, does fix all v ∈ V .
In other words, we claim that for any finite sets F ⊆ Ω and V ⊆ H and tolerance ε > 0, there exists
a finite-rank projection P ∈ B(H) such that ‖[P, T ]‖ < ε for all T ∈ F , and such that Pv = v for
all v ∈ V . If we were to show this, then one can just use separability of Ω and H to construct the
desired sequence without further complications.

Suppose that F ⊆ Ω and V ⊆ H are finite subsets and let ε > 0. Let K denote the span of V ,
and let Q : H → K be the orthogonal projection. Since V is assumed to be finite, K is finite-
dimensional and, hence, the closed unit ball (K)1 of K is compact. Let δ > 0 be some, as of now
unspecified, number, and consider the open cover (B(v, δ))v∈(K)1 of (K)1. Using compactness, we
can pick finitely many vectors v1, . . . , vn ∈ (K)1 such that (B(vi, δ))i=1,...,n covers (K)1. Since Ω is
a quasidiagonal set of operators, there exists a projection P ∈ B(H) such that ‖Pvi − vi‖ < δ for
i = 1, . . . , n along with ‖[P, T ]‖ < δ for all T ∈ F . If e ∈ H is any unit vector, then, by the finite
sub-cover we constructed above, there exists some i0 ∈ {1, . . . , n} such that ‖Qe− vi0‖ < δ. A simple
application of the triangle inequality provides the norm inequality ‖PQ−Q‖ < 3δ.

Suppose that δ < 1/12, then Lemma 2.34(ii) entails the existence of a unitary U ∈ B(H) such
that Q ≤ UPU∗, and which also satisfies the norm inequality ‖1− U‖ ≤ 10 ‖PQ−Q‖ < 30δ. Let
R = UPU∗, then R dominates Q and, hence, fixes every v ∈ V , since Q is the orthogonal projection
of H onto the linear span of V . Moreover, for any T ∈ F , another easy application of the triangle
inequality gives us

‖[R, T ]‖ ≤ ‖R− P‖ ‖T‖+ ‖[P, T ]‖+ ‖T‖ ‖R− P‖ < (120 ‖T‖+ 1)δ.

Putting M = max{‖T‖ |T ∈ F} and letting δ < min{ 1
12 ,

ε
120M+1}, one obtains the desired result.

We shall need both the local and global characterisations of quasidiagonality of operators in
order to prove the representation theoretic connection between quasidiagonality of C∗-algebras and
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of operators. In order to state and prove the theorem, we need some more notation. Recall that for
a Hilbert space H, the associated Calkin algebra C (H) is defined as the quotient B(H)/K(H).

Definition 2.36. A *-representation π : A→ B(H) is called ample if the induced *-homomorphism
A→ C (H) is injective.

If π : A→ B(H) is any faithful *-representation of a C∗-algebra A, then the infinite direct product
defines an ample representation, and as such any C∗-algebra admits a faithful, ample *-representation.

The next definition weakens the conditions on π above in a way that it is not necessarily multi-
plicative, but that it is still an injective *-homomorphism when mapped to the Calkin algebra C (H).

Definition 2.37. Let π : A → B(H) be a u.c.p. map. We say that π is a faithful representation
modulo the compacts if the mapping q ◦ π : A→ C (H) is an injective *-homomorphism.

In other words, π is faithful modulo the compacts if π(ab)−π(a)π(b) ∈ K(H) for all a, b ∈ A, and
if π(a)− π(b) ∈ K(H) implies a = b. In this case, we define for each a ∈ A the quantity

ηπ(a) = 2 max{‖π(a∗a)− π(a∗)π(a)‖1/2 , ‖π(aa∗)− π(a)π(a∗)‖1/2}

which, using the notion of multiplicative domains from Proposition 1.7, measures how far π is from
being multiplicative in a. We need this number for the next theorem due to Voiculescu, which
shows that ηπ(a) provides a pointwise boundary for the distance a faithful representation modulo the
compacts can have to a representation with several pleasant properties. We omit the proof and refer
the reader to [11, Theorem 1.7.6].

Proposition 2.38 (Voiculescu). Let A be a unital and separable C∗-algebra, and let π : A → B(H)
be a faithful representation modulo the compacts on a separable Hilbert space H. If σ : A→ B(K) is
a faithful, unital, ample representation on a separable Hilbert space K, then there exists a sequence
of unitaries Un : H → K such that

lim sup
n→∞

‖σ(a)− Unπ(a)U∗n‖ ≤ ηπ(a)

for each a ∈ A.

We can finally prove the representation theorem of quasidiagonality. We shall state it for the
unital, separable case, but do note that the theorem holds in full generality.

Theorem 2.39. Let A be a separable and unital C∗-algebra. The following are equivalent.

(i) A is quasidiagonal as a C∗-algebra;

(ii) A admits a faithful quasidiagonal representation on a separable Hilbert space;

(iii) Every faithful, unital, ample representation of A on a separable Hilbert space is quasidiagonal.

Proof. (i)⇒(iii): Let ϕn : A → Mkn(C) be u.c.p. maps witnessing the quasidiagonality of A, and let
π : A→ B(H) be any faithful, ample, unital representation. By identifying `∞(Mkn(C),N) with B(K)
for K =

⊕
n∈N Ckn , we get a u.c.p. map ϕ : A→ B(K) by ϕ(a) = (ϕn(a))n∈N for a ∈ A. Using that

the sequence (ϕn)n∈N is asymptotically multiplicative and asymptotically isometric, one can check
that ϕ is faithful modulo the compacts.

Let F ⊆ Ω and V ⊆ H be finite subsets, and let ε > 0 be arbitrary. By asymptotic multiplica-
tivity, we can, for any δ > 0, find N ∈ N such that

‖ϕn(aa∗)− ϕn(a)ϕn(a∗)‖ , ‖ϕn(a∗a)− ϕn(a∗)ϕn(a)‖ < δ

for all n ≥ N and a ∈ F . We can hence, without loss of generality, assume that ηϕ(a) < ε
2 for all

a ∈ F . Then, by Voiculescu’s theorem, we can find a unitary U : H → K providing the inequality

‖π(a)− U∗ϕ(a)U‖ ≤ ηϕ(a) <
ε

2

for all a ∈ F . Let Pn ∈ B(K) denote the projections onto the first n components for each n ∈ N, and
consider the projections Qn = U∗PnU on H attained from unitary equivalence. Since (Pn)n∈N is an
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increasing sequence of finite-rank projections strongly tending to the identity operator, so is (Qn)n∈N.
A simple calculation shows that ‖[Qn, π(a)]‖ < ε for all a ∈ F , and that ‖Qnv − v‖ < ε for all v ∈ V
for sufficiently large n ∈ N. This proves that π is a quasidiagonal representation.

(iii)⇒(ii): This implication is trivial since all unital C∗-algebras admit faithful, unital and ample
*-representations.

(ii)⇒(i): Let π : A → B(H) be a faithful, quasidiagonal representation. Find by Proposition 2.35
an increasing sequence P1 ≤ P2 ≤ · · · of finite-rank projections in H such that Pn tends strongly to
the identity, and such that ‖[Pn, π(a)]‖ → 0 as n→∞ for all a ∈ A. Note that PnB(H)Pn is isomor-
phic to Mkn(C) for some integer kn ∈ N, and we can therefore define the u.c.p. maps ϕn : A→Mkn(C)
by ϕn(a) = Pnπ(a)Pn. One can verify that the sequence (ϕn)n∈N is asymptotically multiplicative
and asymptotically isometric, which proves quasidiagonality of the C∗-algebra A.

Having proved the representation theorem for quasidiagonality, let us show how one can use this
to prove the as of now unproven statement in Proposition 2.21(v) stating that the minimal tensor
product of two quasidiagonal C∗-algebra is again quasidiagonal; we only sketch the proof in the uni-
tal, separable case, as we have only shown the representation theorem for this class of C∗-algebras,
but the argument holds in general. Let A and B be separable, unital, quasidiagonal C∗-algebras
and let πA : A → B(H) and πB : B → B(K) be two faithful quasidiagonal representations. Then
πA⊗πB : A⊗B → B(H ⊗K) is a faithful representation of the minimal tensor product A⊗B. Since
the tensor product of two finite-rank projections is again of finite rank, it is routine to verify that
πA ⊗ πB is in fact a quasidiagonal representation, which proves quasidiagonality of A by the above
representation theorem.

We have at this point seen two different ways of viewing quasidiagonality: Either as the approx-
imation property of C∗-algebras as in Definition 2.17, or as the representation theoretic flavoured
characterisation of Theorem 2.39. However, there is yet another characterisation, which in essence
is a way of transforming the former into something perhaps more tangible. Since taking ultrafilters,
generally speaking, takes approximate properties to exact ones, and quasidiagonality can be phrased
in terms of c.c.p. maps into matrix algebras asymptotically tending to an injective *-homomorphism,
we can view quasidiagonality in terms of embeddings into the ultrapower Qω.

Proposition 2.40. A separable, unital and nuclear C∗-algebra A is quasidiagonal if and only if there
exists a unital embedding A ↪→ Qω.

The proof uses the Choi-Effros lifting theorem, which we shall state below.

Proposition 2.41 (Choi-Effros). Let A be a separable C∗-algebra, and let JEB be a closed two-sided
ideal in a C∗-algebra B. For every nuclear c.c.p. map ϕ : A → B/J there exists a nuclear c.c.p. lift
ϕ : A→ B with ρ ◦ ϕ = ϕ, where ρ : B → B/J is the quotient map. In particular, if A in addition is
nuclear, then every c.c.p. map ϕ : A→ B/J can be lifted to a nuclear c.c.p. map ϕ : A→ B.

A proof of the Choi-Effros lifting theorem may be found in [11, Theorem C.3] or in the original
paper by Choi and Effros [12, Theorem 3.10].

Proof of Proposition 2.40. Suppose there exists a unital embedding ι : A → Qω. We can, by Choi-
Effros lifting theorem, find a c.c.p. map ϕ : A→ `∞(Q) which lifts ι. This, in turn, gives us a sequence
of c.c.p. maps ϕn : A → Q, where ϕ(a) = (ϕ1(a), ϕ2(a), . . .) for a ∈ A. This sequence of c.c.p. maps
is asymptotically multiplicative and asymptotically isometric, since ι is a unital *-homomorphism.
Let En : Q → Mn(C) be conditional expectations onto matrix algebras, then the sequence of c.c.p.
maps En ◦ ϕn : A→Mkn(C) is asymptotically multiplicative and asymptotically isometric and, con-
sequently, A is quasidiagonal.

Conversely, suppose that A is quasidiagonal, and let ϕn : A → Mkn(C) be the sequence c.c.p.
maps witnessing the quasidiagonality. Since Q is the universal UHF-algebra, we have embeddings
Mkn(C) ⊆ Q for all n ∈ N, and hence we can view ϕn as maps from A into Q. Since the sequence ϕn
is asymptotically multiplicative and asymptotically isometric, it induces an isometric, hence injective,
*-homomorphism A→ Qω, which was what we wanted to construct.
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Note that the nuclearity assumption on A is in order to invoke the Choi-Effros lifting theorem,
Proposition 2.41, to construct a sequence of c.c.p. maps witnessing the quasidiagonality. Consequently,
we can actually weaken the assumptions, which is going to be used in a proof later.

Corollary 2.42. Suppose that A is a separable, unital C∗-algebra, and that there exists a unital
embedding ι : A → Qω which is liftable to a sequence of c.c.p. maps ϕn : A → `∞(Q). Then A is
quasidiagonal. In particular, if ι is a unital and nuclear embedding into Qω, then A is quasidiagonal.

In a later section, we shall examine quasidiagonal tracial states, which are tracial states that
can be witnessed by quasidiagonal approximations. However, we can also view quasidiagonal tracial
states as being those which can be realised as the tracial state on Qω in a certain liftable sense, see
Proposition 2.49 for the precise meaning. These results entail a great link between quasidiagonality
and the ultrapowerQω, and this viewpoint is exactly the starting point for understanding the Tikuisis-
White-Winter theorem.

2.3 Introduction to AF-embeddability

While AF-algebras have been studied for almost half a century and have been classified completely
both combinatorically by their Bratteli diagrams as well as by their ordered K0-groups, there are
still aspects of AF-algebras which are unknown. Current interest in AF-algebra includes the question
of AF-embeddability — when can we identify a C∗-algebra as a C∗-subalgebra of an AF-algebra?
Perhaps surprisingly, it does not hold in general that C∗-subalgebras of AF-algebras are again AF-
algebras. The typical counterexample is as follows: Consider the Cantor set C, which we can realise
as an inverse limit of finite sets, such that C(C) is a sequential inductive limit of finite-dimensional
C∗-algebras, i.e., it is an AF-algebra. As all compact metric spaces can be identified as continuous
images of the Cantor set, we, in particular, get an injection C([0, 1]) ↪→ C(C). However, C([0, 1])
is not an AF-algebra, as [0, 1] is a connected compact Hausdorff space and, consequently, it only
has trivial projections. We can clearly generalise the above argument to prove that the C∗-algebra
of continuous functions on some locally compact, Hausdorff space is AF-embeddable, but it is an
AF-algebra only when the space is of dimension zero.

The point of the above example is that the question of classifying subalgebras of AF-algebras, ei-
ther in general or for a specific AF-algebra, is not as easy as one might have hoped. The question of
AF-embeddability was prominently studied by Pimsner and Voiculescu in [54], in which they proved
that the irrational rotation C∗-algebras are AF-embeddable, and it has since then been an active
topic of research. There are very few known obstructions to being AF-embeddable; in fact, we only
have three such properties, and they are easily seen to be obstructions.

Proposition 2.43. If A is an AF-embeddable C∗-algebra, then A is separable, quasidiagonal and
exact.

Proof. AF-algebras are separable, quasidiagonal and exact and all three properties pass to C∗-
subalgebras.

In [4, Question 7.3.3], Blackadar and Kirchberg asked whether the converse is true.

Conjecture 2.44 (Blackadar-Kirchberg, 1997). A C∗-algebra A is AF-embeddable if and only if it
is separable, exact and quasidiagonal.

As for any interesting open problems, there are some partial results, and some of the classes of
C∗-algebras, for which the conjecture has been shown to be true, can be found in the following list.
We give references to the original papers, but for the first two examples the reader can also consult
[11, Theorem 8.5.3 and Theorem 8.5.4].

(i) C(X) o Z for compact metric spaces X, see [55, Theorem 9];

(ii) Ao Z for AF-algebras A, see [9, Theorem 0.2];

(iii) C∗r (G) for countable, discrete groups G, see [70, Corollary 6.6];

(iv) Traceless1 C∗-algebra, see [26, Corollary C].

1This concept is a bit more subtle than what one might think; we shall define it properly in Chapter 5, when we
reproduce the result.
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We shall in this thesis concentrate on (iii) and (iv), which are also the most recent contributions to
the subject in the above list. In fact, Schafhauser proves in [67, Theorem D] that if G is a countable,
discrete group, then C∗r (G) embeds into the universal UHF-algebra Q if and only if G is amenable.
Note that this gives an embedding into a specific AF-algebra, and, in fact, Q, in contrast to the
similar corollary of the Tikuisis-White-Winter theorem, see (iii) above, where the embedding is into
a non-specific AF-algebra.

Intuitively, since AF-algebras are, as the name suggests, approximately finite-dimensional, one should
think of AF-embeddability as a property of a finite nature; this is further motivated by the fact that
AF-embeddability implies quasidiagonality. However, there are C∗-algebras, which admit some very
infinite properties, but still are AF-embeddable. In [49, Theorem 1], Ozawa proved an analogue
of Voiculescu’s proof of homotopy invariance of quasidiagonality for AF-embeddability, cf. Theorem
2.24.

Theorem 2.45 (Ozawa, 2003). AF-embeddability is a homotopic invariant of separable, exact C∗-
algebras. Moreover, the cone CA and the suspension SA of any separable, exact C∗-algebra A are
AF-embeddable.

We shall later see how the latter half of the theorem can be generalised to a certain property of
the so-called primitive ideal space, see Chapter 5.

Lastly, let us mention a recent result due to Schafhauser, see [67, Theorem A], which gives a complete
characterisation of C∗-subalgebras of simple, unital AF-algebras under the additional assumption
that the C∗-subalgebras satisfies the UCT. Just as in Proposition 2.27, the theorem mentions the
notion of an amenable tracial state — we shall define this concept in the next section.

Theorem 2.46. Let A be a separable C∗-algebra satisfying the UCT. Then A embeds into a simple,
unital AF-algebra if and only if A is exact and has a faithful, amenable tracial state.

2.4 Amenability and quasidiagonality of tracial states

In this section we examine two important properties of tracial states, namely amenability and qua-
sidiagonality. These both appear in the Tikuisis-White-Winter theorem, and for this alone a survey
is relevant, but there are also results of independent interest within this topic. We shall hence not
only study aspects directly related to the proof of the Tikuisis-White-Winter theorem.

Given a C∗-algebra A with a tracial state τ , we can naturally construct a seminorm ‖·‖2 by ‖a‖2 =
τ(a∗a)1/2 for a ∈ A. This is a norm if and only if τ is faithful. Note that, given distinct tracial states,
one might get completely different (semi)norms, so unless the C∗-algebra is monotracial, the norm
in itself need not be natural; in a sense, this norm studies the properties of the tracial state moreso
than of the C∗-algebra.

Definition 2.47. Let A be a unital and separable C∗-algebra with a tracial state τ . We say that:

(i) τ is amenable if there exists a sequence of u.c.p. maps ϕn : A→Mkn(C) such that

lim
n→∞

‖ϕn(ab)− ϕn(a)ϕn(b)‖2 = 0 and lim
n→∞

Trkn(ϕn(a)) = τ(a)

for all a, b ∈ A.

(ii) τ is quasidiagonal if there exists a sequence of u.c.p. maps ϕn : An →Mkn(C) such that

lim
n→∞

‖ϕn(ab)− ϕn(a)ϕn(b)‖ = 0 and lim
n→∞

Trkn(ϕn(a)) = τ(a)

for all a, b ∈ A.

We shall think of quasidiagonal tracial states as being witnessed by quasidiagonal approximations
— the connection between quasidiagonality as a property of C∗-algebras and quasidiagonality as a
property of tracial states will be examined throughout this section.

Amenability and quasidiagonality of tracial states are stated in quite similar manners, but it is un-
known to what degree they coincide. Nevertheless, it is easily seen that quasidiagonal tracial states
are always amenable.
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Proposition 2.48. For each k ∈ N and a ∈Mk(C), we have the inequalities

‖a‖2 ≤ ‖a‖ ≤
√
k ‖a‖2

where ‖a‖2 = Trk(a∗a)1/2. In particular, quasidiagonal tracial states are amenable.

Proof. The first inequality is immediate, as linear functionals are contractive, and the second inequal-

ity follows from the fact that ‖a‖2 =
√

1
k

∑k
i,j=1 |aij |

2
.

It is still unknown whether or not amenable tracial states are quasidiagonal. There are some spe-
cific classes of C∗-algebras where this is resolved — for example, the Tikuisis-White-Winter theorem,
to be proved later, proves that amenability and quasidiagonality are equivalent for faithful tracial
states on exact, separable C∗-algebras in the UCT-class.

Interestingly, we can express amenability and quasidiagonality of tracial states in terms of certain
lifting properties. The reader should note the similarities to Proposition 2.40 both in terms of the
statement as well as the proof. For the remainder of the thesis, we shall denote by τω and τω the
unique, faithful tracial states on Qω and Rω, respectively, unless otherwise mentioned.

Proposition 2.49. Let τ be a tracial state on a separable C∗-algebra A.

(i) The tracial state τ is amenable if and only if there exists a *-homomorphism ϕω : A→ Rω with
a c.c.p. lift A→ `∞(R) such that τω ◦ ϕω = τ .

(ii) The tracial state τ is quasidiagonal if and only if there exists a *-homomorphism ϕω : A→ Qω
with a c.c.p. lift A→ `∞(Q) such that τω ◦ ϕω = τ .

Proof. We only prove (ii); the proof of (i) is analogous. Suppose first that τ is quasidiagonal and
let ϕn : A → Mkn(C) be a sequence of c.c.p. maps witnessing its quasidiagonality. Since Q is the
universal UHF-algebra, we can embed each Mkn(C) inside Q and, hence, we can view ϕn as a map
A→ Q. Let ϕω : A→ Qω be the induced c.c.p. map, i.e., ϕω(a) = limn→ω ϕn(a) for a ∈ A. Since the
sequence ϕn is asymptotically multiplicative, it follows that ϕω is a *-homomorphism. Moreover, as
τ(a) = limn→∞ Trkn(ϕn(a)), we see that τ = τω ◦ ϕω. Denote by ϕ : A → `∞(Q) the direct product
of the maps ϕn, i.e., ϕ(a) = (ϕ1(a), ϕ2(a), . . .) for a ∈ A. Then ϕ is a c.c.p. lift of ϕω, which proves
one direction.

Now suppose that ϕω : A → Qω is a *-homomorphism with a c.c.p. lift ϕ : A → `∞(Q) such that
τω ◦ϕω = τ . Let ϕn : A→ Q be the composition of ϕ with the projection of `∞(Q) onto the nth copy
of Q. Let En : Q →Mn(C) be the canonical trace-preserving conditional expectation for each n ∈ N
and let ψn = En ◦ ϕn : A → Mn(C); note that each ψn is a c.c.p. map. Denote by ιn : Mn(C) → Q
the canonical inclusion, and observe that ιn ◦En = 〉dQ. Then, for each a, b ∈ A and n ∈ N, we have

‖ψn(ab)− ψn(a)ψn(b)‖ = ‖ιn(ψn(ab)− ψn(a)ψn(b))‖ = ‖ϕn(ab)− ϕn(a)ϕn(b)‖ ,

and asymptotic multiplicativity of the sequence (ϕn)n∈N provides asymptotic multiplicativity of the
sequence (ψn)n∈N. Moreover, for any a ∈ A, we have

Trn(ψn(a)) = Trn(En ◦ ϕn(a)) = τQ(ϕn(a)),

and therefore

τ(a) = τω(ϕω(a)) = lim
n→ω

τQ(ϕn(a)) = lim
n→ω

Trn(ψn(a)),

where πω : `∞(Q)→ Qω is the canonical quotient map. This completes the proof.

Note that this characterises quasidiagonality of tracial states in terms of a lifting problem A→ Qω,
which is similar to the descriptions of quasidiagonality of C∗-algebra from the proof of Proposition
2.40 and, more explicitly, the statement of Corollary 2.42. These lifting characterisations shall become
a vital starting point for the proof of the Tikuisis-White-Winter theorem, as they allow us to examine
these concepts in terms of extension theory, which we shall examine in the next chapter. However,
there are other characterisations of quasidiagonality of tracial states, which are important as well.
First, we need a lemma regarding nuclearity of maps A → `∞(Bn,N); it can also be found in [14,
Proposition 3.3].
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Lemma 2.50. Let A be an exact C∗-algebra, and let Bn be a sequence of C∗-algebras. Suppose that
ϕn : A→ Bn are nuclear c.c.p. maps. Then the induced c.c.p. map ϕ : A→ `∞(Bn,N) is nuclear.

Proof. Since A is exact, we can identify A as a C∗-subalgebra of a nuclear C∗-algebra C. Let F ⊆ A
be a finite subset, and let ε > 0 be an arbitrary tolerance. By nuclearity of each ϕn, we can find
c.c.p. maps θn : A→Mkn(C) and ψn : Mkn(C)→ Bn such that

‖ϕn(a)− ψn ◦ θn(a)‖ < ε

2

for all a ∈ F . By Arveson’s extension theorem, Proposition 1.10, there exist c.c.p. maps θn : C →
Mkn(C) extending the c.c.p. maps θn. Now let η : C → `∞(Bn,N) be the c.c.p. map defined by
η(a) = (ψn ◦ θn(a))n∈N. Then, for any a ∈ A, we see that

‖ϕ(a)− η(a)‖ = sup
n∈N

∥∥ϕn(a)− ψn ◦ θn(a)
∥∥ = sup

n∈N
‖ϕn(a)− ψn ◦ θn(a)‖ ≤ ε

2
.

We claim that this implies that ϕ is nuclear. Since C is a nuclear C∗-algebra, we can find c.c.p. maps
αn : A→M`n(C) and βn : M`n(C)→ C such that

‖a− βn ◦ αn(a)‖ < ε

2

for all a ∈ F . In particular, we find for each a ∈ F that

‖ϕ(a)− η ◦ βn ◦ αn(a)‖ ≤ ‖ϕ(a)− η(a)‖+ ‖η(a)− η ◦ βn ◦ αn(a)‖ ≤ ε

proving nuclearity of the map ϕ.

Using nuclearity of Q, we get the following corollary.

Corollary 2.51. If A is an exact C∗-algebra, then any c.c.p. map A→ `∞(Q) is nuclear.

With this we can further characterise quasidiagonality for the class of separable, unital and exact
C∗-algebras. Note that these are all still quite similar to the characterisations in Proposition 2.49.

Proposition 2.52. Let A be a separable, unital, exact C∗-algebra. The following are equivalent for
any tracial state τ on A:

(i) The tracial state τ is quasidiagonal;

(ii) There exists a unital, nuclear *-homomorphism ϕω : A→ Qω such that τω ◦ ϕω = τ ;

(iii) There exists γ ∈ (0, 1] such that, for any finite subset F ⊆ A and tolerance ε > 0, there exists
a nuclear map ϕω : A→ Qω such that

‖ϕω(ab)− ϕω(a)ϕω(b)‖ < ε and τω ◦ ϕω(a) = γτ(a)

for all a, b ∈ F .

Proof. (i)⇔(ii): Analogous to the proof of Proposition 2.49; use Corollary 2.51 to ensure nuclearity
of the c.c.p. lift A→ `∞(Q) in the direction (i)⇒(ii).

(ii)⇒(iii): This implication is trivial with γ = 1.

(iii)⇒(ii): This direction is an application of Kirchberg’s ε-test, see Proposition 2.8. By separa-
bility of A, we can find a countable dense subset {a1, a2, . . .} of A. Define for each k ∈ N the finite
subset Fk = {a1, a2, . . . , ak} of A. Find the scalar γ ∈ (0, 1] satisfying the condition (iii). We now
proceed with using Kirchberg’s ε-test, Proposition 2.8, and we shall use the notation from this propo-
sition.

