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1 Introduction

Consider the following setup: Two scientists Alice and Bob are situated in two spatially

separated spaces with no means of communication. They both receive information from

a source emitting a quantum system from which each can measure one of n observables

and respond with one of k measurements. Say Alice measures observable x and Bob re-

ceives observable y, what is the probability, denoted p(a, b;x, y), of Alice responding with

measurement