For each n ∈ N, let Xn be the set of c.c.p. maps A → Q. For each fixed n ∈ N, we define the

maps f
(k)
n : Xn → [0,∞) by

f (1)
n (ϕ) = ‖τQ ◦ ϕ− γτ‖ and,

f (k)
n (ϕ) = max

i,j≤k
‖ϕ(aiaj)− ϕ(ai)ϕ(aj)‖ , for k ≥ 2
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for all ϕ ∈ Xn. Observe that, for any k ∈ N and ϕ = (ϕn)n∈N ∈ `∞(Xn,N),

f (1)
ω (ϕ) = ‖τω ◦ ϕω − γτ‖ and,

f (k)
ω (ϕ) = max

i,j≤k
‖ϕω(aiaj)− ϕω(ai)ϕω(aj)‖ , for k ≥ 2,

where ϕω : A→ Qω is the map induced by ϕ : A→ `∞(Q). Consider an arbitrary integer m ∈ N and
tolerance ε > 0. By assumption, there exists a nuclear map ϕω : A→ Qω such that, for each k ≤ m,
‖ϕω(aiaj)− ϕω(ai)ϕω(aj)‖ < ε and τω ◦ ϕω(ai) = γτ(ai) for all i, j = 1, . . . , k. By nuclearity of ϕω,
we can invoke the Choi-Effros lifting theorem, Proposition 2.41, to find a c.c.p. lift ϕ : A → `∞(Q).
Let ϕn be the nth component of ϕ. Then, for each 2 ≤ k ≤ m, we have the equalities

f (k)
ω (ϕ) = lim

n→ω

(
max
i,j≤k

‖ϕn(aiaj)− ϕn(ai)ϕn(aj)‖
)

= max
i,j≤k

‖ϕω(aiaj)− ϕω(ai)ϕω(aj)‖ < ε,

and, moreover,

f (1)
ω (ϕ) = ‖τω ◦ ϕω − γτ‖ = 0.

By Kirchberg’s ε-test, Proposition 2.8, there exists a sequence of nuclear maps ψn : A→ Q such that

f
(k)
ω (ψ1, ψ2, . . .) = 0 for all k ∈ N. The direct product ψ : A → `∞(Q) is nuclear by Corollary 2.51,

and hence so is the induced map ψω : A→ Qω.

For each k ≥ 2, we see that

max
i,j≤k

‖ψω(aiaj)− ψω(ai)ψω(aj)‖ = f (k)
ω (ψ1, ψ2, . . .) = 0

and density of {a1, a2, . . .} in A hence implies that ψω is multiplicative. We have now shown that
ψω : A→ Qω is a *-homomorphism. We shall effectively make a cut-off of ψω using the isomorphism
pQωp ∼= Qω from Proposition 2.13 for all non-zero projections p ∈ Qω in order to construct a unital
*-homomorphism, and it turns out that this construction also entails that we can remove γ.

Consider the projection p = ψω(1) in Qω; this is a non-zero projection, since

τω(p) = τω ◦ ψω(1) = γτ(1) = γ > 0.

Since the corner pQωp is *-isomorphic to Qω by Proposition 2.13(ii), we can define the C∗-algebra
B = pQωp and regard ψω as a unital *-homomorphism A → B. Using that Qω is monotracial, the
isomorphism pQωp ∼= Qω entails that

τB ◦ ψω =
1

τω(p)
τω ◦ ψω =

1

γ
τω ◦ ψω = τ

completing the proof.

This characterisation allows us to easily verify another link between quasidiagonality of tracial
states and C∗-algebras. Do note the assumption in the following corollary that the tracial state is
faithful.

Corollary 2.53. If A is a separable, unital, exact C∗-algebra with a faithful, quasidiagonal tracial
state τ , then A is quasidiagonal.

Proof. Find by the equivalence of (i) and (ii) in Proposition 2.52 a unital, nuclear *-homomorphism
ϕω : A → Qω with τω ◦ ϕω = τ . Faithfulness of τ implies injectivity of ϕω, and then Corollary 2.42
proves quasidiagonality of A.

Just as quasidiagonality of tracial states has several different characterisations, the same occurs
for amenability. For a large list of equivalences, we refer to [10, Theorem 3.1.6]; the proofs are quite
technical, and the results are not of high importance for our purposes, and we shall hence omit men-
tioning most of them. However, we do need one result proving amenability of tracial states on nuclear
C∗-algebras, which shows how the refinement due to Gabe is a generalisation of the original theorem
of Tikuisis, White and Winter.
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First, we need some notation. If τ is a tracial state, then we can consider the left regular repre-
sentation πτ : A→ B(L2(A, τ)) and the right regular representation πop

τ : Aop → B(L2(A, τ)), see [11,
Section 6.1]. A proof of the following theorem can be found in the long list of equivalences in [10,
Theorem 3.1.6].

Proposition 2.54. A tracial state τ on a C∗-algebra A is amenable if and only if the product
homomorphism πτ × πop

τ : A � Aop → B(L2(A, τ)) is continuous with respect to the minimal tensor
product.

Equipped with the above tool, we can easily show that tracial states on nuclear C∗-algebras are
amenable.

Corollary 2.55. Let A be a nuclear C∗-algebra, and let τ be a tracial state on A. Then τ is amenable.

Proof. SinceA is nuclear, there exists a unique C∗-norm onA�Aop. Since the product homomorphism
πτ × πop

τ : A � Aop → B(L2(A, τ)) is continuous in the maximal tensor norm by definition of the
maximal tensor product, we conclude from Proposition 2.54 that τ is amenable.

Since nuclearity is equivalent to amenability for C∗-algebras, see [3, Theorem IV.3.13 and The-
orem IV.3.14], and all tracial states on nuclear C∗-algebras are amenable, this can motivative the
terminology of amenable tracial states. In fact, we can use Proposition 1.37 to show that amenability
of a discrete group G implies that all tracial states on C∗r (G) are amenable.

Corollary 2.56. Let G be a discrete group. If G is amenable, then all tracial states on C∗r (G) are
amenable.

Proof. If G is an amenable group, then C∗r (G) is nuclear by the equivalence of (i) and (ii) in Propo-
sition 1.37. Hence, by Corollary 2.55, we see that every tracial state on C∗r (G) is amenable.

In particular, the canonical tracial state x 7→ 〈xδe, δe〉 on C∗r (G) is faithful and amenable by
Corollary 2.56 and Proposition 1.35. Actually, every tracial state on C∗r (G) being amenable is a
necessary and sufficient condition for G being an amenable group, and this is equivalent to the
existence of just one amenable tracial state on C∗r (G), see [11, Proposition 6.3.3].
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3 Setting the extension theoretic stage

We now start studying a rich algebraic theory of C∗-algebras, namely the theory of extensions, which
is a crucial ingredient in Schafhauser’s proof of the Tikuisis-White-Winter theorem, as it provides
the entire framework of the proof. First, we introduce the multiplier algebra and prove a variety
of useful results and subsequently use these in order to build the theory of extensions. Hence this
chapter has two goals: Build up the theory for its own right, and discuss how we can and will use it
in Schafhauser’s proof.

3.1 Preliminary discussion on multiplier algebras

Before we can reasonably study extensions, we first need to discuss what are known as multiplier
algebras. It turns out that the information in an extension can be encoded in a single *-homomorphism
called the Busby invariant whose codomain is a quotient of a multiplier algebra, and in order to
define an algebraic structure on the set of extensions, we need to have a decent grasp on the theory
of multiplier algebras. The starting point for understanding multiplier algebras is understanding
essential ideals. We shall define the multiplier algebra using a universal property following [11,
Proposition 8.4.2], but there exists a description in terms of centralisers, which can be studied in
[47, 53].

Definition 3.1. An ideal I in a C∗-algebra A is called essential if the orthogonal complement

I⊥ = {a ∈ A | aI = Ia = 0}

is trivial, i.e., if I⊥ = {0}.

There is another equivalent formulation of essential ideals, which occasionally is useful.

Proposition 3.2. An ideal I E A is essential if and only if it non-trivially intersects any non-zero
closed two-sided ideal J EA.

Proof. Suppose I E A is an essential ideal, and let J E A be a closed two-sided ideal in A satisfying
that I ∩ J = 0. Since I ∩ J = IJ , we find that IJ = JI = 0, and as I is an essential ideal in A, we
conclude that J = 0. On the other hand, assume that I non-trivially intersects any non-zero closed
two-sided ideal in A, then we want to show that I has a trivial orthogonal complement. Let a ∈ A
be arbitrary with aI = Ia = 0, and let J be the ideal generated by a in A. Then J ∩ I = JI = 0,
and hence a = 0.

One of the foundational theorems in extension theory is the following, which is the definition of
the multiplier algebra. We give both the concrete construction as well as a more abstract description
in the form of the universal property of multiplier algebras. Let us also note that there exists another
characterisation using centralisers — the reader is asked to consult [53, Chapter 3.12] on this matter.
The proof of the following result is a generalisation of [11, Proposition 8.4.2], but follows the same
structure.

Theorem 3.3. Let I be a C∗-algebra. Then there exists a unique unital C∗-algebra M(I) containing
I as an essential ideal with the following universal property: If I sits as an ideal in a C∗-algebra A,
then there exists a unique *-homomorphism A→M(I) extending the inclusion I ⊆M(I). Moreover,
this *-homomorphism is injective if and only if I is an essential ideal in A.

Proof. Uniqueness follows easily by invoking the universal property twice. Let π : I → B(H) be any
faithful and non-degenerate representation and define

M(I) = {T ∈ B(H) |Tπ(x), π(x)T ∈ I, for all x ∈ I}.

It is immediate that I sits as an ideal insideM(I), and thatM(I) is a unital C∗-algebra. Suppose I
is not essential inM(I), then there exists non-zero T ∈M(I) with Tπ(x) = π(x)T = 0 for all x ∈ I.
In particular, there exists ξ ∈ H such that Tξ 6= 0, and as π(x)Tξ = 0 for all x ∈ I, this contradicts
the fact that the representation π is non-degenerate. Hence I EM(I) is essential.
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We now prove that M(I) satisfies the desired universal property. Let (eα)α∈Λ be a quasicentral
approximate unit for I with respect to A. Define the map π0 : A→ B(H) by

π0(a)(π(b)ξ) = π(ab)ξ, a ∈ A

for all b ∈ I and ξ ∈ H; note that π0 exists by non-degeneracy of π and as I is an ideal in A. Since
we for any fixed a ∈ A and arbitrary b, b′ ∈ I and ξ ∈ H have that

‖π0(a)(π(b)ξ)− π0(a)(π(b′)ξ)‖ = ‖π(ab)ξ − π(ab′)ξ‖ = lim
α
‖π(aeα)π(b− b′)ξ‖ ≤ ‖a‖ ‖π(b− b′)ξ‖ ,

the net
(
π0(a)π(eα)ξ

)
α∈Λ

is Cauchy in B(H). Completeness guarantees the existence of a limit point,

and we can consequently define the map ρ : A→ B(H) by

ρ(a)ξ = lim
α
π0(a)π(eα)ξ = lim

α
π(aeα)ξ.

It is easily shown that ρ is a *-homomorphism extending π. Moreover, it is unique with this property
by the following argument: Suppose σ : A → B(H) is a representation extending π, then, for all
a ∈ A, b ∈ I and ξ ∈ H, we have

σ(a)(π(b)ξ) = σ(ab)ξ = π(ab)ξ = ρ(ab)ξ = ρ(a)(π(b)ξ).

Since π is non-degenerate, we conclude that σ(a) = ρ(a), and hence ρ is the unique *-homomorphism
A→ B(H) extending π.

We claim that ρ is the desired *-homomorphism in the universal property. In order to show this, we
need to establish that ρ extends the inclusion I ⊆ B(H) and that ρ(A) ⊆ M(I). Since ρ extends π,
we can invoke faithfulness of π to identify π(I) with I to see that ρ extends the inclusion I ⊆ B(H).
Hence, we only need show that ρ(A) ⊆M(I). Note that for all a ∈ A and b ∈ I,

ρ(a)π(b) = lim
α
π(aeα)π(b) = lim

α
π(a)π(eαb) = π(ab)

and quasicentrality of the approximate unit (eα)α∈Λ in A implies that

π(b)ρ(a) = π(b) lim
α
π(aeα) = π(b) lim

α
π(eαa) = lim

α
π(beα)π(a) = π(ba).

Since π(ab), π(ba) ∈ I, we have that ρ(a) ∈M(A) by construction such that ρ(A) ⊆M(I).

Now assume that I is an essential ideal in A, then we show that ρ is injective. Suppose that ρ(a) = 0,
then, for any b ∈ I, we have

0 = ρ(a)π(b) = π(ab), and, 0 = π(b)ρ(a) = π(ba)

by the above calculations. Since π is faithful and b ∈ I was arbitrary, we find that a is orthogonal
to I and, as I is an essential ideal in A, we conclude that a = 0. On the other hand, suppose that I
is not essential in A, then there exists a non-zero element a ∈ A such that aI = Ia = 0. Since the
approximate unit (eα)α∈Λ belongs to I, we find for each ξ ∈ H that

ρ(a)ξ = lim
α
π(aeα)ξ = 0

and hence ρ(a) = 0 proving that ρ is not injective. This proves that I is an essential ideal in A if and
only if ρ is injective.

We call M(I) the multiplier algebra of I, and the quotient Q(I) = M(I)/I is called the corona
algebra. The above construction shows that M(I) is the maximal C∗-algebra in which I sits as an
essential ideal.

There are three common examples to study when discussing multiplier algebras. The first is the
fact that the multiplier algebra of a unital C∗-algebra is just the C∗-algebra itself.

Proposition 3.4. If A is a unital C∗-algebra, then M(A) = A.

40



Proof. We already established that M(A) is a unital C∗-algebra, and that A is an essential ideal in
M(A). Let 1A denote the unit of A, and let 1M(A) denote the unit of M(A). Then,

(1A − 1M(A))A = 0 = A(1A − 1M(A)),

and as A is an essential ideal inM(A), we find that 1A = 1M(A), which implies that A =M(A).

While the multiplier algebra of a unital C∗-algebra is not of any interest by the above proposition,
there are several non-unital C∗-algebras with interesting multiplier algebras. The following example
effectively shows that when we study extensions in the next section, we study a generalisation of
extensions by compact operators.

Example 3.5. Let H be an infinite-dimensional Hilbert space, and let K(H) denote the compact
operators on H. We claim that M(K(H)) = B(H), which is easily seen as K(H) already sits inside
B(H) as an essential ideal. More precisely, for any T ∈ B(H) and S ∈ K(H), we have TS, ST ∈ K(H),
which implies that M(K(H)) = B(H) by the explicit construction of multiplier algebras in Theorem
3.3.

The next result shows that the multiplier algebra can be seen as a non-commutative analogue of
the Stone-Čech compactification.

Proposition 3.6. If X is a locally compact Hausdorff space, thenM(C0(X)) is isomorphic to C(X†),
where X† is the Stone-Čech compactification of X.

Proof. First, observe that the C∗-algebra of bounded functions on X is isomorphic to C(X†). Since
C0(X) is an essential ideal in C(X†), there exists a unique injective *-homomorphism ϕ : C(X†) →
M(C0(X)) extending the inclusion C0(X) ⊆ M(C0(X)). We claim that ϕ is a *-isomorphism. We
only need to show that it is surjective, and for this it suffices to show that the image of ϕ contains all
positive elements in M(C0(X)). Let g ∈ M(C0(X)) be any positive element, and let (eα)α∈Λ be an
approximate unit for C0(X). For each x ∈ X, we find that the net (geα(x))α∈Λ is an increasing net
of real numbers, and it is bounded from above by ‖g‖, and, thus, it has a limit. Define the function
f : X → C by f(x) = limα(geα)(x). We claim that f ∈ C(X†) and that ϕ(f) = g.

Since C(X†) is isomorphic to the C∗-algebra of bounded functions X → C, we shall show that
f is exactly such a map. It is immediate that f is bounded by ‖g‖, so we only need to verify that
it is continuous. Since (eα)α∈Λ is an approximate unit for C0(X), it follows that fh = gh, and in
particular fh ∈ C0(X), for each h ∈ C0(X). Let x ∈ X be arbitrary and suppose that (xi)i∈I is a
net in X converging to x. Find by local compactness of X a compact neighbourhood K of x; we
can without loss of generality assume that each xi belongs to K. Use Urysohn’s lemma, [21, Lemma
4.32], to find a function h ∈ C0(X) with the property that h|K = 1. Since fh ∈ C0(X), we find that

f(x) = (fh)(x) = lim
i

(fh)(xi) = lim
i
f(xi)

proving continuity. We have thus shown that h ∈ C(X†).

Finally, for any h ∈ C0(X), we can use the fact that ϕ extends the inclusion C0(X) ⊆M(C0(X)) to
see that

ϕ(f)h = ϕ(fh) = fh = gh,

and this implies (ϕ(f)− g)C0(X) = 0. Since C0(X) is an essential ideal in M(C0(X)), we conclude
that ϕ(f) = g, which completes the proof.

As we mentioned in the introduction of this section, we need multiplier algebras in order to define
an algebraic structure on the set of extensions. It actually turns out that we need an embedding
of the Cuntz algebra O2 inside the multiplier algebra or, rather, inside the corona algebra; this is
possible in the stable case, as we show below.

Proposition 3.7. If A and B are C∗-algebras, then we have the inclusion M(A)⊗M(B) ⊆M(A⊗
B).
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Proof. Let A ⊆ B(H) and B ⊆ B(K) be non-degenerate faithful representations. Then,

M(A)⊗M(B) ⊆ B(H)⊗ B(K) ⊆ B(H ⊗K).

Moreover, we can represent A⊗B ⊆ B(H⊗K) faithfully and non-degenerately. Given
∑
i(Ti⊗Si) ∈

M(A)⊗M(B) with Ti ∈M(A) and Si ∈M(B), we see that for any elementary tensor a⊗b ∈ A⊗B,(∑
i

(Ti ⊗ Si)
)

(a⊗ b) =
∑
i

(Tia⊗ Sib) ∈ A⊗B

and similarly the other way around. This proves that we have the inclusion M(A) ⊗ M(B) ⊆
M(A⊗B) as desired.

Corollary 3.8. If I is stable and H is a separable infinite-dimensional Hilbert space, then B(H) ⊆
M(I).

Proof. Since I is stable, we have the isomorphism I ∼= I ⊗K(H). Then Proposition 3.7 entails that

M(I)⊗M(K(H)) ⊆M(I ⊗K(H)) ∼=M(I).

Note that M(K(H)) = B(H) by Example 3.5, and we hence have the inclusion B(H) ⊆ M(I) via
the embedding B(H) ↪→M(I)⊗ B(H) given by T 7→ 1⊗ T .

Since we have a faithful representation O2 ⊆ B(H) for some Hilbert space H, we see that if I is
any stable C∗-algebra, then we have the embedding O2 ⊆ M(I). More generally, we have for any
separable infinite-dimensional Hilbert space H an embedding On ⊆ B(H) for any n ≥ 2.

Corollary 3.9. If I is a stable C∗-algebra, then On ⊆M(I) for all n ≥ 2.

3.2 Extension theory and the group Ext−1(A, I)

In this section, we introduce the notion of extensions and define an algebraic structure on these. While
many textbooks on the subject of extension theory examine extensions by the C∗-algebra of compact
operators K(H), in this thesis we are interested in general extensions. There are several reasons to
be interested in the special case with extensions by K(H). Historically, the theory of extensions of
C∗-algebras was developed in 1977 by Brown, Douglas and Fillmore [7] to study essentially normal
operators. While on the surface one would expect no direct link between extension theory, which is
highly operator algebraic, and essentially normal operators, which is a topic within single operator
theory, it turns out that there is an overlap — in particular, the question of classifying when an es-
sentially normal operator is a normal operator plus a compact operator can be phrased as a question
about extensions by compact operators. We only mention this here to illustrate the breadth of topics
that can be advantageously studied using extension theory; for more details on essentially normal
operators and extension theory, we refer to [33] as well as the original paper by Brown, Douglas and
Fillmore [7].

For the purposes of this thesis, we cannot rely only on extensions by the compact operators, as
the general theory of extensions plays an important role in Schafhauser’s proof of the theorem of
Tikuisis, White and Winter, and as such we need to study general extensions in detail. Our main
references are [2, Chapter VII] and [34, Chapter 3], with our exposition mostly following that of the
latter. First of all, what do we mean by an extension? For anyone having studied basic homological
algebra, the answer is quite obvious:

Definition 3.10. Let I, A be C∗-algebras. We say that a C∗-algebra E is an extension of A by I if
there exists a short exact sequence 0→ I → E → A→ 0.

While the definition entails that the extension is the C∗-algebra E, it is often useful to think of
extensions as being the short exact sequence in itself. Our first goal is to in some way characterise
the extensions, and how we can distinguish between different extensions. Of course, this has no
mathematical meaning per se, but the informal statement shall guide our study.

Consider an extension 0 → I → E → A → 0 of A by I. Since I sits inside E as an ideal, we
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can use Theorem 3.3 to prove the existence of a unique *-homomorphism σ : E →M(I), which ex-
tends the inclusion I ⊆M(I). Let ρ : M(I)→ Q(I) denote the quotient map onto the corona algebra,
and let π : E → A denote the quotient map of the extension. Consider the map β : A→ Q(I) given by
β(a) = ρ(σ(e)) where π(e) = a. It is easily verified that this map is a well-defined *-homomorphism
— we call β the Busby invariant of the extension. The Busby invariant of any given extension is
clearly unique by the universal property of the multiplier algebra. A more graphical way to express
the Busby invariant is as the unique *-homomorphism making the following diagram commute:

0 I E A 0

0 I M(I) Q(I) 0

ι π

ρ

σ β

Note that β is injective if and only if σ is injective if and only if I is an essential ideal in E.

The importance of the Busby invariant lies in the fact that we can determine the extension by the
Busby invariant in a unique way. But first we need a definition regarding isomorphisms of extensions.

Definition 3.11. Two extensions η1 and η2 of A by I are said to be isomorphic if there exists a
*-homomorphism ϕ : E1 → E2 making the following diagram commutative:

0 I E1 A 0

0 I E2 A 0

ϕ

Note that ϕ necessarily is a *-isomorphism by an easy diagram chase. This definition of extensions
being isomorphic is rather strong, and it turns out to be too restrictive to be useful for later purposes,
where we shall relax the conditions to allow for unitary equivalence. However, we need it for the
following proposition, which states that the Busby invariant completely characterises extensions up
to isomorphisms.

Proposition 3.12. Let I and A be C∗-algebras. Two extensions η1 and η2 of A by I are isomorphic
if and only if they admit the same Busby invariant. Moreover, if β : A→ Q(I) is a *-homomorphism,
then there exists an extension whose Busby invariant is β.

Proof. Suppose first that the two extensions are isomorphic with isomorphism ϕ : E1 → E2. Let
βi : Ei → A be the Busby invariants of the extensions, i.e., consider the following commutative
diagram for i = 1, 2.

0 I Ei A 0

0 I M(I) Q(I) 0

πi

ρ

σi βi

Using that the two extensions are isomorphic, we get the following commutative diagram with exact
rows:

0 I E1 A 0

0 I E2 A 0

0 I M(I) Q(I) 0

π1

π2

ρ

ϕ

σ2 β2
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Note that σ2 ◦ ϕ = σ1 by the universal property of the multiplier algebra. It is then easily verified
that β1 = β2.

Now suppose that β : A → Q(I) is a *-homomorphism. We wish to construct an extension whose
Busby invariant is precisely β. Define the C∗-algebra

E = {(a, b) ∈ A⊕M(I) |β(a) = ρ(b)}

where, again, ρ : M(I)→ Q(I) is the quotient map. Note that I is an ideal in E. Then if ι : I → E
is the inclusion in the second coordinate, and if π : E → A is the projection onto the first coordinate,
we get the following short exact sequence.

0→ I
ι−→ E

π−→ A→ 0.

Note that this extension is constructed precisely such that the following diagram commutes:

0 I E A 0

0 I M(I) Q(I) 0

ι π

ρ

σ β

Here we have denoted by σ : E →M(I) the projection onto the second coordinate. It follows easily
that the extension 0→ I → E → A→ 0 has β as its Busby invariant.

Lastly, suppose that E1 and E2 are two extensions with the same Busby invariant β : A → Q(I).
Denote by πi : Ei → A the quotient maps of the extensions. Consider again the pullback

E = {(a, b) ∈ A⊕M(I) |β(a) = ρ(b)}

whose corresponding extension has β as its Busby invariant. Define the *-homomorphism ϕ : E1 → E
given by ϕ(e) = (π1(e), σ1(e)), which is well-defined, as

β(π1(e)) = β1(π1(e)) = ρ(σ1(e)).

One easily verifies that the extensions E1 and E are isomorphic with ϕ : E1 → E witnessing the
isomorphism. By considering E2 instead of E1, we find that the three extensions considered are all
isomorphic, and this completes the proof.

This classification result states that studying extensions of A by I is equivalent to studying *-
homomorphisms A → Q(I). For example, we can use this point of view to completely characterise
the extensions of C∗-algebras by unital C∗-algebras.

Corollary 3.13. If A is any C∗-algebra and I is unital, then the only extension up to isomorphism
is 0→ I → I ⊕A→ A→ 0.

Proof. Since I is unital, the corona algebra Q(I) is trivial by Proposition 3.4, hence the only *-
homomorphism A→ Q(I) is the zero homomorphism. By Proposition 3.12, we see that this implies
that there is only one extension up to isomorphism, and as 0→ I → I ⊕A→ A→ 0 is obviously an
extension, we are done.

Hence the only interesting extensions are those by non-unital C∗-algebras. However, it turns out
that the notion of isomorphic extensions is too restrictive for many purposes, and as such we need to
weaken it slightly.

Definition 3.14. Two extensions η1 and η2 of A by I are said to be unitarily equivalent if there exists
a *-homomorphism ϕ : E1 → E2 and a unitary u ∈M(I) making the following diagram commutative:

0 I E1 A 0

0 I E2 A 0

Ad(u) ϕ
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In the same way as isomorphic extensions have the same Busby invariants, unitarily equivalent
extensions have unitarily equivalent Busby invariants. We only state the result, as the proof is quite
similar to that of Proposition 3.12.

Proposition 3.15. Two extensions of A and I with Busby invariants βi : A→ Q(I) for i = 1, 2 are
unitarily equivalent if and only if there exists a unitary u ∈M(I) such that β1 = Ad(ρ(u)) ◦ β2.

An important class of extensions is the class of split extensions, which we shall call trivial, since
they turn out to exactly correspond to the neutral element in the extension semigroup, as we shall
see later.

Definition 3.16. An extension 0 → I → E
π→ A → 0 of A by I is called trivial if it splits, i.e., if

there exists a *-homomorphism ϕ : A→ E with π ◦ ϕ = idA.

Since we have already established that studying extensions and studying Busby invariants are
equivalent notions, it should come as no surprise that we can characterise the trivial extensions by
certain properties of their Busby invariants.

Proposition 3.17. Let 0 → I → E
π→ A → 0 be an extension with corresponding Busby invariant

β : A→ Q(I). Then the extension is trivial if and only if β lifts to a *-homomorphism A→M(I), i.e.,
if and only if there exists a *-homomorphism β : A→M(I) with ρ ◦ β = β, where ρ : M(I)→ Q(I)
is the quotient map.

Proof. Assume the extension splits and that ϕ : A→ E is a *-homomorphism such that π ◦ ϕ = idA.
Denote by σ : E →M(I) the unique *-homomorphism extending the inclusion I ⊆M(I), and define
β = σ ◦ ϕ. Then,

ρ ◦ β = ρ ◦ σ ◦ ϕ = β ◦ π ◦ ϕ = β

as desired.

For the other implication, assume that β lifts to a *-homomorphism β : A → M(I). Note that
we, by Proposition 3.12, can realise E as the C∗-algebra

E = {(a, b) ∈ A⊕M(I) |β(a) = ρ(b)},

and then σ : E → M(I) by σ(a, b) = b is the unique *-homomorphism extending the inclusion
I ⊆M(I), and π : E → A is given by π(a, b) = a. Now define ϕ : A→ E by ϕ(a) = (a, β(a)). This is
a well-defined *-homomorphism since ρ ◦ β(a) = β(a), and it is easily verified that π ◦ ϕ = idA.

We now begin describing the algebraic structure on extensions under the additional assumption
that I is assumed to be stable. Since we can embed the Cuntz algebra O2 inside M(I) by Corollary
3.9, we can construct an explicit isomorphism Θ: M2(I)→ I by

Θ

((
b11 b12

b21 b22

))
=

2∑
i,j=1

sibi,js
∗
j , bi,j ∈ I,

where the isometries s1, s2 are those generating the Cuntz algebra O2. We can extend Θ to an iso-
morphismM(M2(I)) ∼= M2(M(I)) by the same formula, and that if we have two such isomorphisms
induced by a pair of isometries s1, s2 and t1, t2 generating O2, then the unitary element u = s1t

∗
1+s2t

∗
2

inM(I) implements a unitary equivalence of the isomorphisms. This proves that these isomorphisms
are unique up to unitary equivalence. Moreover, if we have such an isomorphism Θ: M2(I) → I,
we can construct an induced *-isomorphism Θ̃: M2(Q(I)) → Q(I) such that the following diagram
commutes:

0 M2(I) M2(M(I)) M2(Q(I)) 0

0 I M(I) Q(I) 0

Θ Θ Θ̃
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Let η1, η2 be two extensions of A by I with Busby invariants β1, β2 : A→ Q(I). We can, up to unitary
equivalence, define an addition η1 ⊕ η2, to be the extension with the Busby invariant β : A → Q(I)
given by

β = Θ̃ ◦
(
β1 0
0 β2

)
.

Explicitly, we can express this sum of Busby invariants as

β(a) = s1β1(a)s∗1 + s2β2(a)s∗2, a ∈ A

which is precisely the formulation used in [66]. Without too much trouble, one can prove that this
addition is associative and commutative, such that the set of unitary equivalence classes of Busby
invariants becomes an Abelian semigroup. Observe that any extension unitarily equivalent to a trivial
extension is again trivial, and that any addition of trivial extensions is again trivial. In other words,
the set of trivial extensions is a subsemigroup of the unitary equivalence classes of extensions.

Definition 3.18. Two extensions η1, η2 of A by I with Busby invariants β1, β2 : A→ Q(I) are said
to be stably equivalent if there exist trivial extensions ζ1 and ζ2 of A by I with Busby invariants
τ1, τ2 : A→ Q(I) such that

Θ̃ ◦
(
β1 0
0 τ1

)
and Θ̃ ◦

(
β2 0
0 τ2

)
are unitarily equivalent.

In other words, two extensions η1 and η2 are stably isomorphic if there exist trivial extensions ζ1
and ζ2 such that η1⊕ζ1 = η2⊕ζ2 up to unitary equivalence. It is easy to see that stable equivalence is
an equivalence relation, and that unitary equivalence implies stable equivalence. We define Ext(A, I)
to be the Abelian semigroup of equivalence classes under stable equivalence with the neutral element
being the equivalence class of any trivial extension. The reader should be aware that we, occasion-
ally, will be notationally sloppy and refer to an element in Ext(A, I) by an extension instead of its
equivalence class.

Generally, Ext(A, I) does not admit more algebraic structure than stated above, i.e., it is not a
group. However, we are often interested in the Abelian group Ext−1(A, I) consisting of the invertible
extensions. In order to fully understand this group, we need to characterise the invertible extensions.
For this we first need a definition, which turns out to be critical for this purpose.

Definition 3.19. An extension 0 → I → E
π→ A → 0 is said to be semisplit if there exists a c.c.p.

map ϕ : A→ E such that π ◦ ϕ = idA.

Note that an extension is semisplit if and only if the corresponding Busby invariant β : A→ Q(I)
lifts to a c.c.p. map A→M(I) by an argument similar to that of Proposition 3.17.

We also need a generalisation of Stinespring’s dilation theorem, cf. Proposition 1.8, a proof of
which can be found in [34, Theorem 3.2.7]. Observe that this is, in fact, a generalisation, since
M(K(H)) = B(H) by Example 3.5.

Proposition 3.20 (Kasparov’s Stinespring Theorem). Suppose that A is a separable C∗-algebra, and
that I is a stable C∗-algebra. Let ϕ : A→M(I) be a c.c.p. map, then there exists a *-homomorphism
π : A→M2(M(I)) such that (

ϕ(a) 0
0 0

)
= pπ(a)p, a ∈ A.

where p is the projection p = diag(1, 0) in M2(M(I)).

For the following proposition, the reader is reminded that if ϕ : A→ B is a *-homomorphism, the
induced *-homomorphism on matrix algebras is denoted ϕ(n) : Mn(A)→Mn(B).

Proposition 3.21. Assume that A is separable, and that I is stable. Let η ∈ Ext(A, I) be represented
by a Busby invariant β : A→ Q(I). The following conditions are equivalent.
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(i) The extension η is invertible;

(ii) The extension η is semisplit;

(iii) There exists a *-homomorphism π : A→M2(M(I)) such that(
β(a) 0

0 0

)
= ρ(2)(pπ(a)p),

where ρ : M(I)→ Q(I) is the quotient map, and p is the projection p = diag(1, 0) in M2(M(I)).

Proof. (i)⇒(ii): Assume that η is invertible, then there exists an extension η′ such that η⊕η′ is stably
equivalent to a trivial extension. Representing the extension η′ by the Busby invariant β′ : A→ Q(I),
we see that there exists a *-homomorphism α : A → M(I) splitting the extension η ⊕ η′, i.e., such

that ρ ◦ α = Θ̃ ◦
(
β 0
0 β′

)
. Define the *-homomorphism π = Θ−1 ◦ α : A → M2(M(I)) and the

projection p = diag(1, 0) in M2(M(I)). Then, for any a ∈ A, we find that

ρ(2)(pπ(a)p) =

(
β(a) 0

0 0

)
Use the identification pM2(M(I))p ∼= M(I) to define the c.c.p. map γ : M2(M(I)) → M(I) to be
the cutoff γ(a) = pap for a ∈M2(M(I)) and put ψ = γ ◦ π, then it is immediate that ρ ◦ ψ = β.

(ii)⇒(iii): This follows immediately from Kasparov’s Stinespring theorem, Proposition 3.20.

(iii)⇒(i): Let π : A→M2(M(I)) be a *-homomorphism such that(
β(a) 0

0 0

)
= ρ(2)(pπ(a)p), a ∈ A.

We claim that π commutes with both p and (1− p) up to M2(I). Let a, b ∈ A be arbitrary, then as
β is a *-homomorphism, we find that

ρ(2)(pπ(ab)p− pπ(a)pπ(b)p) = 0.

Putting b = a∗, we see that pπ(a)(1 − p)π(a)∗p ∈ M2(I), which implies that pπ(a)(1 − p) ∈ M2(I)
for all a ∈ A. Consequently, we find that

pπ(a)− π(a)p = pπ(a)(1− p)− (1− p)π(a)p ∈M2(I)

as desired. The same argument holds under interchanging (1− p) with p.

Noting that β(a) = ρ(2)(pπ(a)p) for all a ∈ A using an obvious identification, a natural candidate for
an inverse would be β′ : A → Q(I) given by β′(a) = ρ(2)((1 − p)π(a)(1 − p)). A priori, β′ is only a
c.c.p. map, however, since (1 − p) commutes with π, we find that β is, in fact, a *-homomorphism.
Let η′ be the extension associated to the Busby invariant β′. An easy calculation then shows that

Θ̃ ◦
(
β 0
0 β′

)
= ρ ◦ (Θ ◦ π)

which proves that the extension η ⊕ η′ is trivial and, hence, η is invertible.

Consider now the Abelian group Ext−1(A, I) consisting of equivalence classes of invertible exten-
sions. The above shows that the extension group Ext−1(A, I) consists of equivalence classes of semis-
plit extensions. Moreover, a semisplit extension η corresponds to the neutral element in Ext−1(A, I)
if and only if there exists another semisplit extension η′ such that η⊕ η′ is trivial. Since the Abelian
group structure of Ext−1(A, I) is highly appealing compared to the, in general, Abelian semigroup
structure of Ext(A, I), we often work with the former instead of the latter. In the case where A
is nuclear, the Choi-Effros lifting theorem, Proposition 2.41, in conjunction with Proposition 3.21,
proves that all extensions of A by I are semi-split, and thus Ext(A, I) = Ext−1(A, I).

One of the ingredients of Schafhauser’s proof is the use of the Universal Coefficient Theorem, most
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commonly referred to as the UCT, from KK-theory. While we shall not discuss the KK-theoretic
background, as this would be too comprehensive for this thesis, we shall mention how it comes up
within the framework of extensions, as the description is quite intuitive in this formulation. For
our purposes, the UCT is a way of describing the extension theory of a pair of C∗-algebras by their
K-theory. We refer to [2, Chapter 23] for a more in-depth study of the UCT and its importance in
KK-theory.

Suppose we have an extension η of A by I with short exact sequence 0 → I → E → A → 0,
then we get the following six term exact sequence in K-theory:

K0(I) K0(E) K0(A)

K1(I)K1(E)K1(A)

∂0∂1

This six term exact sequence entails the existence of a group homomorphism α : Ext−1(A, I) →
HomZ(K∗(A),K∗+1(I)) given by α([η]) = ∂0 ⊕ ∂1, where [η] denotes the unitary equivalence class of
η in Ext−1(A, I). Suppose α([η]) = 0, then we get for i = 0, 1 extensions of Abelian groups

0→ Ki(I)→ Ki(E)→ Ki(A)→ 0,

which we can denote by Ki(η). This canonically defines a map γ : kerα→ Ext1
Z(K∗(A),K∗(I)) given

by γ([η]) = K0(η)⊕K1(η), and it is easily seen that γ is a group homomorphism.

Definition 3.22. A separable C∗-algebra A is said to satisfy the UCT if for all separable, stable
C∗-algebras I, the map α is surjective, and the map γ is an isomorphism.

That is, if A satisfies the UCT, we get a short exact sequence of Abelian groups

0→ Ext1
Z(K∗(A),K∗(I))→ Ext−1(A, I)→ HomZ(K∗(A),K∗+1(I))→ 0

for all separable, stable C∗-algebras I. Note that this allows us to describe extension theory of a pair
of C∗-algebras using only the data from the K-theory of that pair. The above formulation is also
how, precisely, the UCT will show up in the proof of the Tikuisis-White-Winter theorem.

Unfortunately, not all C∗-algebras satisfy the UCT — Skandalis provided in [68] an example of a
separable, exact C∗-algebra, for which the UCT does not hold. Nevertheless, it is an open problem
whether all nuclear C∗-algebras satisfy the UCT. We can phrase this in a different way: Let N de-
note the smallest class of nuclear C∗-algebras containing the Abelian C∗-algebras, and which is closed
under so-called KK-equivalence2. One can show that a C∗-algebra A satisfies the UCT if and only
if A is KK-equivalent to an Abelian C∗-algebra, see [2, Theorem 23.10.5]; we often refer to N as
the UCT-class for this reason. The aforementioned open question about nuclearity and the UCT can
now be phrased as follows: Are all nuclear C∗-algebras in N ?

Let us give an explicit way that K-theory and extension theory are linked through the UCT. Let
A be a separable C∗-algebra and consider some extension of C by A, i.e., a short exact sequence
0 → A → E → C → 0. Noting that C is a nuclear C∗-algebra satisfying the UCT, since it is an
Abelian C∗-algebra, we get the short exact sequence of Abelian groups

0→ Ext1
Z(K∗(C),K∗(A))→ Ext(C, A)→ HomZ(K∗(C),K∗+1(A))→ 0.

However, since K0(C) = Z and K1(C) = 0, we find that Ext1
Z(K∗(C),K∗(A)) = 0, and hence

Ext(C, A) ∼= HomZ(Z,K1(A)) ∼= K1(A),

2KK-theory is, roughly stated, a generalisation of K-theory and K-homology, and takes a pair of C∗-algebras A,B
and returns an Abelian group KK(A,B). The bifunctor KK(·, ·) is contravariant in the first argument and covariant
in the second argument. For two C∗-algebras A and B, being KK-equivalent implies the existence of a certain element
in KK(A,B), see [2, Definition 19.1.1]
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where the latter isomorphism is given by evaluation at 1. In particular, we can determine the K1-
group of a C∗-algebra by understanding the extensions of C by A. In fact, one can show, see [2,
Chapter 15.14], that

K0(A) ∼= K1(C0(R, A)) ∼= Ext(C, C0(R, A)) ∼= Ext(C0(R), A).

We end this chapter on extension theory with a quite technical splitting result, which is precisely how
the UCT appears in Schafhauser’s proof of the Tikuisis-White-Winter theorem. In order to state and
prove the theorem in any meaningful way, we need to establish a few different extension theoretic
concepts. The first concerns semisplit extensions, where the splittings are assumed to have a certain
approximation property.

Definition 3.23. Let 0 → I → E
π→ A → 0 be an extension with a c.c.p. splitting ϕ : A → E. We

say that ϕ is weakly nuclear if, for all x ∈ I, the map σx : A→ I given by σx(a) = xϕ(a)x∗ is nuclear.
An extension is weakly nuclear if it admits a weakly nuclear splitting.

Consider for separable C∗-algebra A and I, where I is again assumed to be stable, the subset
Extnuc(A, I) consisting of equivalence classes of the weakly nuclear extensions. One can verify that
this, in fact, is an Abelian subgroup of Ext−1(A, I) with the trivial extensions being those admitting a
weakly nuclear *-homomorphic split, see [20]. Moreover, if A (or I) is KK-equivalent to a nuclear C∗-
algebra, then there exists an isomorphism Ext−1(A, I) ∼= Extnuc(A, I) for all separable C∗-algebras I
(or A), see [68, Proposition 3.2]. In particular, this isomorphism exists if A is KK-equivalent to an
Abelian C∗-algebra, i.e., if A satisfies the UCT.

Definition 3.24. Let η be an extension of A by a stable C∗-algebra I, then we say that η is nuclearly
absorbing if for any weakly nuclear extension η′ of A by I with a weakly nuclear *-homomorphic
splitting, the extensions η and η ⊕ η′ are unitarily equivalent.

Since extensions with weakly nuclear *-homomorphic splittings are precisely the neutral elements
in the Abelian group Extnuc(A, I), one might think that this definition is nonsensical. However, note
that stable equivalence entails that two weakly nuclear extensions η and η′ are representative of the
same element in Extnuc(A, I) if there exists extensions ζ and ζ ′ with weakly nuclear *-homomorphic
splitting such that η ⊕ ζ and η′ ⊕ ζ ′ are unitarily equivalent. If η is, moreover, nuclearly absorbing
such that η and η ⊕ ζ are unitarily equivalent, then η and η′ ⊕ ζ ′ are unitarily equivalent; it does
not necessarily hold that this is true if η is not assumed to be nuclearly absorbing. Specifically, if η
is a nuclear absorbing extension, which is a representative of the zero element in Extnuc(A, I), then
η admits a weakly nuclear *-homomorphic split. We shall see this idea used in proving Proposition
3.27 below.

Definition 3.25. An extension 0 → I → E → A → 0 is full if the corresponding Busby invariant
β : A →M(I) is full, that is, if for any non-zero a ∈ A, the ideal generated by β(a) is M(I). If the
unitised extension 0→ I → E† → A† → 0 is full, we say that the extension is unitisably full.

Recall that an Abelian group G is said to be divisible if for each g ∈ G and every n ∈ Z\{0}, there
exists h ∈ G such that nh = g, and that an Abelian group is divisible if and only if it is injective in
the homological sense by [58, Corollary 3.35]. In particular, if G is an Abelian divisible group, then
Ext1

Z(H,G) = 0 for any Abelian group H.

Definition 3.26. A C∗-algebra I is said to be an admissible kernel if I has real rank zero, stable
rank one, the Abelian semigroup D(I) is almost unperforated, K0(I) is divisible, K1(I) = 0, and
every projection in I ⊗K(H) is Murray-von Neumann equivalent to a projection in I.

Many of these conditions may seem quite arbitrary, but they turn out to be of use in the fol-
lowing proposition, which provides a sufficient condition for an extension to have a weakly nuclear
*-homomorphic splitting, see [66, Theorem 2.2].

Proposition 3.27. Suppose that A and I are separable C∗-algebras and consider the extension η
given by 0 → I → E → A → 0 and denote the quotient map by π : E → A. Assume that η is
a weakly nuclear, unitisably full extension such that I is an admissible kernel and the index map
K1(A) → K0(I) is trivial. Suppose further that A satisfies the UCT. Then there exists a weakly
nuclear *-homomorphism ϕ : A → E such that π ◦ ϕ = idA, that is, the extension η has a weakly
nuclear *-homomorphic splitting.
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Proof. The main structure of the proof is as follows: We first prove that η is a representative of the
trivial extension in Extnuc(A, I), and then we show that η is nuclearly absorbing. As the equivalence
class of η is the zero element in Extnuc(A, I), there exists a weakly nuclear extension η′ of A by I
such that η ⊕ η′ has a weakly nuclear *-homomorphic splitting. However, as η is nuclearly absorb-
ing, we find that η and η ⊕ η′ are unitarily equivalent and, consequently, η has a weakly nuclear
*-homomorphic splitting.

Before we are able to invoke any of the algebraic structure on extensions, we need to ensure that
I is stable. Since I has real rank zero and stable rank one, we can use Proposition A.3 and Propo-
sition A.5 in the appendix to see that I has an approximate unit consisting of projections and has
cancellation of projections. Moreover, all projections in I ⊗ K(H) are Murray-von Neumann equiv-
alent to a projection in I, implying that the positive cone K0(A)+ and the dimension range D0(A)
coincide. Using [62, Proposition 3.4], we find that I is stable.

Since I has been shown to be a stable C∗-algebra, and as η is a weakly nuclear extension, we are
able to formally state our first goal, which is to prove that η is a representative of the zero element in
Extnuc(A, I). As K0(I) is divisible, and as K1(I) = 0, we see that Ext1

Z(K∗(A),K∗(I)) = 0. Since A
satisfies the UCT and K1(I) = 0, this provides the isomorphism Ext−1(A, I) ∼= HomZ(K1(A),K0(I))
of Abelian groups. Explicitly, the isomorphism maps the extension η to the corresponding index
map K1(A) → K0(I), which is assumed to be trivial, and hence η corresponds to the neutral ele-
ment in Ext−1(A, I). Since all Abelian C∗-algebras are nuclear, and as A satisfies the UCT, A is
KK-equivalent to a nuclear C∗-algebra. We thus have the isomorphism Ext−1

nuc(A, I) ∼= Ext−1(A, I)
of Abelian groups, and we conclude that η is a representative of the zero element in Extnuc(A, I) as
desired.

Now we show that η is a nuclear absorbing extension. Observe that I is a separable, stable C∗-
algebra of real rank zero, that D(I) is almost unperforated, and that the extension η is assumed to
be unitisably full. We can thus combine [48, Corollary 5.1] and [23, Theorem 2.6] to find that η is
nuclearly absorbing.

At this point we know that η is a nuclearly absorbing extension which is a representative of the
zero element in Extnuc(A, I). We claim that η has a weakly nuclear *-homomorphic splitting. By
construction of Extnuc(A, I), there exists an extension η′ with a weakly nuclear *-homomorphic split-
ting such that the extension η⊕η′ again admits a weakly nuclear *-homomorphic splitting. However,
as η is nuclearly absorbing, we see that η and η ⊕ η′ are unitarily equivalent, and therefore η admits
a weakly nuclear *-homomorphic splitting.

The intuition behind the plethora of conditions in the proposition is to ensure that the extension
group Ext−1(A, I) exists and is isomorphic to Hom(K1(A),K0(I)), and then one proves that the
specific extension η is trivial. The splitting result is a vital ingredient in Schafhauser’s proof, as it
is used in constructing a *-homomorphism ψ : A → Qω given a *-homomorphism ϕ : A → Rω with
a c.c.p. lift A→ `∞(R), since ϕ can be shown to be nuclear by exactness of A. As a matter of fact,
Proposition 3.27 ensures that the ψ is nuclear, and hence it will be liftable by the Choi-Effros lifting
theorem.
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4 The Tikuisis-White-Winter theorem and its consequences

At this point in the thesis, we are well-versed in quite a few different areas of C∗-algebraic study,
including the finite approximation property that is quasidiagonality and the algebraic notion of exten-
sion theory. While they are all topics worth studying for their own sake, and even though they have
many usages besides those discussed in depth previously in this thesis, we have had a specific goal in
mind throughout the entire thesis, which is to prove the Tikuisis-White-Winter theorem and analyse
its consequences. In this chapter, we shall do exactly that; obviously, the theorem does not follow
directly from what we have already established, and as such there are still several results to prove.
After proving the theorem, we proceed by analysing a few corollaries, including some partial resolu-
tions to the Blackadar-Kirchberg conjectures. The main references for this chapter are Schafhauser’s
paper [66] and the original paper by Tikuisis, White and Winter [70].

4.1 Schafhauser’s proof

Recall that Q denotes the universal UHF-algebra, and that R denotes the unique hyperfinite II1-
factor. We wish to show that we can explicitly realiseR as the weak closure of the GNS-representation
of Q with respect to the unique tracial state τQ on Q.

Proposition 4.1. Let A be an infinite-dimensional UHF-algebra with a faithful tracial state τ , and
let (Hτ , ξτ , πτ ) be the GNS-representation of A corresponding to τ . Then πτ (A)′′ is a hyperfinite
II1-factor and is, hence, isomorphic to R.

Proof. Since A is a UHF-algebra, we can realise A as the norm-closure of an increasing sequence
of matrix algebras all containing the unit of A. Consider the C∗-algebra B = πτ (A), then B is
isomorphic to the UHF-algebra A by faithfulness of τ , and hence B′′ is hyperfinite. Note that since
τ(xy) = τ(yx) for all x, y ∈ A, we find that 〈x′y′ξτ , ξτ 〉 = 〈y′x′ξτ , ξτ 〉 for each x′, y′ ∈ B. Using
that B is weak-dense in the von Neumann-algebra B′′, we find that this extends to all x, y ∈ B′′,
and hence the function τ ′ : B′′ → C given by τ ′(x) = 〈xξτ , ξτ 〉 for x ∈ B′′ is a normal tracial state.
We claim that τ ′ is faithful, that it is the unique normal tracial state on B′′, and that B′′ is a II1-factor.

First we show that τ ′ is faithful. Suppose that x ∈ B′′ satisfies that τ ′(x∗x) = 0, then, for ev-
ery y ∈ B′′,

‖xyξτ‖2 = τ ′(y∗x∗xy) = τ ′(xyy∗x∗) ≤ ‖y‖2 τ ′(x∗x) = 0

by a Cauchy-Schwarz-esque result, and cyclicity of the vector ξτ implies that x = 0. Therefore τ ′ is
faithful. For uniqueness of τ ′, assume that τ̃ is another normal tracial state on B′′. If

⋃
n∈NMkn(C)

is strongly dense in B′′, then τ ′(a) = τ̃(a) for all a ∈ Mkn(C) and n ∈ N by uniqueness of tracial
states on matrix algebras over C. Normality of τ ′ and τ̃ then implies that τ ′ = τ̃ as desired.

Lastly, we show that B′′ is a II1-factor. If we establish that B′′ is a factor, then it is necessarily
of type II1 by Proposition 1.22. Hence we only need to prove that the center Z(B′′) is trivial. Ob-
serve that B′′′ = B′. Let p ∈ B′ ∩ B′′ be a projection and define the linear functional τp on B′′ by
τp(x) = τ ′(px). It is easily verified that this is a positive, normal linear functional on B′′ satisfying the
tracial property, and hence τp = τ ′(p)τ ′ by uniqueness of τ ′. When restricting to the UHF-algebra B,
we find by monotraciality of UHF-algebras that τp(x) = τ ′(p)τ ′(x) for all x ∈ B, which by normality
is extended to all x ∈ B′′. In particular,

τ ′(p)τ ′(1− p) = τp(1− p) = τ ′(p(1− p)) = 0

which implies either τ ′(p) = 0 or τ ′(1 − p) = 0. By faithfulness, either p = 0 or p = 1. Hence, any
projection in the center Z(B′′) is trivial, and since a von Neumann-algebra can be realised as the
closed span of its projections, see [47, Corollary 4.1.14], we conclude that Z(B′′) is trivial such that
B′′ is a factor.

Having shown that B′′ is a hyperfinite II1-factor, it follows from uniqueness of such von Neumann-
algebras, see [3, III.3.4.3], that B′′ is isomorphic to R.

The above proposition implies thatQ can be realised as a C∗-subalgebra ofR, and more specifically
that R is the strong closure of the GNS-representation of Q with respect to the unique, faithful
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tracial state τQ on Q. The following proposition shows that this inclusion induces a surjective *-
homomorphism on the level of ultrapowers.

Proposition 4.2. Let A be a separable, unital C∗-algebra with a faithful tracial state τ , and let M
be the strong closure of the GNS-representation of A with respect to τ . Then the inclusion A ⊆ M
induces a surjective *-homomorphism Aω →Mω.

Proof. It is obvious that the induced map π : Aω → Mω is well-defined and a *-homomorphism,
so we shall only prove that it is surjective. Let x ∈ Mω be arbitrary and lift it to an element
(xn)n∈N ∈ `∞(M). Since the GNS-representation of A is strongly dense in M , it follows from
Kaplansky’s density theorem that, for each n ∈ N, there exists an ∈ A with ‖an‖ ≤ ‖xn‖ and
‖an − xn‖2 ≤

1
n . The first fact proves that (an)n∈N belongs to `∞(A), such that we can map it to an

element a ∈ Aω, and the latter fact proves that π(a) = x.

Let πω : Qω → Rω be the canonical surjection as described above and define the trace-kernel
ideal J = kerπω. Then we have the short exact sequence 0 → J → Qω → Rω → 0. Our first
objective is to show that J is an admissible kernel. This requires several different proof techniques
and constructions, and hence we shall split up the proof in a few separable steps.

Lemma 4.3. The C∗-algebras J and Qω have stable rank one and real rank zero.

Proof. Since having real rank zero and stable rank one are properties that pass to ideals, it suffices
to show that Qω has these properties, which is presented in the appendix.

Our next step is to calculate the K-theory of J , which involves first understanding the K-theory
of Qω. Recall that we have the triple of ordered Abelian groups with distinguished order units

(K0(Q),K0(Q)+, [1]0) ∼= (Q,Q+, 1), (4.1)

and that the isomorphism is induced by the unique tracial state τQ on Q. In order to understand the
next lemma, we need to briefly discuss ultrapowers of ordered Abelian groups. The concept differs
slightly, albeit not terribly, from that of C∗-algebras, and we shall therefore discuss the construction.

Let (G,G+, u) be an ordered Abelian group with a distinguished order unit u, and denote by `∞(G)
the collection of sequences (xn)n∈N in G such that there exists d ∈ N with −du ≤ xn ≤ du for all
n ∈ N; this is a way of saying that the sequence is uniformly bounded. Then `∞(G) is an ordered
Abelian group with a partial ordering x ≤ y if xn ≤ yn for each n ∈ N, and the constant sequence u
is an order unit. We can define the subgroup cω(G) ⊆ `∞(G) by

cω(G) = {(xn)n∈N ∈ `∞(G) | {n ∈ N |xn = 0} ∈ ω}.

The group cω(G) should be understood as the sequences, which are eventually zero with respect to
ω. The ultrapower Gω of G is then the quotient `∞(G)/cω(G), which is clearly an ordered Abelian
group with a distinguished order unit; both the positive cone and the order unit are images of the
corresponding elements under the quotient map. Note that we then have the short exact sequence

0→ cω(G)→ `∞(G)→ Gω → 0.

The following lemma comes from [56, Proposition 2.6].

Lemma 4.4. There exists an isomorphism K0(Qω) ∼= K0(Q)ω of ordered Abelian groups.

Proof. For each n ∈ N, we can identify Mn(`∞(Q)) and `∞(Mn(Q)) with one another, which allows
us to understand the K0-group of `∞(Qω) by analysing projections on Mn(`∞(Q)) in a suitable
fashion. Construct a group homomorphism θ̃ : K0(`∞(Q))→ `∞(K0(Q)) by

θ̃([(pn)n∈N]0 − [(qn)n∈N]0) = ([pn]0 − [qn]0)n∈N

where pn, qn ∈ Pk(Q) for some sufficiently large integer k ∈ N; note that this k is independent of n.
We claim that this is an isomorphism of ordered Abelian groups. It is easily seen that θ̃ is positive
and preserves the order unit. To show that it is injective, suppose that p = (pn)n∈N and q = (qn)n∈N
are projections in Mk(`∞(Q)) with θ̃([p]0 − [q]0) = 0. This implies that [pn]0 = [qn]0 for all n ∈ N,
and since Q has the cancellation property, as it has stable rank one, we find that pn and qn are
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Murray-von Neumann equivalent. Let for each n ∈ N the element vn ∈Mk(Q) be the partial isome-
try implementing this equivalence, such that v∗nvn = p and vnv

∗
n = q. Then v = (vn)n∈N is a partial

isometry in `∞(Mk(Q)) ∼= Mk(`∞(Q)) with v∗v = p and vv∗ = q, which implies that [p]0 = [q]0.

Now we show that θ̃ is surjective. It suffices to show that θ̃ maps onto all positive elements
on `∞(K0(Q)). Let x = (xn)n∈N ∈ `∞(K0(Q))+ be arbitrary, then there exists by definition
a natural number d ∈ N with 0 ≤ xn ≤ d[1]0 for all n ∈ N, where 1 here denotes the unit
of Q. Since d[1]0 = [1d]0, where 1d denotes the unit of Md(Q), we can use the fact that UHF-
algebras are unital, stably finite with the cancellation property and follow the proof of [45, Lemma
3.15] to ensure the existence of projections pn ∈ Md(Q) with xn = [pn]0 for all n ∈ N. Then
p = (pn)n∈N ∈ `∞(Md(Q)) ∼= Md(`

∞(Q)) is a projection with θ̃([p]0) = x, and hence θ̃ is surjective.
Note that we have also proved that the inverse of θ̃ is positive, which shows that θ̃ is an isomorphism
of ordered Abelian groups. Using half-exactness of the K0-functor along with Lemma 2.10 stating
that projections on Md(Qω) lift to projections on Md(`

∞(Q)), we get the exact sequence

K0(cω(Q))→ K0(`∞(Q))→ K0(Qω)→ 0

of Abelian groups. Moreover, one can show that the image of the restriction θ̃0 of θ̃ onto K0(cω(Q))
is cω(K0(Q)). We hence see that there exists an isomorphism θ̃0 : K0(cω(Q))→ cω(K0(Q)) such that
the following diagram is commutative with exact rows

K0(cω(Q)) K0(`∞(Q)) K0(Qω) 0

0 cω(K0(Q)) `∞(K0(Q)) K0(Q)ω 0

θ̃0 θ̃ θ

where the existence of the dashed isomorphism θ : K0(Qω) → K0(Q)ω can be proved via a simple
diagram chase. This completes the proof.

Note that the above theorem actually gives an explicit description of the isomorphism θ, but for
our purposes the mere existence of θ is sufficient.

Consider now the ultrapower Qω = `∞(Q)/cω(Q). Lemma 4.4 along with equation (4.1) shows that
we have an isomorphism K0(Qω) ∼= Qω as ordered Abelian groups. Let limω be the map Qω → R
given by the following procedure: Given an element q ∈ Qω, find a lift (qn)n∈N in `∞(Q) and let
limω q be the limit of the sequence (qn)n∈N along ω in R. Since any real number can be realised
as a limit of a sequence of rational numbers, and as convergence along free ultrafilters generalises
sequential convergence, we see that limω is surjective. Let G0 be the kernel of this map, which can
be defined explicitly by

G0 = {q ∈ `∞(Q) | lim
n→ω

qn = 0}/{q ∈ `∞(Q) | {n ∈ N | qn = 0} ∈ ω}.

Let Q+
ω be the subsemigroup of Qω consisting of elements representable by sequences in Q+, and let

G+
0 = Q+

ω ∩G0.

Lemma 4.5. The C∗-algebras J , Qω and Rω all have trivial K1-groups, and we have the following
commutative diagram with exact rows

0 K0(J) K0(Qω) K0(Rω) 0

0 G0 Qω R 0

K0(πω)

limω

K0(τQ)ω K0(τQ)ω K0(τω)

where the vertical maps are isomorphisms of Abelian groups. Moreover, the vertical group isomor-
phisms restrict to semigroup isomorphisms θJ : D(J)→ G+

0 , θQω : D(Qω)→ Q+
ω and θRω : D(Rω)→

R+.
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Proof. Note first of all that limω ◦K0(τQ)ω = K0(τω)◦K0(πω) by construction, which proves that the
diagram — assuming it exists — commutes. We have already established that K0(τQ)ω induces the
isomorphism K0(Qω) → Qω. Since Rω is a II1-factor by Proposition 2.16, one finds that the state
K0(τω) : K0(Rω)→ R induced by the tracial state τω is, in fact, an isomorphism of Abelian groups.
Moreover, using the Borel functional calculus for von Neumann-algebras, one can show that the uni-
tary group of a von Neumann-algebra is always connected and, consequently, that the K1-group is
trivial. We sketch the idea: If M is a von Neumann-algebra and u ∈ U(M) is unitary, then we can
use the Borel functional calculus on a branch of the logarithm to find that u = eix, where x = −i log u
is self-adjoint. Then ut = eitx is a path of unitaries connecting 1 and u, which proves that U(M) is
connected. We hence find that K0(Rω) = R and K1(Rω) = 0.

Furthermore, Qω has a trivial K1-group. Again, we sketch the idea: Let u ∈ Mk(Qω) be an arbi-
trary unitary element, then we can construct a lift (xn)n∈N ∈Mk(`∞(Q)). Since u is unitary, we have
‖x∗nxn − 1‖ → 0 and ‖xnx∗n − 1‖ → 0 along the ultrafilter ω. Using polar decompositions, one can find
unitaries un ∈ Mk(Q) with ‖xn − un‖ → 0 along ω. By finding unitaries sufficiently close in finite-
dimensional C∗-subalgebras of Mk(Q), we can assume that each un belongs to a finite-dimensional
C∗-subalgebra of Mk(Q), and this allows us to realise each un as un = eihn for 0 ≤ hn ≤ 2π. Then
the image of the sequence (hn)n∈N in Mk(Q) provides a selfadjoint element h in Qω satisfying u = eih,
which shows that u is path connected to 1 via unitaries.

Note that since limω is a surjective map, so is K0(πω). Looking at the six term exact sequence
associated to the short exact sequence 0 → J → Qω → Rω → 0 and using the facts that K0(πω)
is surjective along with Qω and Rω having trivial K1-groups provides the upper row in the desired
commutative diagram and that K1(J) = 0. This in conjunction with the five lemma implies that the
restriction K0(τQ)ω : K0(J)→ G0 is an isomorphism.

We now only need to prove that the maps θRω , θQω and θJ are isomorphisms of semigroups. Note
that as they are each restrictions of isomorphisms, it suffices to show that they are surjective onto
their codomains. Since Rω is a II1-factor, it follows that for any t ≥ 0 there exists a projection
p ∈ P∞(Rω) with K0(τω)([p]0) = t, which proves that θRω is surjective.

Let t ∈ Q+
ω be arbitrary and find a representative (tn)n∈N ∈ `∞(Q+). Find by boundedness of

the sequence some integer d ∈ N such that 0 ≤ tn ≤ d for all n ∈ N. Since Q is the universal
UHF-algebra, there exists for each n ∈ N a projection pn ∈ Pd(Q) such that τQ(pn) = tn; here we
abuse the notation and denote by τQ the trace on both Md(Q) and Q. Then the image p in Pd(Qω)
of the sequence (pn)n∈N defines a projection with θQω ([p]0) = t proving surjectivity.

Finally, suppose q ∈ G+
0 is represented by a sequence (qn)n∈N ∈ `∞(Q+), then the proof of surjectivity

of θQω implies the existence of a sequence of projections (pn)n∈N in Md(Q) for which τQ(pn) = qn,
and such that θQω ([p]0) = q, where p denotes the image in Pd(Qω). We hence find that

lim
n→ω

τQ(pn) = lim
n→ω

qn = 0

using the fact that q ∈ G0. This implies that p ∈ Pd(J), and as θQω ([p]0) = q, we conclude that
θJ([p]0) = q proving surjectivity. This finalises the proof.

Lemma 4.6. The Abelian group K0(J) is divisible, and the semigroup D(J) is almost unperforated.

Proof. We established in Lemma 4.5 the isomorphisms K0(J) ∼= G0 and D(J) ∼= G+
0 . It therefore

suffices to show that G0 is divisible, and that G+
0 is almost unperforated, but these properties are

easily verified.

Lemma 4.7. If p ∈ J ⊗K(H) is a projection, then there exists a projection q ∈ J , which is Murray-
von Neumann equivalent to p.

Proof. Suppose that p ∈ J⊗K(H) is a projection and observe that we can identify p with a projection
in Md(J) for some sufficiently large integer d ∈ N. Let (pn)n∈N ∈ `∞(Md(Q)) be a sequence of
projections representing p. Since p ∈ Md(J), it follows that limn→ω τQ(pn) = 0, and, consequently,
the set

S = {n ∈ N | 0 ≤ τQ(pn) < 1}

54



belongs to ω. If n ∈ S, find a projection qn ∈ Q with τQ(qn) = τQ(pn), and if n 6∈ S, let qn = 0.
Consider the sequence (qn)n∈N ∈ `∞(Q), then its image q in Qω is a projection satisfying

τω(q) = lim
n→ω

τQ(qn) = lim
n→ω

τQ(pn) = 0

and, hence, q is a projection in J . This implies that θJ([p]0) = θJ([q]0), and as θJ is an isomorphism of
semigroups, we find that [p]0 = [q]0. Using the fact that J has the cancellation property of projections,
as it has stable rank one, we conclude that p and q are Murray-von Neumann equivalent.

Combining the past few pages gives us the following result.

Theorem 4.8. The C∗-algebra J is an admissible kernel

However, it turns out J is too large to invoke Proposition 3.27 when analysing extensions of
C∗-algebras by J — namely, J is not separable. Hence we wish to reduce our problem to consider
extensions by some suitable separable C∗-subalgebra J0 of J in such a way that where we can
invoke Proposition 3.27. For this we refer to a principle of C∗-algebraic properties called separable
inheritability, which is due to Blackadar.

Definition 4.9 (Blackadar). A property P of C∗-algebras is said to be separably inheritable if the
following two properties are satisfied:

(i) If A is a C∗-algebra with property P and A0 ⊆ A is a separable C∗-subalgebra, then there
exists a separable C∗-subalgebra A1 of A containing A0 such that A1 satisifies P.

(ii) Property P is preserved by sequential inductive limits with injective connecting maps.

For an easy example of a separably inheritable property one can consider quasidiagonality, see
Proposition 2.21(i,ii). There are many properties of C∗-algebras which are separably inheritable, and
the proofs often use the same strategy. It is by far easier to explain the technique by an example
than it is to explain it abstractly, and as such we prove separable inheritability of a specific property
of C∗-algebras, namely having stable rank one.

Proposition 4.10. The property of having stable rank one is a separably inheritable property of
C∗-algebras.

Proof. We only prove the unital case. Let A be a C∗-algebra with stable rank one, let B be a separable
C∗-subalgebra of A, and let {x1, x2, . . .} ⊆ B be a countable dense set. Since A has stable rank one,

we can, for each n ∈ N, find a sequence (x
(k)
n )k∈N of invertible elements in A such that x

(k)
n → xn

as k → ∞. Let B1 denote the C∗-subalgebra of A generated by the set {x(k)
n }k,n∈N. Then B1 is

separable, as it is generated by a countable set of elements, and every element in B can be expressed
as the limit of invertible elements in B1. In particular, B is a C∗-subalgebra of B1. Continuing in this
manner, we can inductively construct a sequence of C∗-subalgebras Bn of A with the properties that
each Bn is separable, and that every element in Bn can be expressed as the limit of invertible elements
in Bn+1. Let B0 =

⋃
n∈NBn, then we claim that B0 is a separable C∗-subalgebra of A containing B,

which has stable rank one. Separability is obvious, and it is also easily seen that B0 contains B. To
prove that B0 has stable rank one, let x ∈ B0 be arbitrary and let ε > 0 be arbitrary. Then there
exists a sufficiently large natural number n ∈ N and an element y ∈ Bn such that ‖x− y‖ < ε

2 . Since
y ∈ Bn, we can find an invertible element z ∈ Bn+1, which in particular is invertible in B0, such that
‖y − z‖ < ε

2 . The triangle inequality then implies that ‖x− z‖ < ε, and hence every element in B0

can be approximated by invertible elements. By following the same line of reasoning as in the proof
of B0 having stable rank one, it is easily seen that having stable rank one passes to inductive limits
with injective connecting maps.

Note how the proof structure in the below proposition is quite similar to the one above — given
a separable C∗-subalgebra B of a C∗-algebra A with certain properties, construct inductively nested
sequences of C∗-subalgebras of A containing B and take the closed union.

Proposition 4.11. If P1,P2, . . . is a list of countably many separably inheritable properties of C∗-
algebras, then the meet P1 ∧ P2 ∧ · · · is separably inheritable.
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Proof. Let A be a C∗-algebra with property P1,P2, . . ., and let B be a separable C∗-subalgebra of
A. Define inductively a sequence Bn,k with n ≥ k of separable C∗-subalgebras of A such that

B ⊆ B1,1 ⊆ B2,1 ⊆ B2,2 ⊆ · · · ⊆ Bn,1 ⊆ Bn,2 ⊆ · · ·Bn,n ⊆ · · · ⊆ A

and such that Bn,k has property Pk for all k ∈ N and n ≥ k. Let B0 =
⋃
n,k Bn,k, then B0 is a

separable C∗-subalgebra of A, which satisfies property P1,P2, . . ., as separably inheritable properties
are preserved by sequential inductive limits with injective connecting maps.

Using similar techniques, it can be shown that all the conditions in the definition of an admissible
kernel are separably inheritable, see [66, Proposition 4.1], and hence being an admissible kernel is
a separably inheritable property by Proposition 4.11. In the next proposition, we mention a few
specific separably inheritable properties, which we shall explicitly use to pass to certain separable
C∗-subalgebras, and as such it is by no means exhaustive.

Proposition 4.12. The following properties of C∗-algebras are separably inheritable.

(i) Having K1(·) = 0;

(ii) Being an admissible kernel;

(iii) Being simple.

Some of the details, along with more examples of separably inheritable properties, may be found
in [3, Section II.8.5]. In the next proposition, we shall use the examples of separably inheritable prop-
erties of Proposition 4.12; note how the proof structure, again, is quite similar to that of Proposition
4.10.

Proposition 4.13. Let 0→ I → E
π→ A→ 0 be a short exact sequence of C∗-algebras such that I is

an admissible kernel and such that E and A are unital. Given a separable, unital C∗-subalgebra A0

of A, there exists a separable, unital C∗-subalgebra E0 of E such that π(E0) = A0 and E0 ∩ I is an
admissible kernel. In particular, we get the short exact sequence

0→ E0 ∩ I → E0
π→ A0 → 0.

Proof. By separability of A0, we can find a countable, dense set S in A0, and, using surjectivity of
π, we can find a countable set T ⊆ E such that π(T ) = S. Let E1 be the unital C∗-subalgebra
of E generated by T . Since *-homomorphisms have closed images, we find that π(E1) = A0. The
C∗-algebra E1 ∩ I is separable, since E1 is separable, and hence by Proposition 4.12 there exists a
separable admissible kernel I1 with E1∩I ⊆ I1 ⊆ I. Let E2 be the unital C∗-algebra generated by E1

and I1, which is again separable, and construct a C∗-subalgebra I2 of I containing E2 ∩ I such that
I2 is a separable admissible kernel. Note also that π(E2) = A0, since E2 is generated by E1 and I1.
Continue this procedure inductively to construct an increasing sequence In of separable admissible
kernels and an increasing sequence of separable, unital C∗-algebras En such that π(En) = A0 and
En ∩ I ⊆ In ⊆ En+1 ∩ I for all n ∈ N. Let E0 =

⋃
n∈NEn, then π(E0) = A0, and since

E0 ∩ I =
⋃
n∈N

En ∩ I =
⋃
n∈N

In,

it follows from separable inheritability of being an admissible kernel, Proposition 4.12, that E0 ∩ I is
an admissible kernel.

We want to use this proposition on the extension 0 → J → Qω → Rω → 0, as the trace-kernel
ideal J is an admissible kernel by Theorem 4.8. However, in order to do this, we need to find a suitable
candidate for a separable, unital C∗-subalgebra of Rω, whenever we are given some C∗-algebra A as
in the Tikuisis-White-Winter theorem. The below proposition shows how we are able to do precisely
that — again due to separable inheritability. Note that we need to assume nuclearity of the map
ϕ : A→ Rω, which turns out to be a consequence of A being exact and ϕ having a c.c.p. lift.

Proposition 4.14. Let A be a separable C∗-algebra, and suppose that ϕ : A → Rω is a nuclear *-
homomorphism. Then there exists a separable, unital C∗-subalgebra R0 of Rω such that R0 is simple,
K1(R0) = 0, ϕ(A) ⊆ R0 and ϕ is nuclear as a map A→ R0.
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Proof. Find by nuclearity of ϕ sequences of c.c.p. maps θn : A → Mkn(C) and ψn : Mkn(C) → Rω
such that ‖ϕ(a)− ψn ◦ θn(a)‖ → 0 as n → ∞ for all a ∈ A. Let R1 be the unital C∗-subalgebra of
Rω generated by the images ψn(Mkn(C)), then R1 is separable. Note that ϕ(A) ⊆ R1 and that ϕ is
nuclear as a map A→ R1 by construction of R1. We want to use the notion of separable inheritability
to construct a separable, unital C∗-subalgebra R0 of Rω, which contains R1 and satisfies all the prop-
erties stated in the proposition. Since simplicity and K1(·) = 0 are separably inheritable properties
of C∗-algebras by Proposition 4.12, we find that there exists a separable, unital C∗-subalgebra R0 of
Rω containing R1 with the properties that R0 is simple and that K1(R0) = 0. Moreover, it is obvious
that ϕ(A) ⊆ R0, since the image is a C∗-subalgebra of R1 and, hence, of R0, and ϕ is a nuclear map
A→ R0.

Having found a way to construct a certain separable, unital C∗-subalgebra of Rω as we need for
Proposition 4.13, let us see how we can take the short exact sequence 0 → J → Qω → Rω → 0 and
pass to a short exact sequence consisting of sufficiently large separable C∗-subalgebras. Suppose that
A is a separable C∗-algebra and that ϕ : A→ Rω is an injective and nuclear *-homomorphism. Find
a separable, unital C∗-subalgebra R0 of Rω as in Proposition 4.14, and find by Proposition 4.13 a
separable, unital C∗-subalgebra Q0 of Qω with the properties that π(Q0) = R0 and that Q0 ∩ J is
an admissible kernel. We now have a short exact sequence

0→ J0 → Q0
π0→ R0 → 0

where J0 = Q0 ∩ J and π0 : Q0 → R0 is the restriction of πω : Qω → Rω. Since ϕ(A) ⊆ R0 by
construction of R0, we can define ϕ0 : A → R0 by restricting the codomain of ϕ. Proposition 4.14
implies that ϕ0 is nuclear. Consider the pullback diagram

E0 A

Q0 R0

π̃0

ϕ̃0 ϕ0

π0

where, explicitly,

E0 = {(a, q) ∈ A⊕Q0 |ϕ0(a) = π0(q)}

and π̃0 : E0 → A and ϕ̃0 : E0 → Q0 are the projection maps onto the first coordinate, respectively
the second coordinate. Note that if q ∈ J0, then π0(q) = 0 and, hence, we get an inclusion map
ι̃0 : J0 → E0, which is the map ι̃0(q) = (0, q). This gives us the following commutative diagram with
exact rows:

0 J0 E0 A 0

0 J0 Q0 R0 0

ι̃0 π̃0

ι0 π0

ϕ̃0 ϕ0

Denote by η0 the extension of the lower row, and denote by ϕ∗0η0 the extension of the upper row; we
can consider ϕ∗0η0 as a pullback extension of η0. The following proposition shows that the pullback
extension ϕ∗0η0 in the nonunital case admits a weakly nuclear *-homomorphic split.

Proposition 4.15. Let A be a separable C∗-algebra, and let ϕ : A→ Rω be an injective and nuclear
*-homomorphism. Suppose that A satisfies the UCT, and that A is either non-unital, or that A is
unital, but that ϕ is not unital. Then the extension ϕ∗0η0 satisfies the conditions of Proposition 3.27
and, hence, admits a weakly nuclear *-homomorphic splitting.

Proof. By naturality of the index map, see [64, Proposition 9.1.5], we find that the index map
K1(A) → K0(J0) factors through the Abelian group K1(R0), which is trivial by Proposition 4.14,
and hence the index map is trivial. We know, by Theorem 4.8 and Proposition 4.13, that J0 is an
admissible kernel, so we only need to verify that the extension ϕ∗0η0 is weakly nuclear and unitisably
full in order to invoke the splitting result of Proposition 3.27.

57



We first show that ϕ∗0η0 is a weakly nuclear extension. The Choi-Effros lifting theorem, see Proposi-
tion 2.41, implies the existence of a nuclear map ψ0 : A→ Q0 such that π0 ◦ ψ0 = ϕ0. In particular,
the map σ : A→ E0 defined by σ(a) = (a, ψ0(a)) is a well-defined c.c.p. map satisfying π̃0 ◦ σ = idA;
we show that it is weakly nuclear. Given any q ∈ J0, we find that qσ(a)q∗ = (0, qψ0(a)q∗) for all
a ∈ A, and as ψ0 is nuclear, so is the map a 7→ qσ(a)q∗. Hence σ is weakly nuclear.

Now we show that ϕ∗0η0 is unitisably full. Consider its unitised extension

0 J0 E†0 A† 0
ι̃0 π̃†0

where π̃†0(e + λ1) = π̃0(e) + λ1. Consider also the unitised *-homomorphism ϕ†0 : A† → R0 by

ϕ†0(a+λ1) = ϕ0(a)+λ1. Let β : R0 → Q(J0) be the Busby invariant of the extension η0 and consider
the following commutative diagram with exact rows:

0 J0 E†0 A† 0

0 J0 Q0 R0 0

0 J0 M(J0) Q(J0) 0

ι̃0 π̃†0

ι0 π0

i0 ρ0

ϕ̃†0 ϕ†0

σ0 β

Here i0 : J0 →M(J0) and ρ0 : M(J0) → Q(J0) are the inclusion and quotient maps, and σ0 : Q0 →
M(J0) is the unique *-homomorphism extending the inclusion J0 ⊆ M(J0). Commutativity of the

diagram ensures that the *-homomorphism σ0 ◦ ϕ̃†0 : E†0 →M(J0) extends the inclusion J0 ⊆M(J0)
and, consequently, we find that the Busby invariant β† of the unitised extension η† is given by
β† = β ◦ ϕ†0. We claim that β† is full, i.e., that for all non-zero a ∈ A†, β†(a) generates Q(J0) as a

closed two-sided ideal. As ϕ is injective and non-unital, so is ϕ0, and consequently we see that ϕ†0
is injective. In order to show that β† is full, it suffices by injectivity of ϕ†0 to show that β is full.
Since R0 is simple, any non-zero element in R0 necessarily generates R0 as a closed two-sided ideal,
and, consequently, β is full. We conclude that the pullback extension ϕ∗0η0 satisfies the conditions of
Proposition 3.27, and hence it admits a weakly nuclear *-homomorphic splitting.

Having proved the existence of a weakly nuclear *-homomorphic split in the separable pullback
extension ϕ∗0η0, assuming non-unitality, we shall now use this to induce a nuclear *-homomorphism
A → Qω. In order to do this, we shall need a classification result about trace-agreeing normal
*-homomorphisms from a hyperfinite von Neumann-algebra to Rω.

Lemma 4.16. Let M be a hyperfinite von Neumann-algebra, and let N be a II1-factor with a faithful
tracial state τ . Assume that ϕ,ψ : M → N are normal *-homomorphisms with τ ◦ ϕ = τ ◦ ψ. Then
ϕ and ψ are approximately unitarily equivalent in the tracial norm ‖·‖2 on N .

Proof. Observe that faithfulness of τ along with the condition τ ◦ϕ = τ ◦ψ implies that ϕ and ψ have
the same kernel. Moreover, we can, without loss of generality, assume that ϕ and ψ are injective, since
we can just pass to the induced maps M/ kerϕ→ N , using that M/ kerϕ is a separable, hyperfinite
von Neumann-algebra by normality of ϕ. Hence we can assume that M is a von Neumann-subalgebra
of N , and that ϕ : M → N is the inclusion map.

As M is a hyperfinite von Neumann-algebra, we can realise M as the strong closure of
⋃
n∈NAn,

where An is a nested sequence of finite-dimensional von Neumann-algebras. Then τ ◦ϕ|An = τ ◦ψ|An
for all n ∈ N. Since two projections in a II1-factor are Murray-von Neumann equivalent if and only
if they have the same trace, we see that K0(ϕ|An) = K0(ψ|An) for each n ∈ N. We claim that ϕ|An
and ψ|An are unitarily equivalent. Following the notation of [64, Section 7.1], we let {e(k)

ij } denote
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the canonical matrix units for An. Then, as N is a II1-factor, we find that ϕ(e
(k)
11 ) ∼ ψ(e

(k)
11 ) and

(1−ϕ(1n)) ∼ (1−ψ(1n)), where 1n denotes the unit of An. Find partial isometries v1, . . . , vr, w ∈ N
implementing these Murray-von Neumann equivalences, i.e.,

v∗kvk = ϕ(e
(k)
11 ) vkv

∗
k = ψ(e

(k)
11 )

w∗w = 1− ϕ(1n) ww∗ = 1− ψ(1n)

Let si,k = ψ(e
(k)
i1 )vkϕ(e

(k)
1i ), then one readily verifies that u = w +

∑
i,k si,k is a unitary element in

N such that ψ|An = Ad(u) ◦ ϕ|An . We now show that this implies that ψ and ϕ are approximately
unitarily equivalent with respect to the tracial norm. For any finite subset F = {x1, . . . , xn} of
M and for any tolerance ε > 0, there exist some n ∈ N and elements y1, . . . , yn ∈ An such that
‖xi − yi‖2 <

ε
2 . By an easy application of the triangle inequality, and since ψ preserves the trace, we

find that

‖ψ(xi)−Ad(un) ◦ ϕ(xi)‖2 < ε

for all i = 1, . . . , n. One easily checks that this proves that ψ and ϕ are approximately unitarily
equivalent in the tracial norm.

It is clear that if ϕ and ψ are approximately unitarily equivalent with respect to the tracial
norm, then ϕ and ψ have the same trace, and this hence completely characterise such normal *-
homomorphisms. By passing to the tracial ultrapower Nω of N , we can invoke Proposition 2.12 to
get the following result.

Proposition 4.17. Let M be a separable hyperfinite von Neumann-algebra, and let N be a II1-factor
with a faithful tracial state τ . Denote by τω the induced tracial state on Nω. If ϕ,ψ : M → Nω are
normal *-homomorphisms such that τω ◦ ϕ = τω ◦ ψ, then ϕ and ψ are unitarily equivalent.

Once again, it is immediate that this completely characterises unitarily equivalent normal *-
homomorphisms M → Nω, which is highly useful in the following theorem proving the desired
existence of a nuclear *-homomorphism A→ Qω lifting ϕ : A→ Rω.

Theorem 4.18. Let A be a separable, exact C∗-algebra satisfying the UCT, and suppose that ϕ : A→
Rω is an injective and nuclear *-homomorphism. Then there exists a nuclear *-homomorphism
ψ : A→ Qω such that πω ◦ψ = ϕ, where πω : Qω → Rω is the natural quotient map. If both A and ϕ
are unital, then we can choose ψ to be unital.

Proof. For this proof, we follow the notation of the discussion prior to Proposition 4.15. We first
consider the case that either A is non-unital, or that A is unital and ϕ(1) 6= 1. By Proposition 4.15,
we see that the separable pullback extension ϕ∗0η0 admits a weakly nuclear *-homomorphic splitting
λ0 : A → E0. Let ψ : A → Qω be given by ψ = ϕ̃0 ◦ λ0, where we naturally identify Q0 as a C∗-
subalgebra of Qω. We shall prove that ψ is nuclear by showing that the map ψ0 : A → Q0, which is
just ψ with a restricted codomain, is nuclear. By [11, Corollary 3.8.8], it suffices to prove that, for
any C∗-algebra B, the map ψ0 ⊗ idB : A⊗max B → Q0 ⊗max B factors through A⊗ B, i.e., that we
have the commutative diagram

A⊗max B Q0 ⊗max B

A⊗B

ψ0 ⊗ idB

ρ Ψ

where ρ : A ⊗max B → A ⊗ B is the canonical quotient map, and Ψ: A ⊗ B → Q0 ⊗max B is some
c.c.p. map. By surjectivity of ρ, it suffices to show that the kernel of ρ lies in the kernel of ψ0 ⊗ idB .
Suppose that x ∈ ker ρ and let y = (ψ0 ⊗ idB)(x); we claim that y = 0. As J0 is a closed two-sided
ideal in Q0, it follows from Theorem 3.3 that there exists a unique *-homomorphism σ0 : Q0 →M(J0)
extending the inclusion J0 ⊆ M(J0). We claim that σ0 ◦ ψ0 : A → M(J0) is weakly nuclear. Let
b ∈ J0 be arbitrary and consider the c.c.p. map αb : A → J0 by αb(a) = bσ0(ψ0(a))b∗. Using that
ψ0 = ϕ̃0 ◦ λ0, we see that αb(a) = ϕ̃0(bλ0(a)b∗), and as ϕ̃0 is a *-homomorphism and λ0 is weakly
nuclear, we conclude that αb is nuclear. Hence σ0 ◦ ψ0 is weakly nuclear. It now follows from
[22, Proposition 3.2] that σ0 ◦ ψ0 is, in fact, nuclear, since A is assumed to be exact, and since its
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codomain is the multiplier algebra of a separable C∗-algebra. It thus follows from [11, Corollary 3.8.8]
that (σ0 ◦ ψ0)⊗ idB : A⊗max B →M(J0)⊗max B factors through A⊗B and, consequently, we have

(σ0 ⊗ idB)(y) = ((σ0 ◦ ψ0)⊗ idB)(x) = 0.

Since ϕ is nuclear, so is ϕ0, and hence the same line of reasoning as above shows that

(π0 ⊗ idB)(y) = ((π0 ◦ ψ0)⊗ idB)(x) = (ϕ0 ⊗ idB)(x) = 0

using that ϕ0 = π0 ◦ ψ0. From the commutative diagram arising from the multiplier algebra and
an extension, and as maximal tensor products preserve short exact sequences, we get the following
commutative diagram with exact rows:

0 J0 ⊗max B Q0 ⊗max B R0 ⊗max B 0

0 J0 ⊗max B M(J0)⊗max B Q(J0)⊗max B 0

ι0 ⊗ idB π0 ⊗ idB

i0 ⊗ idB ρ0 ⊗ idB

σ0 ⊗ idB β ⊗ idB

A diagram chase now shows that y = 0 as claimed. We have hence shown that ψ0 is nuclear using
[11, Corollary 3.8.8], and it follows that ψ is also nuclear.

Now assume that both A and ϕ are unital. Our strategy is to construct a map ϕ1 : A → Rω,
which is faithful, nuclear and non-unital by embedding ϕ into a matrix algebra over Rω, which is
isomorphic to Rω. Then we shall invoke the non-unital case, which we have just proved above, to
construct a unital, nuclear *-homomorphism ψ′ : A → Qω with τω ◦ ϕ = τω ◦ ψ′. Using various
results we shall construct a *-homomorphism ψ : A → Qω, which is unitarily equivalent to ψ′, and
consequently nuclear, and which satisfies πω ◦ ψ = ϕ.

It is easily verified that M2(Rω) ∼= (M2(R))ω, where the map is given by taking the limit along
ω in each entry of the matrix algebra. Moreover, since matrix algebras of II1-factors are, again, II1-
factors, and matrix algebras of hyperfinite von Neumann-algebras are again hyperfinite, we have by
uniqueness of the hyperfinite II1-factor that (M2(R))ω ∼= Rω. Denote by ϕ1 : A → Rω the faithful,
non-unital and nuclear *-homomorphism given by the composition

A
ϕ−→ Rω ↪→M2(Rω)

∼=−→ (M2(R))ω
∼=−→ Rω,

where the embedding Rω ↪→ M2(Rω) is the non-unital embedding in the upper left entry. In par-
ticular, τω ◦ ϕ1 = 1

2τ
ω ◦ ϕ. It follows from the previous non-unital case that there exists a nuclear

*-homomorphism ψ′1 : A→ Qω such that πω ◦ ψ′1 = ϕ1. We then see that

τω ◦ ψ′1 = τω ◦ πω ◦ ψ′1 = τω ◦ ϕ1 =
1

2
τω ◦ ϕ.

Put τ = τω ◦ ϕ and observe that it is amenable since ϕ is liftable to a c.c.p. map A → `∞(Rω) by
nuclearity and the Choi-Effros lifting theorem, Proposition 2.41, and that it is faithful by faithfulness
of τω and injectivity of ϕ. The equivalence of (ii) and (iii) in Proposition 2.52 implies the existence
of a unital, nuclear *-homomorphism ψ′ : A → Qω such that τω ◦ ψ′ = τ . Since A is exact and τ
is amenable, we can use [10, Corollary 4.3.6] to prove that πτ (A)′′ is hyperfinite, where πτ refers to
the GNS-representation of A with respect to the tracial state τ . Since τ is faithful, πτ is a faithful
representation of A, and hence we can identify A by the image πτ (A), such that A is strongly dense
in πτ (A)′′. Since Rω is a von Neumann-algebra, its unit ball (Rω)1 is closed in the tracial norm,
and we can use the fact that ϕ and π ◦ ψ′ are isometric with respect to the tracial norm to prove
the existence of maps (πτ (A)′′)1 → (Rω)1 extending ϕ and π ◦ ψ′ on (A)1. By scaling, we can hence
define maps ϕ,ψ′ : πτ (A)′′ → Rω extending ϕ and π ◦ ψ′, respectively, and one can verify that they
are normal *-homomorphisms satisfying τω ◦ ϕ = τω ◦ ψ′. Using Proposition 4.17, we find that there
exists u ∈ U(Rω) such that ϕ = Ad(u) ◦ ψ′, and hence we have the identity ϕ = Ad(u) ◦ πω ◦ ψ′. As
the unitary group of a von Neumann-algebra is always path connected, the proof of which is sketched
in Lemma 4.5, [33, Proposition 4.3.14(a)] ensures the existence of a unitary v ∈ U(Qω) such that
πω(v) = u. Define the *-homomorphism ψ : A → Qω by ψ = Ad(v) ◦ ψ′, then it is immediate that
πω ◦ψ = ϕ. Moreover, nuclearity of ψ′ implies that ψ is also nuclear, and this completes the proof.
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At this point, the only issue in guaranteeing the existence of the lift ψ : A→ Qω is the nuclearity
assumption on ϕ imposed in Theorem 4.18. Luckily, this condition is ensured by exactness of A:

Lemma 4.19. Let A be an exact C∗-algebra, and let ϕω : A→ Rω be a c.c.p. map. If ϕω has a c.c.p.
lift ϕ : A→ `∞(R), then ϕω is nuclear.

Proof. Let ϕn : A→ R be the nth component of the map ϕ : A→ `∞(R). As R is a hyperfinite von
Neumann-algebra, we can find an increasing sequence of finite-dimensional von Neumann-algebras
B1 ⊆ B2 ⊆ · · · such that

⋃
n∈NBn is strongly dense in R. Let En : R → Bn be trace-preserving

expectations and let ψn : A → Bn be the composition ψn = En ◦ ϕn. As the codomains Bn are
finite-dimensional, each ψn is nuclear, and hence the induced map ψ : A → `∞(Bn,N) is nuclear by
Lemma 2.50. Let πω : `∞(R) → Rω be the quotient map, then as ‖ψn(a)− ϕn(a)‖2 → 0 as n → ∞
for each a ∈ A, we find that ϕω = πω ◦ ϕ = πω ◦ ψ. Since ψ is nuclear and πω is a *-homomorphism,
this implies that ϕω is nuclear as desired.

With the machinery of Theorem 4.18 and Lemma 4.19, the Tikuisis-White-Winter theorem follows
immediately.

Theorem 4.20 (Tikuisis-White-Winter, 2015). If A is a separable, exact C∗-algebra satisfying the
UCT, then every faithful, amenable tracial state on A is quasidiagonal.

Proof. Let τ be a faithful, amenable tracial state on A, and let ϕω : A→ Rω be a *-homomorphism
with τω ◦ ϕω = τ , and which admits a c.c.p. lift ϕ : A → `∞(R). Then Lemma 4.19 implies that
ϕω is nuclear. Moreover, as τ is faithful and ϕω is trace-preserving, we find that ϕω is injective.
Consequently, by Theorem 4.18, there exists a nuclear *-homomorphism ψω : A→ Qω with πω ◦ψω =
ϕω, where πω : Qω → Rω is the quotient map. Since τω = τω ◦πω, we find that ψω is trace-preserving.
Moreover, using the Choi-Effros lifting theorem, Proposition 2.41, we find that ψω has a c.c.p. lift
A→ `∞(Q), which proves that τ is quasidiagonal by Proposition 2.49.

Using the fact that the existence of a faithful, quasidiagonal tracial state on an exact C∗-algebra
A implies quasidiagonality of A, see Corollary 2.53, we see that if A is a separable, exact C∗-algebra
satisfying the UCT and admitting a faithful, amenable tracial state τ , then A is quasidiagonal.

As stated in the introduction to this thesis, Theorem 4.20 is a refinement due to Gabe of the original
result due to Tikuisis-White-Winter. For the sake of completeness, we include the original result as
it is proved in [70, Theorem A].

Corollary 4.21 (Tikuisis-White-Winter, 2015, original formulation). Let A be a separable, nuclear
C∗-algebra which satisfies the UCT. Then every faithful tracial state on A is quasidiagonal.

It is easily seen that this corollary follows from Theorem 4.20, since all tracial states on nuclear
C∗-algebras are amenable by Corollary 2.55.

4.2 The Rosenberg theorem and conjecture

We now proceed by analysing some of the corollaries to the Tikuisis-White-Winter theorem. Our
first result is Rosenberg’s theorem which proves that amenability of the underlying discrete group G
is a necessary condition for C∗r (G) being quasidiagonal. Admittedly, this result is not related to the
Tikuisis-White-Winter theorem per se, but the question of whether the converse of Rosenberg’s theo-
rem is true remained open until the Tikuisis-White-Winter theorem provided the needed machinery.
We shall not follow the original proof of Rosenberg [31], which uses Hilbert-Schmidt operator theory;
instead, we shall invoke the more modern notion of ultrapowers as well as the following simple, yet
powerful lemma.

Lemma 4.22. Let G be a discrete group, and let B be a unital C∗-algebra with a tracial state τ .
Suppose there exist a *-homomorphism ϕ : C∗r (G)→ B and a u.c.p. map ψ : B(`2(G))→ B such that
the following diagram is commutative:

B(`2(G))

C∗r (G) Bϕ

ψ
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Then G is amenable.

Proof. Since ψ|C∗r (G) = ϕ is a *-homomorphism, we see that C∗r (G) ⊆ B(`2(G))ψ, where we use the
notation of multiplicative domains from Proposition 1.7. In particular, it follows from the bimodule
property of the same proposition that ψ(axb) = ψ(a)ψ(x)ψ(b) for all a, b ∈ C∗r (G) and x ∈ B(`2(G)).

Embed `∞(G) inside B(`2(G)) diagonally, then a straightforward calculation shows that g.α = λgαλ
∗
g

for all g ∈ G and α ∈ `∞(G). Consider the map ρ : `∞(G) → C defined by ρ = τ ◦ ψ; we claim that
ρ is a left-invariant mean. It is clear that ρ(1) = 1, and that ρ is positive. Moreover, if g ∈ G and
α ∈ `∞(G), then using the bimodularity as well as the tracial property of τ , one easily realises that
ρ(g.α) = ρ(α).

This short and sweet lemma is at the heart of our proof of Rosenberg’s theorem. It also has a few
interesting corollaries in other areas of operator theory, which we shall briefly touch on. These are only
of independent interest and are not related to the Tikuisis-White-Winter theorem nor Rosenberg’s
theorem.

Corollary 4.23. A discrete group G is amenable if and only if C∗r (G) has a finite-dimensional
representation.

Proof. One direction follows from Proposition 1.37. For the other direction assume that C∗r (G) has
a finite-dimensional representation ϕ : C∗r (G)→Mn(C), and note that Mn(C) is a unital C∗-algebra
with a tracial state Trn. Put B = Mn(C) and find by Arveson’s extension theorem, Proposition 1.10,
a u.c.p lift ψ : B(`2(G))→Mn(C) of ϕ, then a use of Lemma 4.22 entails that G is amenable.

For the next corollary, we remind the reader that a von Neumann-algebra M ⊆ B(H) is injective
if and only if there exists a conditional expectation B(H)→M .

Corollary 4.24. If the group von Neumann-algebra L(G) is injective, then G is amenable.

Proof. Recall that L(G) is a unital C∗-algebra admitting a faithful tracial state x 7→ 〈xδe, δe〉. Let
E : B(H)→ L(G) be a conditional expectation, then Lemma 4.22 provides amenability of G.

Obviously, these results can be proved using other methods, but the reader should note that they
follow almost immediately with the machinery of Lemma 4.22. Nevertheless, if the above does not
convince the reader of the strength of the lemma, the following proof of Rosenberg’s theorem should.

Theorem 4.25 (Rosenberg, 1987). Let G be a discrete group. If C∗r (G) is quasidiagonal, then G is
amenable.

Proof. We first prove it assuming countability of G, and then we extend the result to uncountable
groups G by passing to an inductive system of the countable subgroups of G.

So assume that G is countable such that C∗r (G) is separable. Let ϕn : C∗r (G)→Mkn(C) be a sequence
of c.c.p. maps witnessing the quasidiagonality of C∗r (G). Find by Arveson’s extension theorem, Propo-
sition 1.10, for each n ∈ N a u.c.p. lift ψn : B(`2(G)) → Mkn(C). Let ϕ : C∗r (G) → `∞(Mkn(C),N)
and ψ : B(`2(G)) → `∞(Mkn(C),N) be the direct products of the sequences (ϕn)n∈N and (ψn)n∈N,
respectively. Denote by ρ : `∞(Mkn(C),N)→ `ω(Mkn(C),N) the quotient map onto the ultraproduct,
then ρ ◦ ϕ is a *-homomorphism by asymptotic multiplicity of the sequence (ϕn)n∈N. We now only
need to verify that the ultraproduct `ω(Mkn(C),N) admits a tracial state, but it is easily verified that
the map τ : `ω(Mkn(C),N)→ C by τ(x) = limn→ω Trn(xn), where (xn)n∈N ∈ `∞(Mkn(C),N) lifts x,
is a tracial state. It now follows from Lemma 4.22 that G is amenable.

Now we assume that G is uncountable. We can then realise G as the inductive limit of its countable
subgroups (Gα)α∈Λ, and hence Proposition 1.38 states that

C∗r (G) = C∗r (lim
→
Gα) ∼= lim

→
C∗r (Gα).

Since each Gα is a subgroup of G, we have natural embeddings C∗r (Gα) ⊆ C∗r (G), and as C∗r (G)
is assumed to be quasidiagonal, we find that each of the C∗-subalgebras is quasidiagonal. By the
countable case, all the groups Gα are amenable, and as amenability is preserved by inductive limits,
we conclude that G is amenable.
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Alternatively, one can prove Rosenberg’s theorem by using Proposition 2.27 along with a result
saying that C∗r (G) has an amenable tracial state if and only if G is amenable, see [11, Proposition
6.3.2].

The theorem was first published by Rosenberg in 1987 as an appendix to a paper by Hadwin [31].
In the same paper, he conjectured that the converse is true; this conjecture came to be known as
Rosenberg’s conjecture. As is often the case, there were partial results prior to the complete proof.
For instance, Ozawa, Rørdam and Sato proved in 2015 [51] that the conjecture holds for the class
of elementary amenable groups3. The complete resolution was only achieved after the proof of the
Tikuisis-White-Winter theorem, since a confirmation of Rosenberg’s conjecture follows almost imme-
diately from Theorem 4.20 and Corollary 2.53

Corollary 4.26 (Rosenberg’s conjecture). If G is an amenable, discrete group, then C∗r (G) is a
quasidiagonal C∗-algebra.

Proof. Similar to the proof of Rosenberg’s theorem, we first prove the countable case and then show
how one can extend this to include uncountable groups. So assume that G is a countable, discrete,
amenable group. Since G is amenable, we know that C∗r (G) is nuclear. Moreover, combining the
results of [71, Lemma 3.5 and Proposition 10.7], we find that the group C∗-algebras of countable,
discrete, amenable groups satisfy the UCT. Finally, note that C∗r (G) always admits a faithful tracial
state by Proposition 1.35. By the Tikuisis-White-Winter theorem, C∗r (G) admits a faithful and qua-
sidiagonal tracial state and, by Corollary 2.53, we conclude that C∗r (G) is quasidiagonal.

For the uncountable case, we can realise G as the inductive limit of its countable subgroups (Gα)α∈Λ.
Note that each Gα is amenable, since amenability passes to subgroups, and hence each C∗r (Gα) is
quasidiagonal by the countable case. Using the fact that taking reduced group C∗-algebras commutes
with inductive limits, we see that

C∗r (G) = C∗r (lim
→
Gα) ∼= lim

→
C∗r (Gα).

As the connecting maps in the inductive system are all injective, and quasidiagonality is preserved
by inductive limits of such systems, we conclude that C∗r (G) is quasidiagonal.

4.3 The Blackadar-Kirchberg conjectures

We have already mentioned the following two conjectures due to Blackadar-Kirchberg, which were
posed in the same paper [4]:

(i) Every separable, nuclear, stably finite C∗-algebra is quasidiagonal;

(ii) Every separable, exact, quasidiagonal C∗-algebra is AF-embeddable.

At this point, we have mentioned the existence of partial results, in particular a few specific classes
of C∗-algebras satisfying the latter of the conjectures. We can obviously combine the two Blackadar-
Kirchberg conjectures and ask whether, in the class of separable, nuclear C∗-algebras, the notions of
stably finiteness, quasidiagonality and AF-embeddability are all equivalent properties. In this sec-
tion, we shall see how the Tikuisis-White-Winter theorem provides a tool for partially answering these
conjectures. More specifically, we shall prove that both conjectures are true for the class of reduced
group C∗-algebras, and that every separable, nuclear, stably finite and simple C∗-algebra satisfying
the UCT is quasidiagonal. All the corollaries presented in this section can be found in [70].

We commence proving the latter result. An important result is the following deep theorem due
to Blackadar-Handelman and Haagerup, a proof of which can be found in [30].

Theorem 4.27 (Blackadar-Handelman, Haagerup). Every exact, stably finite, unital C∗-algebra ad-
mits a tracial state.

3The class of elementary amenable groups is defined as the class of groups which can be built from finite groups
and Abelian groups by taking subgroups, extensions, quotients and inductive limits. Since finite groups and Abelian
groups are always amenable, and as the mentioned operations all preserve amenability, all elementary amenable groups
are amenable, but the converse is not true, see the introduction to [51].
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With this, the following corollary is almost trivial when equipped with the tools provided by the
Tikuisis-White-Winter theorem.

Corollary 4.28. Every unital, simple, stably finite and nuclear C∗-algebra in the UCT-class is
quasidiagonal.

Proof. Let A be a unital, simple, stably finite and nuclear C∗-algebra in the UCT-class. By Theorem
4.27 there exists a tracial state τ on A. Since I = {a ∈ A | τ(a∗a) = 0} is a closed two-sided ideal in
A, we find by simplicity of A that τ must be faithful. Hence τ is a faithful tracial state on a separable
nuclear C∗-algebra in the UCT-class and, consequently, τ is quasidiagonal by Theorem 4.20. As A
admits a faithful quasidiagonal tracial state, A is quasidiagonal by Corollary 2.53.

This resolves the Blackadar-Kirchberg conjecture for the class of unital, simple C∗-algebras in the
UCT-class. The unitality assumption can, as we mentioned before, be removed, although the proof
becomes more involved.

Corollary 4.29. Every separable, simple, stably finite and nuclear C∗-algebra satisfying the UCT is
quasidiagonal. In particular, Conjecture 2.31 is true for the class of simple C∗-algebras satisfying the
UCT.

Proof. Let A be a simple, stably finite and nuclear C∗-algebra satisfying the UCT. There are two
possibilities: Either the stabilisation A⊗K(H) contains a non-zero projection, or it does not.

Suppose there exists a non-zero projection p ∈ P(A⊗K(H)). Since minimal tensor products preserve
simplicity, the tensor product A ⊗ K(H) is simple, and hence the projection p is necessarily full.
Consider the unital C∗-algebra B = p(A ⊗ K(H))p. In the same manner as in the proof of Propo-
sition 2.13, [6, Corollary 2.6] provides the isomorphism A ⊗ K(H) ∼= B ⊗ K(H), using that K(H)
is stable. Note that since B is a hereditary C∗-subalgebra of the simple, stably finite and nuclear
C∗-algebra A⊗K(H), which satisfies the UCT, B inherits all these properties. Hence, Theorem 4.27
implies the existence of a tracial state τ on B. Simplicity of B implies faithfulness of τ , and then
the Tikuisis-White-Winter theorem in conjunction with Corollary 2.53 ensures quasidiagonality of B.
In particular, since K(H) is an AF-algebra and, hence, quasidiagonal, the minimal tensor product
B ⊗ K(H) is again quasidiagonal by Proposition 2.21(v). We can regard A as a C∗-subalgebra of
A⊗K(H) via the injection a 7→ a⊗ e, where e is any rank one projection on H, and hence

A ⊆ A⊗K(H) ∼= B ⊗K(H)

implying that A is quasidiagonal, being a C∗-subalgebra of a quasidiagonal C∗-algebra. This proves
the result for the case where A⊗K(H) admits a non-zero projection.

On the other hand, suppose A ⊗ K(H) does not admit a non-zero projection. By [69, Corollary
2.2], there exists a hereditary C∗-subalgebra B of A, which is algebraically simple and provides the
isomorphism A⊗K(H) ∼= B ⊗K(H). Observe that since UCT is preserved by stable isomorphisms,
see [3, V.1.5.4]. Our goal is to ensure that B is quasidiagonal, then a similar argument as in the
projection case proves quasidiagonality of A. Note that Ped(B) ⊆ Ped(B⊗K(H)) = Ped(A⊗K(H)).
Since A⊗K(H) is stable, projectionless and simple, we can use a result in [36] to ensure the existence
of a non-zero lower semi-continuous trace τ on Ped(A ⊗ K(H)); see Definition 1.1. Observe that
τ is inherited by Ped(B). Since B is algebraically simple, Ped(B) = B, and this fact along with
separability of B implies by [69, Proposition 2.5] that τ is bounded on all of B+, hence bounded
on all of B. It then follows from [53, Proposition 5.2.2] that τ is, in fact, a tracial state on B, and
simplicity of B implies that τ is faithful. Since B is a hereditary C∗-subalgebra of A, it inherits
nuclearity. Hence B is a separable, nuclear C∗-algebra admitting a faithful tracial state, so B is
quasidiagonal by the Tikuisis-White-Winter theorem. The same argument as in the projection case
proves quasidiagonality of A.

We have previously seen that the Tikuisis-White-Winter theorem in conjunction with Rosenberg’s
theorem proves that a discrete group G is amenable if and only if the reduced group C∗-algebra C∗r (G)
is quasidiagonal. This in turn implies that if G is a countable, discrete group such that C∗r (G) is
AF-embeddable, then G is amenable. Using the Tikuisis-White-Winter theorem, we shall prove the
converse result, that is, we prove that if G is a countable, discrete and amenable group, then C∗r (G) is
AF-embeddable, which hence gives an affirmative answer for the Blackadar-Kirchberg conjectures for
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the class of reduced group C∗-algebras. Noting that C∗r (G) is always stably finite and that nuclearity is
equivalent to quasidiagonality for reduced group C∗-algebras of discrete groups, this would completely
resolve both Blackadar-Kirchberg conjectures for this specific class of C∗-algebras. Ultimately, we
aim to show that the following four properties are equivalent for any countable4, discrete group G.

(i) G is amenable;

(ii) C∗r (G) is nuclear;

(iii) C∗r (G) is quasidiagonal;

(iv) C∗r (G) is AF-embeddable.

The only missing implication is (i)⇒(iv). In order to prove this implication, we shall use tracially
AF-algebras, which were first introduced by Lin [42]. We follow the definition given by Rørdam in
[59, Definition 3.3.4].

Definition 4.30. A simple, separable, unital C∗-algebra A is a tracially AF-algebra, usually denoted
TAF-algebra, if it has the following property: For all finite subsets {a1, . . . , an} of A, for all tolerances
ε > 0 and any non-zero positive element a ∈ A, there exists a finite-dimensional C∗-subalgebra B of
A with 1B = p and a subset {b1, . . . , bn} of B such that the following hold:

(i) ‖paj − ajp‖ < ε and ‖pajp− bj‖ < ε for all j = 1, . . . , n;

(ii) 1− p is Murray-von Neumann equivalent to a projection in the hereditary C∗-subalgebra aAa
of A.

Let us briefly discuss how to intuitively think of TAF-algebras. If p ∈ A is a projection and
a ∈ A satisfies that ‖pa− ap‖ < ε for some ε > 0, then, when expressed as a matrix indexed by p,
a is block-diagonal up an ε-tolerance. We can hence express (i) in Definition 4.30 above as saying
that the elements aj are block-diagonal up to an ε-tolerance, and that its upper-left entry pajp can
be approximated by elements in finite-dimensional C∗-algebras. Condition (ii) then states that the
corner (1−p)aj(1−p) is small, and we can thus understand TAF-algebras as being C∗-algebras which
are locally AF-algebras except in small corners.

One of the important properties of TAF-algebras, which we are going to invoke, is that the K0-
group of a TAF-algebra is weakly unperforated with Riesz interpolation, see Definition 1.40 for the
definition and [42, Theorem 6.11] for the result. Moreover, simple, unital AF-algebras are trivially
TAF-algebras.

Corollary 4.31. If A is a separable, simple, unital, monotracial and nuclear C∗-algebra satisfying
the UCT, then A embeds unitally into a simple, monotracial AF-algebra in a trace-preserving manner.

Proof. Since tensoring with the universal UHF-algebra Q preserves all the aforementioned conditions
on A, we can without loss of generality assume that A is Q-stable. Note that since A is simple, its
unique tracial state is necessarily faithful. By the Tikuisis-White-Winter theorem, the tracial state
is quasidiagonal, and hence A itself is quasidiagonal by Corollary 2.53. Since A is a Q-stable, unital,
separable, simple, nuclear and quasidiagonal C∗-algebra, [44, Theorem 6.1] implies that A is actually
a TAF-algebra, and hence K0(A) is weakly unperforated with Riesz interpolation. Since K0(Q) = Q
is torsion-free, and moreover K1(Q) = 0, it follows from the Künneth formula, see [2, Theorem 23.1.3],
that

K0(A) ∼= K0(A⊗Q) ∼= K0(A)⊗K0(Q) ∼= K0(A)⊗Q.

In particular, K0(A) is torsion-free, and K0(A) is therefore a countable Riesz group. By Proposition
1.41, there exists an AF-algebra B with K0(B) = K0(A). In fact, B can be assumed to be unital,
since (K0(A),K0(A)+, [1A]0) is a Riesz group with an order unit. Moreover, since A is stably finite,
as it is quasidiagonal, and simple, we can use [2, Corollary 6.3.6] to see that K0(A) is a simple
ordered Abelian group, and then a use of [59, Corollary 1.5.4] shows that B is actually a simple AF-
algebra. Using the Künneth formula, [2, Theorem 23.1.3], twice, we obtain the following sequence of
equivalences

K0(B) ∼= K0(A) ∼= K0(A⊗Q) ∼= K0(A)⊗K0(Q) ∼= K0(B)⊗K0(Q) ∼= K0(B ⊗Q).

4Countability is to ensure separability of C∗
r (G), which is necessary for being AF-embeddable. The equivalences

(i)⇔(ii)⇔(iii) hold for any discrete group.
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Hence K0(B) ∼= K0(B ⊗ Q) and, in fact, they have the same positive cone by [3, V.2.4.16], and
the isomorphism maps [1B ]0 to [1B⊗Q]0. Thus Elliott’s classification of AF-algebras, Theorem 1.39,
entails that B is Q-stable. Since B is an AF-algebra, its K1-group is trivial, so we consider the trivial
group homomorphism K1(A) → K1(B). Let α : K∗(A) → K∗(B) be the group homomorphism as
defined above, then a result by Dadarlat, see [15, Theorem 1.1], provides a unital *-homomorphism
ϕ : A → B lifting α. Since this *-homomorphism is unital and A is simple, it is necessarily an
injection. We can hence realise A as a C∗-subalgebra of the AF-algebra B. The only thing remaining
is to show that B has a unique tracial state. Since any state on an ordered K0-group of a unital,
exact C∗-algebra can be realised as K0(τ) for a tracial state τ , see [59, Theorem 1.1.11], we find that
K0(A) only has one state by monotraciality of A. In particular, K0(B) only has one state ρ, which
provides monotraciality of B, since the correspondence between states on K-theory and tracial states
on C∗-algebras is a homeomorphism for AF-algebras by [59, Proposition 1.5.5]. The tracial state is
preserved since the embedding A→ B induces a map between tracial simplices T (B)→ T (A), which
are both one-point spaces.

Let B denote the CAR-algebra, which is the UHF-algebra defined as the inductive limit of the
sequence

C→M2(C)→M4(C)→M8(C)→ · · ·

where the connecting maps are given by a 7→ diag(a, a), i.e., B is the UHF-algebra associated to the
supernatural number 2∞. If G is any countable, discrete group, we can define an action of G on the
tensor product

⊗
GB by left-translation, that is, for any h ∈ G, the action is given by

⊗
g∈G ag 7→⊗

g∈G ah−1g. Define for each countable, discrete group G the C∗-algebra B(G) = (
⊗

GB) or G; see
[11, Section 4.1] for the definition of the reduced crossed product. We here give an overview of the
necessary properties of B(G), which we are going to use in the following — for the proof, along with
more properties, we refer to [51, Proposition 2.1].

Proposition 4.32. Let G be any countable, discrete, amenable group, then B(G) is a separable,
simple, unital, monotracial and nuclear C∗-algebra satisfying the UCT.

Note that these properties are precisely the conditions on A in Corollary 4.31, and hence B(G)
embeds into a simple and monotracial AF-algebra, whenever G is countable and discrete. We can
realise C∗r (G) as a C∗-subalgebra of B(G) to obtain the following corollary.

Corollary 4.33. If G is any countable, discrete, amenable group, then G embeds into a simple,
monotracial AF-algebra. In particular, the Blackadar-Kirchberg conjectures hold for countable, dis-
crete, amenable groups.

4.4 Elliott’s classification program and connections thereto

We end this chapter with a more in-depth study of Elliott’s classification program, and how the
Tikuisis-White-Winter theorem actually resolves one part of the classification puzzle, in the sense
that it shows how it is possible to remove one of the original assumptions. We have already in a pre-
vious chapter discussed the history of classifying C∗-algebras by their K-theoretic data, most notably
the classification of AF-algebras, and as such we focus on the recent results in Elliott’s classification
program. We emphasise that this is merely a brief overview of a very rich subject and of work span-
ning decades.

In Theorem 1.39 and Theorem 1.44, the K-theoretic data was sufficient to classify the examined
classes of C∗-algebras. However, only considering K-theory turns out to be too restrictive. Instead,
the now named Elliott invariant takes into account both the K-theory and the structure of the tracial
state simplex, as well as a map connecting the two. In order to state the Elliott invariant, we need
to explain what this map is. Let (G,G+, u) be a preordered Abelian group with an order unit, and
consider the set S(G) of unit-preserving states on G; this is a weak*-compact convex set. For any
tracial state τ on a unital C∗-algebra A, we can define a state on K0(A) denoted K0(τ) : K0(A)→ C
by K0(τ)([p]0−[q]0) = τ(p−q) for p, q ∈ P∞(A). Then rA : T (A)→ S(K0(A)) is the map τ 7→ K0(τ).
Define for a unital and separable C∗-algebra A the Elliott invariant Ell(A) to be

Ell(A) := (K0(A),K0(A)+, [1A]0,K1(A), T (A), rA).
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We shall see that for a very large class of C∗-algebras, this is in fact an isomorphism invariant. It is
not immediately obvious how we shall consider two C∗-algebras to have isomorphic Elliott invariants,
so let us properly define this. If A,B are C∗-algebras, we write that Ell(A) ∼= Ell(B) if the following
properties all hold:

(i) There exists a unit-preserving preorder isomorphism ϕ : K0(A)→ K0(B);

(ii) There exists a group isomorphism ψ : K1(A)→ K1(B);

(iii) There exists an affine homeomorphism α : T (B)→ T (A) such that the following diagram com-
mutes:

T (B) T (A)

S(K0(B)) S(K0(A))

α

rB rA

ϕ∗

where the map ϕ∗ : S(K0(B))→ S(K0(A)) is the map ϕ∗(f) = f ◦ ϕ induced by ϕ.

Having established what the Elliott invariant is, and how we are meant to interpret it, we proceed by
understanding the classification result with Elliott’s invariant as the classification invariant. We still
need to introduce some more terminology in order to fully state the classification result.

Definition 4.34. Two elements a, b ∈ A are called orthogonal if ab = ba = a∗b = ab∗ = 0, in which
case we write a ⊥ b.

Definition 4.35. A c.p. map ϕ : A→ B between C∗-algebras is said to be of order zero if ϕ preserves
orthogonality, that is, if a ⊥ b, then ϕ(a) ⊥ ϕ(b).

Our interest in order zero maps comes from its usage in the concept of finite nuclear dimension,
which is one of the regularity conditions in Elliott’s classification. We define nuclear dimension as a
local property; this is easily seen to be equivalent to the formulation in [73, Definition 2.1].

Definition 4.36. A C∗-algebra A is said to have nuclear dimension n, if n is the smallest positive
integer satisfying the following: For any finite subset F ⊆ A and ε > 0 there exists some finite-
dimensional C∗-algebra B and some c.p. maps ϕ : A→ B and ψ : B → A such that ϕ is contractive,
and such that we have the decompositions

B = B0 ⊕B1 ⊕ · · · ⊕Bn and ψ = ψ0 ⊕ ψ1 ⊕ · · · ⊕ ψn

of B and ψ into n+ 1 ideals Bi EB and order zero maps ψi : Bi → A satisfying

‖ψ ◦ ϕ(a)− a‖ < ε and ‖ψi‖ ≤ 1

for all a ∈ F and i = 0, . . . , n. In this case, we write dimnuc(A) = n.

We say that a C∗-algebra A has finite nuclear dimension if dimnuc(A) < ∞. We can always
assume that the composition ψ ◦ϕ is contractive, see [73, Remark 2.2(iv)]. In this way, we see that if
dimnuc(A) <∞, then, for any finite set F ⊆ A and to any tolerance ε > 0, idA can be approximated
up to an ε tolerance on F by the c.c.p. map ψ◦ϕ : A→ A, which has finite rank. Hence, finite nuclear
dimension implies nuclearity.

Let us mention one conjecture regarding finite nuclear dimension known as the Toms-Winter con-
jecture. A construction of Jiang and Su gives an example of a C∗-algebra Z, which has some quite
surprising results; we present below a selection of these properties, the proofs of which can be found
in [35].

Theorem 4.37 (Jiang-Su, 1999). The C∗-algebra Z is a unital, simple, stably finite, separable,
nuclear, infinite-dimensional C∗-algebra with a unique tracial state. Moreover, K0(Z) ∼= K0(C) as
ordered Abelian groups, and K1(Z) = 0. Further, we have the isomorphisms Z ∼= Z ⊗ Z ∼=

⊗
NZ,

and Z satisfies the UCT.

67



The Jiang-Su algebra hence has a lot of structure, but the fact that its Elliott invariant is isomor-
phic to that of C of course seems like a devastating blow to hopes of classifying C∗-algebras by their
Elliott invariants; however, this is rectifiable by restricting the classification to infinite-dimensional
C∗-algebras. Having defined the Jiang-Su algebra, we are able to state (part of) the Toms-Winter
conjecture.

Conjecture 4.38 (Toms-Winter). A separable, simple, unital, nuclear and infinite-dimensional C∗-
algebra has finite nuclear dimension if and only if it is Z-stable.

In the full Toms-Winter conjecture, there is yet another conjectured equivalent property called
strict comparison; we refrain from discussing this property here. The full Toms-Winter conjecture
may be found in [70, Conjecture 6.3]. The Tikuisis-White-Winter actually provides a resolution for
C∗-algebras with at most one tracial state, and which satisfy the UCT, see [70, Corollary 6.4].

With the terminology of finite nuclear dimension in place, we are able to state the following classi-
fication result. We formulate it as in the original version, and then show how the quasidiagonality
assumption is superfluous.

Theorem 4.39 (Elliott-Gong-Lin-Niu, 2015, original formulation). The class of all unital, separable,
simple, infinite-dimensional C∗-algebras satisfying the UCT, with finite nuclear dimension, and with
the property that all tracial states are quasidiagonal is classifiable via the Elliott invariant.

The proof of the classification was finalised by Elliott, Gong, Lin and Niu in [19], and the result
can almost be seen as the conclusion to Elliott’s classification programme that has spanned several
decades.

Let us see how the quasidiagonality assumption is superfluous. Suppose A is a unital, separable,
simple C∗-algebra with finite nuclear dimension and let τ be a tracial state on A. Since A has finite
nuclear dimension, A is nuclear, and simplicity implies faithfulness of τ in the same manner as in the
proof of Corollary 4.28. Hence, the Tikuisis-White-Winter theorem provides that τ is quasidiagonal,
and we can phrase Theorem 4.39 as follows:

Theorem 4.40 (Elliott-Gong-Lin-Niu, 2016). The class of all unital, separable, simple, infinite-
dimensional C∗-algebras satisfying the UCT with finite nuclear dimension is classifiable via the Elliott
invariant.

In saying that this almost completes the classification program of Elliott, we mean that it is
unknown whether or not the UCT-assumption is superfluous or not. For example, if every separable,
nuclear C∗-algebra satisfies the UCT, i.e., there exists an affirmative answer to the UCT-problem, we
can remove the UCT-assumption as finite nuclear dimension implies nuclearity.
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5 Traceless, exact C∗-algebras and AF-embeddability

We end the thesis with a recent result due to Gabe [26] that the Blackadar-Kirchberg conjectures
are true for the class of traceless C∗-algebras. Two important ingredients in his proof are the AF-
embeddable C∗-algebra A[0,1] and the primitive ideal spaces of C∗-algebras, which are certain gener-
alisations of the spectra for Abelian C∗-algebras. In this chapter, we shall reproduce Gabe’s result
and provide some of the necessary background knowledge.

5.1 The primitive ideal space and the ideal lattice

If A is an Abelian C∗-algebra, it follows from Proposition 1.2 that A is *-isomorphic to C0(Â) for
some locally compact Hausdorff space called the spectrum Â, which can be realised as the set of
non-zero *-homomorphisms A→ C. The motivation behind the primitive ideal space is to construct
a topological structure generalising the the concept of spectra to non-Abelian C∗-algebras. Recall
from representation theory that a *-representation π : A→ B(H) on some Hilbert space H is said to
be irreducible if there exists no non-trivial closed subspace K ⊆ H such that π(A)K ⊆ K, and that
it is said to be reducible otherwise.

Definition 5.1. Let A be a C∗-algebra, and let IEA be a closed two-sided ideal. We say that I is a
primitive ideal in A if I is the kernel of an irreducible representation of A. We denote the collection
of primitive ideals on A by Prim(A).

If A is a C∗-algebra, then A has an irreducible representation, and hence its primitive ideal space
is non-empty. Note that if A is simple, then the only primitive ideal is the zero ideal. We want to
topologise the collection of primitive ideals in a way generalising the topology on the spectrum, and
for this we shall need a few results on prime ideals and primitive ideals.

Definition 5.2. An ideal I in a C∗-algebra A is called prime if for any two ideals I1, I2 in A with
I1I2 ⊆ I, either I1 ⊆ I or I2 ⊆ I.

We refrain from proving the following two lemmas and refer to [53, Corollary 3.13.8 and Proposi-
tion 3.13.10] instead.

Lemma 5.3. Every closed ideal in a C∗-algebra is the intersection of all the primitive ideals con-
taining it.

Lemma 5.4. Every primitive ideal in a C∗-algebra is a prime ideal.

The converse to Lemma 5.4 holds for separable C∗-algebras, see [53, Proposition 4.3.6].

Let A be a C∗-algebra. For each subset F ⊆ Prim(A) and B ⊆ A, we define

kerF =
⋂
I∈F

I and,

hullB = {I ∈ Prim(A) |B ⊆ I}.

Consider for each subset F ⊆ Prim(A) the set F = hull kerF . As the notation suggests, we shall
prove that this defines a closure map on the power set of Prim(A) and, hence, defines a topology.
More precisely, we shall prove the following proposition.

Proposition 5.5. The collection {hullB |B ⊆ A} form the closed sets of a topology on Prim(A). In
particular, for any subset F ⊆ Prim(A), the closure of F is given by F = hull kerF .

Proof. We prove that the Kuratowski closure axioms, see [41, p. 38], are satisfied. Let F,G ⊆ Prim(A)
be arbitrary subsets in the following.

(i) We first show that F ∪ G = F ∪G. If I ∈ F , then ker(F ∪ G) ⊆ kerF ⊆ I, proving that
I ∈ hull ker(F ∪G) = F ∪G and hence F ⊆ F ∪G. By following the same arguments for any
J ∈ G, one finds that F ∪ G ⊆ F ∪G. For the other direction, suppose that I ∈ F ∪G, then
as ker(F ∪G) = kerF ∩ kerG, we see that kerF ∩ kerG ⊆ I. Since I is a primitive ideal, it is a
prime ideal by Lemma 5.4, and hence either kerF ⊆ I or kerG ⊆ I. In either case, I ∈ F ∪G.
We conclude that F ∪G = F ∪G.
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(ii) If I ∈ F , then it follows by definition of the kernel that kerF ⊆ I, and hence I ∈ hull kerF = F ,
which proves that F ⊆ F .

(iii) It is immediate that ∅ = ∅.

(iv) We now aim to prove that F = F . In fact, we shall prove that if F = hullB for some subset
B ⊆ A, then F = F , which would imply the desired result. It follows from (ii) that F ⊆ F , so
we prove the other inclusion. Suppose that I ∈ F , then kerF ⊆ I, and as

kerF = ker hullB =
⋂

J∈hullB

J ⊇ B,

we find that B ⊆ I. Consequently, I ∈ hullB = F , proving the desired inclusion.

We conclude by Kuratowski’s axioms that the closure map F 7→ F defines a topology on Prim(A).
Note that it follows from (iv) that every closed set in this topology is of the form hullB for some
subset B ⊆ A, and that all such subsets of Prim(A) are closed. This proves the proposition.

The above topology is often called either the Jacobson topology or the hull-kernel topology.

Proposition 5.6. For any C∗-algebra A, the primitive ideal space Prim(A) is a T0-space.

Proof. Suppose that I1, I2 ∈ Prim(A) are two distinct ideals and assume without loss of generality
that I1 6⊆ I2. In particular, I2 6∈ hull(I1), and hence the open set Prim(A) \ hull(I1) is an open
neighbourhood of I2 not containing I1.

However, the space is, in general, not T1. For a C∗-algebra A, we denote by I(A) the ideal lattice
of A, which is the collection of closed two-sided ideals in A, which is a lattice equipped with the usual
set inclusions.

Proposition 5.7. For every C∗-algebra A there exists an order-preserving isomorphism between the
open sets in Prim(A) in the Jacobson topology and the ideal lattice I(A).

Proof. Define for each open set U ⊆ Prim(A) the primitive ideal I(U) = ker(Prim(A) \U) and define
for each closed two-sided ideal IEA the open set U(I) = Prim(A)\hull I in Prim(A). We claim that
the maps U 7→ I(U) and I 7→ U(I) are order-preserving isomorphisms as desired.

It is immediate that they are order-preserving by construction, so let us prove that they are inverses
of one another. If U ⊆ Prim(A) is open, then

U(I(U)) = U(ker(Prim(A) \ U)) = Prim(A) \ (Prim(A) \ U) = U,

and if I EA is a closed two-sided ideal, then

I(U(I)) = I(Prim(A) \ hull I) = ker hull I = I,

where the last equality follows from Lemma 5.3, since ker hull I is the intersection of all primitive
ideals containing I. This proves that I and U are inverses of one another, which completes the
proof.

As stated before, the primitive ideal space generalises the spectrum for Abelian C∗-algebras —
let us establish how this is the case. Suppose that C0(X) is an Abelian C∗-algebra. By [53, Theorem
3.13.2], any non-zero irreducible representation of C0(X) is one-dimensional, and hence the spectrum
Â is precisely the set of irreducible representations of C0(X), and one can show that the canonical
map Â→ Prim(A) by π 7→ kerπ is a homeomorphism. In particular, Prim(C0(X)) is homeomorphic
to X for any locally compact Hausdorff space X.

Using the fact that, in the separable case,

Prim(A⊗B) ∼= Prim(A)× Prim(B)

holds whenever either A or B is exact, see [3, Theorem IV.3.4.26], we see that

Prim(C0(X,A)) ∼= Prim(C0(X)⊗A) ∼= Prim(C0(X))× Prim(A) ∼= X × Prim(A).

70



Consider X = (0, 1) or X = (0, 1] or, in other words, suppose we want to analyse the primitive ideal
space of the suspension or cone of A. Then Prim(C0(X,A)) admits no non-empty, compact, open
subsets, since any such would project onto a subset of X with the same properties, and no such
subset of X exists. Gabe’s confirmation of the Blackadar-Kirchberg conjectures in the traceless case
effectively boils down to showing that a separable exact C∗-algebra A admits an embedding into a
specific AF-embeddable C∗-algebra A[0,1], to be analysed in Section 5.2, if and only if Prim(A) admits
no non-empty, compact, open subsets. Since the topological structure on Prim(A) by Proposition
5.7 is closely related to the ideal structure of A, it is natural to ask how the topological structure
of compactness translate into the ideal lattice in A. For this we shall define a few terms in lattice
theory. Recall that a lattice is a partially ordered set for which any finite subset has a supremum
and an infimum.

Definition 5.8. A complete lattice is a lattice for which every subset has a supremum and an
infimum.

The ideal lattice I(A) of any C∗-algebra A is a complete lattice with infα Iα =
⋂
α Iα and

supα Iα =
∑
α Iα. If the net is increasing, the supremum is given by supα Iα =

⋃
α Iα.

Definition 5.9. Let L be a complete lattice, and let x, y ∈ L. We say that x is compactly contained
in y, denoted x b y, if for any increasing net (yα)α∈Λ in L with y ≤ supα yα, there exists some α
such that x ≤ yα. We say that x is compact if x b x.

Notice that the ideal lattice I(A) is a complete lattice, and one can show that an ideal I in a
C∗-algebra A is compact in the above sense if and only if it corresponds to a compact open subset of
Prim(A).

Definition 5.10. Let L and L′ be complete lattices, and let Φ: L → L′ be an order-preserving map.
We say that Φ is a Cu-morphism if it preserves arbitrary suprema and compact containment.

The reader may find the terminology confusing and rightfully so, as we have not justified naming
such maps Cu-morphisms. We shall hence try to develop the necessary theory to understand the
terminology, and this will also help in understanding the structure of ideal lattices. First of all, for
any C∗-algebra A, we let M∞(A) denote the C∗-algebra constructed by the inductive limit

A
ϕ1−→M2(A)

ϕ2−→M3(A)
ϕ3−→ · · ·

where the connecting maps are defined by embeddings into the upper-left entries, i.e.,

ϕn(a) =

(
a 0
0 0

)
, a ∈Mn(A), n ∈ N.

Observe that we have an isomorphism M∞(A) ∼= A ⊗ K(H) for every C∗-algebras A, since K(H) is
nuclear and as inductive limits are preserved by the maximal tensor product by [3, II.9.6.5].

Definition 5.11. Let A be a C∗-algebra, and let a, b ∈ A. We say that a is Cuntz subequivalent to b,
denoted by a . b, if there exists a sequence of elements (vn)n∈N in A such that vnbv

∗
n → a as n→∞.

If a . b and b . a, we shall write that a ∼c b.

One can verify that ∼c defines an equivalence relation on A. Using this fact, we can define the
Cuntz semigroup Cu(A) of A to be Cu(A) = (A ⊗ K(H))+/ ∼c, see [1, Definition 2.4]. Denote by
[a]c the equivalence class corresponding to an element a ∈ (A⊗K(H))+, and equip Cu(A) with the
addition [a]c+[b]c = [a⊕b]c as well as the ordering [a]c ≤ [b]c if and only if a . b. Equipped with these
operations, Cu(A) is an ordered Abelian semigroup. Note that since [a]c ≤ [b]c implies that a belongs
to the ideal generated by b, there exists an order-preserving map Cu(A)→ I(A) given by [a]c 7→ AaA.

We shall use this in the below definition, which is a categorical theoretical generalisation of some
properties that all Cuntz semigroups satisfy.

Definition 5.12. The objects in the category Cu are positively5 ordered Abelian semigroups S with
the following properties:

(O1) Any increasing sequence (an)n∈N in S admits a supremum supn∈N an;

5An ordered Abelian semigroup S is positively ordered if x ≥ 0 for all x ∈ S.

71



(O2) For any a ∈ A, there exists a sequence (an)n∈N in S such that an b an+1 for all n ∈ N, and
such that a = supn∈N an;

(O3) If a′ b a and b′ b b for any a, a′, b, b′ ∈ S, then a′ + b′ b a+ b;

(O4) If (an)n∈N and (bn)n∈N are increasing sequences in S, then supn∈N(an + bn) = supn∈N an +
supn∈N bn.

The morphisms in Cu are maps preserving addition, the order, the zero element, compact containment
and increasing suprema.

In [13] , Coward, Elliott and Ivanescu showed that, for any C∗-algebra A, the Cuntz semigroup
Cu(A) satisfies the properties (O1)-(O4), and this gave rise to the above definition. Observe the
similarities between the morphisms in the category Cu and the Cu-morphisms in Definition 5.10 —
both types of morphisms preserve compact containment and increasing suprema. The similarities do
not end here, but in order to establish these we need to look a little closer at the ideal lattices of
C∗-algebras.

If ϕ : A → B is a *-homomorphism, we claim that the map I(ϕ) : I(A) → I(B) induced on the
ideal lattices by I(ϕ)(I) = Bϕ(I)B for I ∈ I(A) is a Cu-morphism in the sense of Definition 5.10.
Further, we claim that if A is separable, then I(A) is an object in Cu, and that if ϕ : A → B is a
*-homomorphism between separable C∗-algebras, then I(ϕ) is a morphism in the category Cu.

Lemma 5.13. Let A be a C∗-algebra, and suppose that I and J are ideals in A. Then I b J if and
only if there exists some a ∈ J+ and ε > 0 such that I ⊆ A(a− ε)+A. In particular, for any a ∈ A+

and ε > 0, we have A(a− ε)+A b AaA.

Proof. Suppose that there exists a ∈ J+ and ε > 0 such that I ⊆ A(a− ε)+A. Let (Iα)α∈Λ be an
increasing net of ideals such that J ⊆

⋃
α∈Λ Iα. Then there exists a positive element b ∈ Iα such

that ‖a− b‖ < ε
2 for some α, which implies the inequality a − ε

2 ≤ b in the unitisation A†. Let
f : [0,∞) → [0,∞) be any continuous function satisfying f(x) = 0 for x ∈ [0, ε/2) and f(x) = 1 for
x ∈ [ε,∞). Then a use of the continuous functional calculus shows that

(a− ε)+ ≤ f(a)(a− ε

2
)f(a) ≤ f(a)bf(a),

and this gives rise to the inclusion of ideals

I ⊆ A(a− ε)+A ⊆ AbA ⊆ Iα.

We have hence shown that I b J . Note that this also proves the latter half of the lemma, i.e., that
A(a− ε)+A b AaA for any a ∈ A+ and ε > 0.

Conversely, suppose that I b J . Let ai ∈ J+ and εi > 0 for i = 1, 2, and let a ∈ A+ be any
positive element. Then the previously shown implication implies that

A(ai − εi)+A b AaA.

Observing that AaA =
⋃
ε>0A(a− ε)+A, we find that there exist ε′i > 0 for i = 1, 2 such that

A(ai − εi)+A ⊆ A(a− ε′i)+A ⊆ A(a− ε)+A

for i = 1, 2, where ε = min{ε′1, ε′2}. We thus see that the family of ideals (A(a− ε)+A)a∈J+,ε>0 is

upwards directed. Since I b J , we have for any increasing net (Iα)α∈Λ with J ⊆
⋃
α∈Λ Iα that there

exists some α0 ∈ Λ with I ⊆ Iα0
. Observe that we can realise J as

J =
∑

a∈J+,ε>0

A(a− ε)+A = sup
a∈J+,ε>0

A(a− ε)+A

and that if (aα)α∈Λ is a net in a complete lattice with supremum a, then bα := supβ≤α aβ is an
increasing net with supremum a. These facts combined with upwards directedness of the family
(A(a− ε)+A)a∈J+,ε>0 as argued before entails the existence of a positive element a ∈ J+ and ε > 0

such that I ⊆ A(a− ε)+A, which completes the proof.
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This characterisation of compact containment for ideals is a useful tool. We shall use it in the
next lemma, which states when the ideal lattice of a C∗-algebra satisfy condition (O2) above.

Lemma 5.14. Let I be an ideal in a C∗-algebra A. Then I has a full element if and only if there
exists a sequence I1 b I2 b · · · of ideals in A with I =

⋃
n∈N In.

Proof. If I admits a full element a ∈ I, then the sequence In = A(a∗a− 1/n)+A gives a sequence
of ideals I1 b I2 b · · · by Lemma 5.13, and moreover

⋃
n∈N In = AaA = I as desired. Conversely,

suppose that (In)n∈N is a sequence of ideals with I1 b I2 b · · · and I =
⋃
n∈N In. For each n ∈ N, we

can invoke Lemma 5.13 to find a positive element an ∈ In with ‖an‖ ≤ 1 such that In ⊆ AanA ⊆ In+1.

In particular, I =
⋃
n∈NAanA, and one can verify that the element h =

∑∞
n=1

1
2n an is a full element

in I.

The existence of full elements in ideals is important in this discussion due to the following propo-
sition, which gives a complete characterisation of when an ideal lattice is an object in Cu.

Proposition 5.15. The ideal lattice I(A) of a C∗-algebra A is an object in the category Cu if and
only if all ideals in A admit a full element.

Proof. Suppose that I(A) is an object in the category Cu, then for any I ∈ I(A) there exists a
sequence of ideals I1 b I2 b · · · with I =

⋃
n∈N In, which by Lemma 5.14 implies that I is full.

Conversely, if all ideals in I(A) are full, then it is straightforward to verify that I(A) is an object in
Cu; fullness is used to invoke Lemma 5.14, which proves condition (O2).

Since any ideal of a separable C∗-algebra admits a full element, see [3, II.5.3.10], we get the
following result.

Corollary 5.16. If A is a separable C∗-algebra, the ideal lattice I(A) is an object in Cu.

We now proceed with proving our second claim that if ϕ : A→ B is a *-homomorphism, then the
induced map I(ϕ) : I(A)→ I(B) is a Cu-morphism in the sense of Definition 5.10.

Proposition 5.17. Suppose that ϕ : A→ B is a *-homomorphism. Then I(ϕ) : I(A)→ I(B) is an
order-preserving morphism which preserves compact containment and suprema. In particular, I(ϕ)
is a Cu-morphism in the sense of Definition 5.10.

Proof. Clearly, I(ϕ) preserves the zero element as well as the ordering. Since ϕ(a)∗ϕ(a) = ϕ(a∗a) for
any a ∈ I, and the collection of the right-hand side generates Bϕ(I+)B, we see that ϕ(a) ∈ Bϕ(I+)B
for all a ∈ I. Consequently, we have the identity

I(ϕ)(I) = Bϕ(I)B = Bϕ(I+)B.

Moreover, since (I + J)+ = I+ + J+ for ideals I, J in A, see [53, Proposition 1.5.9], we have

I(ϕ)(I + J) = Bϕ((I + J)+)B = Bϕ(I+ + J+)B = B(ϕ(I+) ∪ ϕ(J+))B

= Bϕ(I+)B +Bϕ(J+)B = I(ϕ)(I) + I(ϕ)(J)

such that I(ϕ) is additive.

For compact containment, first note that multiplicativity and continuity of ϕ implies that

I(ϕ)(AaA) = Bϕ(AaA)B = Bϕ(a)B.

Suppose that I, J are ideals in A with I b J . By Lemma 5.13, there exist some positive element
a ∈ J+ and ε > 0 such that I ⊆ A(a− ε)+A, and hence

I(ϕ)(I) ⊆ I(ϕ)(A(a− ε)+A) = Bϕ((a− ε)+)B

= B(ϕ(a)− ε)+B b Bϕ(a)B = I(ϕ)(AaA) ⊆ I(ϕ)(J).

We hence see that I(ϕ)(I) b I(ϕ)(J), and therefore I(ϕ) preserves compact containment. All that re-
mains to be seen is that I(ϕ) preserves suprema — first we prove that it preserves increasing suprema.
Let I be an ideal in A, and let (Iα)α∈Λ be an increasing net of ideals in A with supα Iα = I. Note that
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I =
⋃
α∈Λ Iα as the net is increasing. Since Iα ⊆ I for each α, we find that I(ϕ)(Iα) ⊆ I(ϕ)(I). This

implies in particular that supα∈Λ I(ϕ)(Iα) ⊆ I(ϕ)(I) proving one inclusion. For the other inclusion,
let x ∈ I be arbitrary and find a sequence (xn)n∈N in

⋃
α∈Λ Iα such that xn → x. Then ϕ(xn)→ ϕ(x),

and as (ϕ(xn))n∈N is a sequence in
⋃
α∈Λ I(ϕ)(Iα), we find that ϕ(x) ∈

⋃
α∈Λ I(ϕ)(Iα). In partic-

ular, I(ϕ)(I) ⊆
⋃
α∈Λ I(ϕ(Iα)) proving the needed inclusion, and we conclude that I(ϕ) preserves

increasing suprema.

We want to generalise this result to arbitrary suprema. Let S ⊆ I(A) be any subset. If S = ∅,
then supS = 0 and, hence,

I(ϕ)(supS) = I(ϕ)(0) = 0 = sup I(ϕ)(S).

If S is non-empty, then consider the set

T =

{∑
I∈S′

I |S′ ⊆ S is a finite subset

}
.

It is clear that T is an upwards directed set, and that we can realise it as an increasing net indexed
by the finite subsets of S. Moreover, S and T share the same supremum, and therefore

I(ϕ)(supS) = I(ϕ)(supT ) = sup I(ϕ)(T ) = sup I(ϕ)(S).

We conclude that I(ϕ) is a Cu-morphism.

When we defined the morphisms in Cu, the reader may have noticed that they only need preserve
suprema of increasing sequences, but one can show that a morphism ϕ : S → T between Cu-objects
S and T necessarily preserves the supremum of any increasing net. Indeed, this is guaranteed by
condition (O2), since if x ∈ S is the supremum of an increasing net (xα)α∈Λ, then we know there
exists some sequence y1 b y2 b · · · such that x = supn∈N yn, and this implies that

ϕ(x) = ϕ(sup
α∈Λ

xα) = ϕ(sup
n∈N

yn) = sup
n∈N

ϕ(yn) = sup
α∈Λ

ϕ(xα).

Moreover, if a map Φ: I(A)→ I(B) between ideal lattices preserves arbitrary suprema, then the zero
element is preserved as sup ∅ = 0, and addition is preserved since the supremum of a finite collection
of ideals is the sum. All in all, this implies that, whenever the C∗-algebras in question are separable,
a map between ideal lattices is a Cu-morphism in the sense of Definition 5.10 precisely when it is one
in the sense of the category Cu.

Hopefully, the above discussion on Cu-morphisms gave the reader some insight into the nature of
Cu-morphisms and the terminology itself. One important fact we need is the following lemma.

Lemma 5.18. If A is a separable C∗-algebra with the property that Prim(A) has no non-empty,
compact, open subsets, then there exists a Cu-morphism Φ: I(A)→ [0, 1] with Φ−1({0}) = {0}.

The idea behind the proof is simple: Prove the existence of a continuous6 and order-preserving
map Ψ: [0, 1] → I(A) with Ψ(0) = 0 and Ψ(1) = A and invoke a classification result, [27, Theorem
VI-3.4], to prove the existence of an order-preserving map Φ: I(A) → [0, 1] satisfying that, for any
(I, t) ∈ I(A) × [0, 1], I ⊆ Ψ(t) if and only if Φ(I) ≤ t; such a Φ is called a lower adjoint of Ψ,
and it can be shown that Φ preserves suprema and compact containment. In particular, Φ is a Cu-
morphism I(A)→ [0, 1], and since Ψ(0) = 0, it is immediate from Φ being a lower adjoint of Ψ that
Φ−1({0}) = {0}. For the full details, we refer the reader to [26, Lemma 3].

5.2 Constructing a separable, nuclear, O∞-stable ASH-algebra A[0,1]

We now construct an AF-embeddable C∗-algebra A[0,1], whose ideal lattice is isomorphic to the
interval [0, 1] with the usual ordering. Our exposition follows that of Rørdam [60], but the construction
is originally by Mortensen [46]. To be specific, what Mortensen constructed was the C∗-algebra

6Of course, continuity only makes sense if the ideal lattice I(A) is equipped with some topology. There exists such
a topology known as the Lawson topology — we shall not study this here, but the details may be found in [27, Section
III-1].
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A[0,1] ⊗ O2, but this is isomorphic to A[0,1] by O2-stability, which was proved by Kirchberg and
Rørdam in [39, Proposition 6.1]. In understanding the C∗-algebra A[0,1], we generalise the notion of
AF-algebras by allowing the C∗-algebras in the inductive limit to be direct sums of C∗-subalgebras of
matrix algebras over arbitrary Abelian C∗-algebras. We follow the definition of Gabe and Rørdam,
see [26, p. 2] and [60, p. 9].

Definition 5.19. A C∗-algebra A is called an approximately subhomogeneous algebra, denoted ASH-
algebra, if it is the inductive limit of a sequence of C∗-algebras, which are finite direct sums of
C∗-subalgebras of matrix algebras over separable, Abelian C∗-algebras.

In other words, ASH-algebras are inductive limits, where the inductive sequence can be con-
structed from certain building blocks, namely C∗-subalgebras of matrices over separable, Abelian
C∗-algebras. Observe that all AF-algebras are trivially ASH-algebras, since we can just take the
underlying Hausdorff space in the building blocks to be one-point spaces. Note that while it is true
that A[0,1] is an ASH-algebra, there is nothing subhomogeneous about the construction below, and
Rørdam called it an AH0-algebra in [60].

While ASH-algebras can have more exotic behaviour than AF-algebras, they are all AF-embeddable.

Proposition 5.20. Every ASH-algebra is AF-embeddable.

Proof. One can show, see [60, Proposition 4.1], that if A is a C∗-subalgebra of Mn(C0(X)) for some
locally compact Hausdorff space X, then its bidual A∗∗ can be realised as

⊕n
k=1Mk(Nk) for some

Abelian von Neumann-algebras N1, . . . , Nn. We aim to prove that given an Abelian von Neumann-
algebra N and any separable C∗-subalgebra A of Mk(N), then there exists an AF-algebra C ⊆Mk(N)
containing A.

In order to verify this claim, let A0 be the C∗-algebra generated by A and the matrix units of
Mk(C), then A0 = Mk(B0) for some separable C∗-subalgebra B0 of N . Note that B0 is separable.
Using the fact that all von Neumann-algebras have real rank zero, see [8, Proposition 1.3], and that
the property of having real rank zero is separably inheritable7, we find that there exists a separa-
ble, unital C∗-subalgebra B of N containing B0 with real rank zero. Since N is Abelian, so is B,
and as any Abelian C∗-algebra with real rank zero is an AF-algebra, we find that B, and, hence,
C = Mk(B), is an AF-algebra. We conclude that C is an AF-algebra, which contains A and which is
a C∗-subalgebra of Mk(N), and this proves the claim.

Let A be any ASH-algebra, and realise A as the inductive limit of a sequence

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ · · · −→ A

where each An is a finite sum of C∗-subalgebras of matrix algebras of Abelian C∗-algebras. By taking
the bidual, we get an inductive sequence of von Neumann-algebras

A∗∗1
ϕ∗∗1−→ A∗∗2

ϕ∗∗2−→ A∗∗3
ϕ∗∗3−→ · · · .

By applying the previously described construction on each of the von Neumann-algebras in the in-
ductive sequence, we can find an AF-algebra B1 with A1 ⊆ B1 ⊆ A∗∗1 . Using the exact same
construction, we can find another AF-algebra B2 containing the C∗-algebra generated by A1 and
ϕ∗∗1 (B1), and which is contained in A∗∗2 . Continuing in this fashion, we get an inductive sequence of
AF-algebras

B1
ϕ∗∗1−→ B2

ϕ∗∗2−→ B3
ϕ∗∗3−→ · · · −→ B

where the inductive limit B is again an AF-algebra, since the class of AF-algebras is closed under
taking sequential inductive limits. Since An is a C∗-subalgebra of Bn for each n ∈ N, we conclude
that A can be realised as a C∗-subalgebra of B, and this proves that all ASH-algebras are AF-
embeddable.

7This fact is proved similarly to proving that stable rank one is a separably inheritable property of C∗-algebras,
cf. Proposition 4.10: Using separability, we pick a countable dense set of the self-adjoints and add the inverses via
real rank zero of the larger C∗-algebra. Continuing in this manner provides an inductive sequence, whose limit is a
separable C∗-subalgebra of the initial C∗-algebra with real rank zero.
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We now follow the exposition in [60, Section 2] and construct a specific family of ASH-algebras.
Let T ⊆ R be any non-empty compact subset and define tmin = minT and tmax = maxT . Put
T0 = T \ {tmax} and find a sequence (tn)n∈N in T0 such that the tail (tn)∞n=k is dense in T0 for
each k ∈ N. Consider for each n ∈ N the C∗-algebra An = C0(T0,M2n(C)), and consider also the
*-homomorphisms ϕn : An → An+1 given by

ϕn(f) =

(
f 0
0 f ◦ χtn

)
, f ∈ An,

where the map χs : T → T is given by χs(t) = max{s, t} for each s, t ∈ T . The C∗-algebra AT is
then defined to be the inductive limit of the inductive sequence (An, {ϕn}). Note that the C∗-algebra
AT may be dependent on the choice of sequence (tn)n∈N. The C∗-algebra A[0,1], which is of greatest
interest for our purposes, can be shown to be independent of the sequence (tn)n∈N, see [39]. However,
none of our results depend on the uniqueness of A[0,1].

It is clear that AT is an ASH-algebra for each compact subset T ⊆ R. We shall analyse these
in greater detail with a focus on the specific example A[0,1]. We start by analysing the ideal structure

of AT . For each t ∈ T and n ∈ N, define the closed two-sided ideal I
(n)
t of An by

I
(n)
t = {f ∈ An | f(s) = 0 for all s ≥ t} ∼= C0(T0 ∩ [tmin, t),M2n(C)).

It is immediate that I
(n)
tmin

= 0 and I
(n)
tmax

= An for all n ∈ N, and if t ≤ s, then I
(n)
t ⊆ I(n)

s . Define

It =
⋃
n∈N

ϕ∞,n(I
(n)
t )

for each t ∈ T , where we use the notation that ϕ∞,n : An → AT are the boundary maps in the
inductive limit. If we denote by ϕm,n : An → Am the compositions of the connecting maps, then one
easily realises that

ϕn+k,n(f) =


f ◦ χmaxF1

0 · · · 0
0 f ◦ χmaxF2

· · · 0
...

...
. . .

...
0 0 · · · f ◦ χmaxF

2k

 (5.1)

for a certain enumeration F1, F2, . . . , F2k of the set {tn, tn+1, . . . , tn+k−1}.

Observe that each It is a closed two-sided ideal in AT satisfying I
(n)
t = ϕ−1

∞,n(It) for all n ∈ N,
that It ⊆ Is whenever s ≤ t, and that Itmin

= 0 and Itmax
= AT .

Proposition 5.21. Let T ⊆ R be a non-empty compact set. Each closed two-sided ideal in AT is of
the form It for some t ∈ T . In particular there is an order-preserving isomorphism I(AT ) ∼= T .

Proof. Suppose that we have shown that each closed two-sided ideal in AT is of the form It, then
we immediately get a bijection from I(AT ) to T . Since It ⊆ Is whenever t ≤ s, we find that this
bijection is order-preserving. Hence if we show the first part of the proposition, we are done.

Let us therefore show that the collection {It}t∈T exhausts the ideal lattice of AT . Suppose I is
a closed two-sided ideal in AT . For each n ∈ N, put I(n) = ϕ−1

∞,n(I) and note that I(n) is a closed
two-sided ideal in An. Define also the set

Tn =
⋂

f∈I(n)

f−1({0})

for all n ∈ N. Then Tn is a closed subset of T for each n ∈ N, since each f ∈ I(n) is continuous and
being closed is preserved by arbitrary intersections. One easily verifies that I(n) = C0(T \Tn,M2n(C))
for all n ∈ N. If we were to show that there exists t ∈ T such that Tn = T ∩ [t, tmax] for all n ∈ N,

then I(n) = C0(T0 ∩ [tmin, t),M2n(C)) = I
(n)
t and, consequently, I = It.

Fix an arbitrary natural number n. Define for each k ∈ N the set

Xn,k = {tn, tn+1, . . . , tn+k−1}.
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We claim that we have the identity

Tn =
⋃

F⊆Xn,k

χmaxF (Tn+k) (5.2)

for all k ∈ N. Let k ∈ N be arbitrary and let T ′n,k denote the right-hand side of the claimed
equation. In order to prove the claim, it suffices to show that a function f ∈ C0(T0,M2n(C)) vanishes
on Tn if and only if f vanishes on T ′n,k. However, we have the following bi-implications for any
f ∈ C0(T0,M2n(C)):

f |Tn = 0 ⇐⇒ f ∈ I(n)

⇐⇒ ϕn+k,n(f) ∈ I(n+k)

⇐⇒ ϕn+k,n(f)(s) = 0 for all s ∈ Tn+k

⇐⇒ f(χmaxF (s)) = 0 for all s ∈ Tn+k and F ⊆ Xn,k

⇐⇒ f |T ′n,k = 0.

In the second-to-last equivalence, we have used (5.1). In particular, we see that Tn = Tn+1∪χtn(Tn+1),
which implies that minTn ≤ minTn+1. Moreover, we have the inequality

minχtn(Tn+1) = max{tn,minTn+1} ≥ minTn+1.

We have hence proved that minTn = minTn+1. Since n ∈ N was arbitrary, this proves that the
collection {Tm}m∈N has a common minimum; call this element t. We claim that this t is the one
we mentioned in the beginning of the proof, i.e., that Tm = T ∩ [t, tmax] for all m ∈ N. Noting that
t ∈ Tn+k for all k ∈ N and using (5.2), we see that

Tn 3 χtn+k
(t) = max{tn+k, t} = tn+k

for each natural number k. This implies that Tn contains the set {tn+k}k∈N ∩ [t, tmax]. Since the
sequence (tn+k)k∈N is dense in T by assumption, and as Tn is closed, we must have the inclusion
T ∩ [t, tmax] ⊆ Tn. However, the other inclusion is trivial, and hence we have the equality of set
Tn = T ∩ [t, tmax]. Since n ∈ N was an arbitrary fixed natural number, we are done.

Since there exists an order-preserving isomorphism from I(A) to the open subsets of Prim(A) for
each C∗-algebra A, we can use Proposition 5.21 to determine the topological structure of Prim(AT )
for all non-empty compact T ⊆ R. In particular, we see that Prim(A[0,1]) contains no non-empty,
compact, open subsets, which plays a crucial role in Gabe’s result.

We now show that A[0,1] is traceless. As pointed out earlier, this notion is a bit more subtle than one
might expect. In order to not worry about so-called quasitraces, which are certain generalisations of
traces, we only define them for exact C∗-algebras; for a general definition we refer to [38, Definition
4.2].

Definition 5.22. Let A be an exact C∗-algebra. We say that A is traceless if A admits no non-zero
lower semi-continuous trace.

It is clear that a C∗-algebra cannot have any tracial states if it is traceless. However, do note that
being traceless is inherently stronger than just having no tracial states; for example, whenever H is
infinite-dimensional, B(H) has no tracial state, however it is not traceless, since the canonical trace
is, as stated before, a trace in the sense of Definition 1.1.

If I is any algebraic ideal of a C∗-algebra B, then I contains Ped(I), hence I contains all elements of
the form (x− ε)+ for positive x ∈ I and ε > 0 by Proposition 1.16. We shall use this in the following
proposition, which gives a taste as to the possible exoticness of ASH-algebras; note that it is not used
in proving Gabe’s resolution of the Blackadar-Kirchberg conjectures. Observe that AF-algebras are
never traceless by the following argument: If p ∈ P(A) is a non-trivial projection in an AF-algebra,
which exists since AF-algebras have an abundance of projections, then the hereditary C∗-subalgebra
pAp of A is unital and admits a tracial state — the latter fact can be concluded by, for example,
using Theorem 4.27.

Proposition 5.23. The ASH-algebra A[0,1] is traceless.
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Proof. Since Abelian and finite-dimensional C∗-algebras are nuclear, and as tensor products and in-
ductive limits preserve nuclearity, we see that A[0,1] is nuclear and, hence, exact. Suppose that A[0,1]

has an algebraic ideal I admitting a non-zero lower semi-continuous trace τ . We wish to reach a
contradiction.

Since I is an algebraic ideal of A[0,1], its completion is a closed two-sided ideal in A[0,1], and hence

by Proposition 5.21 there exists t ∈ [0, 1] such that I = It. Note that as τ is non-zero, we must have
that It 6= {0} and thus t > 0.

For each n ∈ N, we consider I
(n)
t = ϕ−1

∞,n(It) and I(n) = ϕ−1
∞,n(I). Whenever x ∈ It is positive

and ε > 0, it follows from Proposition 1.16 and the fact that Ped(It) ⊆ I that

ϕ∞,n((x− ε)+) = (ϕ∞,n(x)− ε)+ ∈ I

and, hence, (x − ε)+ ∈ I(n) for all n ∈ N. This proves that, for each n ∈ N, the positive elements

in I(n) are dense in the positive cone of I
(n)
t and, consequently, that I(n) = I

(n)
t . In particular, I(n)

contains the Pedersen ideal Cc([0, t),M2n(C)) of I
(n)
t .

Let τn = τ ◦ ϕ∞,n be a trace with domain I(n). We claim that we can realise τn as

τn(f) = 2n
∫ t

0

Tr2n(f(s)) dµn(s) (5.3)

for all f ∈ Cc([0, t),M2n(C)), where µn is some Radon measure on [0, t). By Riesz’ representation
theorem, we can realise τn on the C∗-subalgebra Cc([0, t),C) by

τn(f) = 2n
∫ t

0

f(s) dµn(s), f ∈ Cc([0, t),C)

for some Radon measure µn on [0, t). Note that this shows that the formulation in (5.3) holds on the
C∗-subalgebra Cc([0, t),C). Consider for each f ∈ Cc([0, t),M2n(C)) the set

Uf = conv{ufu∗ |u ∈ U(C([0, t],M2n(C)))}.

Suppose that f ≥ 0, let u ∈ C([0, t],M2n(C)) be unitary, and consider x = uf1/2. Then x ∈
Cc([0, t),M2n(C)) and x∗x = f and xx∗ = ufu∗, and hence

τn(f) = τn(x∗x) = τn(xx∗) = τn(ufu∗).

Thus, by continuity, τn is constant on each Uf whenever f ≥ 0, which can be extended to all
f ∈ Cc([0, t),M2n(C)). If we show that the intersection Uf ∩ Cc([0, t),C) is non-empty for all
f ∈ Cc([0, t),M2n(C)), we have shown that (5.3) holds. In fact, we shall see that the conditional
expectation E : Cc([0, t),M2n(C))→ Cc([0, t),C) by E(f)(s) = Tr2n(f(s)) for s ∈ [0, t) satisfies that
E(f) ∈ Uf ∩ Cc([0, t),C) for any f ∈ Cc([0, t),M2n(C)).

We shall first consider some matrices known as Voiculescu’s matrices. Let ω = e2πi/2n be a root
of unity of degree 2n and consider the unitary matrices u, v ∈ M2n(C) given by uej = ωj−1ej and
vej = ej−1 for j = 1, . . . , 2n, where ej is the jth standard basis vector. It is easily verified that
vu = ωuv. Define the maps Φ,Ψ: M2n(C)→M2n(C) by

Φ(x) =
1

n

n∑
j=1

ujxu−j , and Ψ(x) =
1

n

n∑
j=1

vjxv−j

for x ∈ M2n(C). A few calculations show that Φ(x) is the diagonal matrix whose elements are the
diagonal elements in x. Moreover, one can verify that Ψ(Φ(x)) = Tr2n(x), and that

Ψ(Φ(x)) =
1

n2

n∑
j,k=1

vjukxu−kv−j .
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In particular, if f ∈ Cc([0, t),M2n(C)), then we see that

E(f)(s) = Tr2n(f(s)) =
1

n2

n∑
j,k=1

vjukf(s)u−kv−j

which proves that E(f) ∈ Uf ∩ Cc([0, t),C). This proves that (5.3) holds.

Having established the previous result, we now aim to show that each Radon measure µn is the
zero measure. In order to do this, we wish to determine the relations between the Radon measures
µn. Note first of all that τn = τn+k ◦ ϕn+k,n for all n, k ∈ N. Define, as we did in the proof of
Proposition 5.21, for each n, k ∈ N the set Xn,k = {tn, tn+1, . . . , tn+k−1}. Fix n ∈ N, then, for any
f ∈ Cc([0, t),M2n(C)), we have

2n
∫ t

0

Tr2n(f(s)) dµn(s) = τn(f) = τn+k(ϕn+k,n(f))

= 2n
∫ t

0

Tr2n(ϕn+k,n(f(s)) dµn+k,n(s)

=
∑

F⊆Xn,k

2n
∫ t

0

Tr2n(f ◦ χmaxF (s)) dµn+k,n(s)

=
∑

F⊆Xn,k

2n
∫ t

0

Tr2n(f(s)) d(µn+k,n ◦ χ−1
maxF )(s).

Since f ∈ Cc([0, t),M2n(C)) was arbitrary, we find that

µn =
∑

F⊆Xn,k

µn+k,n ◦ χ−1
maxF . (5.4)

Having determined the relations between the different Radon measures in question, we now show that
µn = 0 for all n ∈ N. Fix some s ∈ (0, t), and find r such that 0 < s < r < t. Consider for each k ∈ N
the two sets

Yn,k = Xn,k ∩ [0, s] and Zn,k = Xn,k ∩ [0, r].

Using (5.4) along with the fact that

χ−1
u ([0, v]) =

{
∅ for v < u

[0, v] for v ≥ u
(5.5)

for each u, v ∈ [0, 1], we find that

µn([0, r]) =
∑

F⊆Xn,k

µn+k ◦ χ−1
maxF ([0, r]) =

∑
F⊆Zn,k

µn+k([0, r]) = 2|Zn,k|µn+k([0, r])

for each k ∈ N. Similarly, one verifies that µn([0, s]) = 2|Yn,k|µn+k([0, s]) for all k ∈ N. Thus, as
s < r, we see that

µn([0, s]) = 2|Yn,k|µn+k([0, s]) ≤ 2|Yn,k|µn+k([0, r]) = 2−(|Zn,k|−|Yn,k|)µn([0, r]).

Since
⋃
k∈NXn,k = {tn+k}k∈N is dense in [0, 1] by construction, we have that

lim
k→∞

(|Zn,k| − |Yn,k|) = lim
k→∞

|Xn,k ∩ (s, r]| =∞.

As Radon measures have finite measure on compact sets, such that µn([0, r]) < ∞, we necessarily
conclude that µn([0, s]) = 0, which implies that µn = 0. In particular, each trace τn must be the zero
trace by (5.3). We claim that this contradicts the assumption that τ is non-zero.

Assume for contradiction that there exists a positive element f ∈ I such that τ(f) > 0. Using
lower semi-continuity of τ , we find that there exists ε > 0 such that τ((f − ε)+) > 0. Since each I(n)
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is dense in I
(n)
t , and as It is the closure of

⋃
n∈N ϕ∞,n(I

(n)
t ), we can find a sufficiently large n ∈ N

and an element g ∈ I(n) with ‖ϕ∞,n(g)− f‖ < ε. Using [38, Lemma 2.2], we can find an element
d ∈ A[0,1] with ‖d‖ ≤ 1 satisfying that d∗ϕ∞,n(g)d = (f − ε)+. Putting x = ϕ∞,n(g)1/2d, the tracial
property of τ shows that

τn(g) = τ(ϕ∞,n(g)) ≥ τ(ϕ∞,n(g)1/2dd∗ϕ∞,n(g)1/2) = τ(xx∗)

= τ(x∗x) = τ(d∗ϕ∞,n(g)d) = τ((f − ε)+) > 0.

This contradicts that τn was found to be the zero map. We conclude that A[0,1] is traceless.

Another interesting and important property of A[0,1] is the fact that it is O∞-stable, meaning
that A[0,1] ⊗O∞ ∼= A[0,1]; we shall not prove this here, instead we refer the reader to [60, Corollary
5.3]. We conclude our findings in the following theorem.

Theorem 5.24 (Rørdam, 2004). The C∗-algebra A[0,1] is a separable, traceless, nuclear, O∞-stable
ASH-algebra with I(A) ∼= [0, 1].

In fact, A[0,1] is O2-stable by [39, Proposition 6.1], which generalises O∞-stability. For our pur-
poses, however, the latter will suffice.

5.3 Resolving the Blackadar-Kirchberg conjectures for traceless, exact C∗-
algebras

Having constructed Rørdam’s ASH-algebra A[0,1] and examined some of its properties, we now turn
our attention to actually proving that the Blackadar-Kirchberg conjectures hold true for traceless
C∗-algebras. More specifically, we shall prove that for a separable, exact C∗-algebra A there exists
an embedding into the AF-embeddable A[0,1] if and only if Prim(A) has no non-empty, compact,
open subsets. In fact, we shall prove that this property of Prim(A) completely characterises both
AF-embeddability, quasidiagonality and stably finiteness for exact, traceless C∗-algebras.

Recall from Proposition 5.17 that if ϕ : A → B is a *-homomorphism, then the induced map
I(ϕ) : I(A)→ I(B) given by

I(ϕ)(I) = Bϕ(I)B, I ∈ I(A)

is a Cu-morphism. One can ask when a Cu-morphism between ideal lattices can be lifted to a *-
homomorphism between the corresponding C∗-algebras, and the following proposition, the proof of
which can be found in [25, Theorem 6.1], gives sufficient conditions for this to be the case.

Theorem 5.25 (Gabe, 2018). Suppose that A is a separable and exact C∗-algebra, and that B is a
separable, nuclear and O∞-stable C∗-algebra. Let Φ: I(A) → I(B) be an arbitrary Cu-morphism.
Then there exists a *-homomorphism ϕ : A→ B such that Φ = I(ϕ).

The theorem originates from Gabe’s proof of Kirchberg’s classification result that if A,B are
separable, nuclear, O2-stable C∗-algebras, which are either both stable or both unital, then A and B
are isomorphic if and only if their primitive ideal spaces are homeomorphic, which holds if and only
if their ideal lattices are order isomorphic. We shall use Theorem 5.25 in conjunction with Lemma
5.18 in order to prove Gabe’s characterisation of embeddings into A[0,1].

Theorem 5.26 (Gabe, 2018). Suppose A is a separable, exact C∗-algebra. Then there exists an
embedding of A into A[0,1] if and only if Prim(A) has no non-empty, compact, open subsets.

Proof. Assume that ϕ : A → A[0,1] is an injective *-homomorphism, and suppose for contradiction
that Prim(A) contains a non-empty, compact, open subset or, equivalently, that there exists a non-
zero compact ideal I in A. Since I(ϕ) : I(A) → I(A[0,1]) is a Cu-morphism by Proposition 5.17,
I(ϕ)(I) is a non-zero compact ideal in A[0,1]. Since I(A[0,1]) ∼= [0, 1] by Proposition 5.21, this would
imply that there exists a non-zero compact element in the complete lattice [0, 1], which is clearly
impossible. We hence conclude that Prim(A) has no non-empty, compact, open subsets.

Conversely, suppose that Prim(A) has no non-empty, compact, open subsets, then we claim there
exists an embedding of A into A[0,1]. By Lemma 5.18 and as I(A[0,1]) ∼= [0, 1] by Proposition
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5.21, there exists a Cu-morphism Φ: I(A) → I(A[0,1]) such that Φ−1({0}) = {0}. Since A[0,1] is
a separable, nuclear and O∞-stable C∗-algebra, it follows from Theorem 5.25 that there exists a
*-homomorphism ϕ : A → A[0,1] lifting Φ. We claim that ϕ is injective. Suppose that there exists a
non-zero element a ∈ A such that ϕ(a) = 0. Let I be the ideal generated by a, then I 6= 0 and

I(ϕ)(I) = A[0,1]ϕ(I)A[0,1] = 0,

which contradicts the fact that I(ϕ)−1({0}) = {0}. We hence find that ϕ : A→ A[0,1] is an injective
*-homomorphism, which completes the proof.

We can combine this theorem with Proposition 5.20 to get the following result, which is a gener-
alisation of Theorem 2.45.

Corollary 5.27. Let A be a separable, exact C∗-algebra such that Prim(A) has no non-empty, com-
pact, open subsets. Then A is AF-embeddable. In particular, the cone and the suspension of any
separable, exact C∗-algebra is AF-embeddable.

Proof. Since A is a separable, exact C∗-algebra with the property that Prim(A) has no non-empty,
compact, open subsets, we find that A is isomorphic to a C∗-subalgebra of A[0,1] by Theorem 5.26.
Since A[0,1] is AF-embeddable by Proposition 5.20, we find that A is AF-embeddable.

Now suppose that A is any separable, exact C∗-algebra. Previously in this chapter, we have seen that
for any locally compact Hausdorff space X, we have the isomorphism

Prim(C0(X,A)) ∼= X × Prim(A).

In particular this holds for X = (0, 1], i.e., we have the isomorphism Prim(CA) ∼= (0, 1] × Prim(A),
where CA denotes the cone over A. If Prim(CA) contained any non-empty, compact, open subset,
then (0, 1] would contain a non-zero compact element, which is impossible. Hence the cone CA over A
is AF-embeddable by the above, and so is the suspension SA, since SA is a C∗-subalgebra of CA.

Note that Corollary 5.27 generalises the result due to Ozawa that the cone and suspension over
any separable, exact C∗-algebra are exact, cf. Theorem 2.45. We wish to use Corollary 5.27 to resolve
the Blackadar-Kirchberg conjecture for the class of separable, exact, traceless C∗-algebras. More
precisely, we desire to prove the following theorem.

Theorem 5.28 (Gabe, 2018). Let A be a separable, exact, traceless C∗-algebra. The following are
equivalent:

(i) A is AF-embeddable;

(ii) A is quasidiagonal;

(iii) A is stably finite;

(iv) Prim(A) has no non-empty, compact, open subsets.

The only direction we need to show is (iii)⇒(iv), as the implications (i)⇒(ii)⇒(iii) are immediate
from Proposition 2.43 and Proposition 2.26, and the implication (iv)⇒(i) follows from Corollary 5.27.
We shall end this section with a proof of this implication. Our first result is a lemma, which gives
a sufficient condition for the minimal tensor product of two C∗-algebras to be stably finite; we shall
use this to ensure that whenever A is stably finite and exact, then A ⊗ Z is stably finite. First a
definition, cf. [11, Definition 11.1.6].

Definition 5.29. A separable C∗-algebra is called MF, short for matricial field, if there exists a
sequence of integers (kn)n∈N such that A is a C∗-subalgebra of `∞(Mkn(C),N)/c0(Mkn(C),N).

Here we use the notation that if (An)n∈N is a sequence of C∗-algebras, then the C∗-algebra
c0(An,N) is given by

c0(An,N) =

{
(an)n∈N ∈ `∞(An,N) | lim

n→∞
‖an‖ = 0

}
.

It is immediate that if A is MF, then so is its unitisation as well as any matrix algebra over A.
Moreover, if A is separable and quasidiagonal, then A is MF: Quasidiagonality of A gives rise to a
c.c.p. map A → `∞(Mkn(C),N), namely the amplification of the c.c.p. maps witnessing quasidiago-
nality, and this map is easily seen to be an injective *-homomorphism when mapped to the quotient
`∞(Mkn(C),N)/c0(Mkn(C),N).
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Lemma 5.30. If A is stably finite and exact, and B is MF, then the minimal tensor product A⊗B
is stably finite.

Proof. Suppose for contradiction that A⊗B is not stably finite, then there exist n ∈ N and a proper
isometry v ∈Mn((A⊗B)†). Observe that

Mn((A⊗B)†) ⊆Mn(A† ⊗B†) ∼= A† ⊗Mn(B†).

Since B is MF, so is Mn(B†), and hence there exists a sequence of integers (km)m∈N such that Mn(B†)
is a C∗-subalgebra of `∞(Mkm(C),N)/c0(Mkm(C),N). Hence we get an embedding A† ⊗Mn(B†) ⊆
A† ⊗ (`∞(Mkm(C),N)/c0(Mkm(C),N)). Observe that exactness of A implies exactness of A† and
grants the isomorphism

A† ⊗ `∞(Mkm(C),N)

c0(Mkm(C),N)
∼=
A† ⊗ `∞(Mkm(C),N)

A† ⊗ c0(Mkm(C),N)
.

Identifying this C∗-algebra as a C∗-subalgebra of `∞(A†⊗Mkm(C),N))/c0(A†⊗Mkm(C),N), we can
realise v as a proper isometry in this C∗-algebra. We claim that we can lift v to a sequence (vm)m∈N
in `∞(A† ⊗Mkm(C),N), where vm is a proper isometry for sufficiently large m.

Find a sequence (wm)m∈N ∈ `∞(A† ⊗ Mkm(C),N) lifting v. Since v is an isometry, it holds for
all sufficiently large m that ‖w∗mwm − 1‖ < 1, and these elements are, hence, invertible. Define

vm = wm |wm|−1
for these m and vm = 1 elsewhere. Then each vm is an isometry, and a standard

continuous functional calculus trick shows that the sequence (vm)m∈N lifts v. Moreover, since

lim
m→∞

‖vmv∗m − 1‖ = ‖vv∗ − 1‖ > 0

there exists some m ∈ N, where vm is a proper isometry. However, since vm ∈ A† ⊗ Mkn(C) ∼=
Mkn(A†), this contradicts that A is stably finite. We conclude that A ⊗ B is a stably finite C∗-
algebra.

The proof of the implication (iii)⇒(iv) in Theorem 5.28 boils down to showing that if A is traceless,
stably finite and exact, then A ⊗ Z contains an infinite projection, which is not possible by Lemma
5.30. However, in order to understand the proof better, and how we are able to prove the existence
of an infinite projection, we need to define properly infinite projections as well as purely infinite
C∗-algebras.

Definition 5.31. A projection p ∈ A is called properly infinite if there exists mutually orthogonal
subprojections p1, p2 ≤ p such that p ∼ p1 ∼ p2.

Observe that finite C∗-algebras cannot have properly infinite elements. There is an equivalent
characterisation of properly infinite projections, see [59, Proposition 1.1.2], which uses the notion
of Cuntz subequivalence from Definition 5.11; a projection p ∈ A is purely infinite if and only if
p⊕ p . p⊕ 0 holds in M2(A). This definition easily extends to arbitrary non-zero positive elements,
see [37, Definition 3.2]. The following definition also uses the notion of Cuntz subequivalence:

Definition 5.32. A C∗-algebra A is said to be purely infinite if there exists no *-homomorphism
A→ C, and if a . b holds for a, b ∈ A if and only if a belongs to the ideal generated by b.

There is a link between purely infinite C∗-algebras and properly infinite elements, which is the
content of the next theorem, the proof of which can be found in [37, Theorem 4.16].

Theorem 5.33. A C∗-algebra A is purely infinite if and only if all non-zero positive elements in A
are properly infinite.

Having the terminology sorted out, we are able to prove Theorem 5.28.

Proof of Theorem 5.28. We have already established that we only need to prove the implication
(iii)⇒(iv). Assume that A is stably finite, then we wish to show that Prim(A) has no non-empty,
compact, open subsets. Consider the C∗-algebra A⊗Z, which is stably finite by Lemma 5.30, since
A is exact and stably finite, and Z is MF8. As Z is nuclear and simple, we get the isomorphisms

Prim(A⊗Z) ∼= Prim(A)× Prim(Z) ∼= Prim(A).

8One way of realising this is to observe that Z is a separable, nuclear C∗-algebra satisfying the UCT and admitting
a faithful tracial state by Theorem 4.37, and hence the Tikuisis-White-Winter theorem in conjunction with Corollary
2.53 provides quasidiagonality of Z.
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Assume for the sake of reaching a contradiction that Prim(A) has a non-empty, compact, open subset,
and let I denote the corresponding non-zero, compact ideal in A⊗Z. Since Z is, in itself, Z-stable,
see Theorem 4.37, we find that A ⊗ Z is Z-stable. Since exactness is preserved by minimal tensor
products, A ⊗ Z is exact. Moreover, it is a traceless C∗-algebra, since A is traceless. Using [61,
Corollary 5.1], this implies that A⊗Z is purely infinite in the sense of Definition 5.32, which by [52,
Proposition 2.7] provides the existence of a projection p ∈ A ⊗ Z generating I. Observe that p is a
non-zero projection since I is non-zero, and hence Theorem 5.33 implies that p is properly infinite.
However, we know that A⊗Z is stably finite, so in particular it cannot have infinite projections, and
we thus reach a contradiction. This proves that Prim(A) does not have any non-empty, compact,
open subsets, which completes the proof.
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Appendices

A Real rank zero and stable rank one

For any classification purposes, one needs some regularity conditions on the C∗-algebras in question in
order to ensure that the C∗-algebras do not behave too exotically. This appendix is meant as a quick
introduction and overview of two important regularity properties of C∗-algebras, namely real rank
zero and stable rank one. We shall not bother with any proofs and only present the most important
results. The main references for this appendix are [8, 57]. Denote by Asa the self-adjoint elements on
A.

Definition A.1. Let A be a unital C∗-algebra. We say that

(i) A has real rank zero if the set of self-adjoint invertible elements in A is dense in Asa;

(ii) A has stable rank one if the collection of invertible elements in A is dense in A.

If A is a non-unital C∗-algebra, we say that A has the above properties if the unitisation A† has the
respective property.

While the two definitions look very similar, neither implies the other. Let us also mention that
there is a more general notion of both the real rank and the stable rank; we shall not bother studying
these and only consider our special cases. In order to gain some intuition, however, on these notions,
we mention the following proposition due to Brown and Pedersen, see [8, Proposition 1.1].

Proposition A.2 (Brown-Pedersen, 1991). If X is a compact Hausdorff space, then the real rank of
C(X) is equal to the covering dimension of X.

The concept of real rank for general C∗-algebras is hence a non-commutative generalisation of the
dimension of compact Hausdorff spaces. Since a compact Hausdorff space has dimension zero if and
only if it is totally disconnected, in which case it has a plethora of projections, it is not unreasonable
to guess that real rank zero implies that the C∗-algebra has several projections. The following result,
also due to Brown and Pedersen, see [8, Theorem 2.6], states this intuition rigorously.

Proposition A.3 (Brown-Pedersen, 1991). Let A be a C∗-algebra. The following three conditions
are equivalent.

(i) A has real rank zero;

(ii) The elements in Asa with finite spectrum are dense in Asa;

(iii) Every hereditary C∗-subalgebra of A has an approximate unit (not necessarily increasing) con-
sisting of projections.

The proofs of the following facts are scattered throughout [8].

Proposition A.4. The following hold:

(i) If A has real rank zero, then so does Mn(A) for all n ∈ N;

(ii) Real rank zero passes to hereditary C∗-subalgebras, in particular to ideals;

(iii) Real rank zero is preserved by inductive limits;

(iv) Real rank zero passes to quotients;

The notion of stable rank can also be seen as a non-commutative generalisation of the covering
dimension of compact Hausdorff spaces; details may be found in [57]. We shall need the following
facts regarding C∗-algebras with stable rank one, which are presented in [2, Section 6.5].

Proposition A.5. Let A be a unital C∗-algebra with stable rank one. Then:

(i) For some, hence for all, n ∈ N, the C∗-algebra Mn(A) has stable rank one;

(ii) A is stably finite;
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(iii) A has cancellation of projections.

We also have the following permanence properties.

Proposition A.6. The following hold:

(i) All finite-dimensional C∗-algebras have stable rank one;

(ii) Limits of inductive sequences with unital connecting maps of C∗-algebras with stable rank one
have stable rank one;

(iii) In the unital, separable case, stable rank one passes to ultrapowers.

The proofs of (i) and (ii) may be found in [57], while the proof of (iii) can be found in [65, Lemma
2.4]. The idea behind the proof of (iii) is that if B is a separable, unital C∗-algebra of stable rank
one, then, using [43, Lemma 19.2.2(i)], any invertible x ∈ Bω admits a polar decomposition x = u |x|,
where u ∈ Bω is unitary. Hence, we can approximate x by the invertible elements u(|x|+ε) for ε > 0.
If, moreover, B has real rank zero and x ∈ Bω is self-adjoint, we can choose u to be self-adjoint and
then Bω has real rank zero. Since the universal UHF-algebra Q has real rank zero by Proposition
A.4 and stable rank one by Proposition A.6, we find that the ultrapower Qω has these properties.
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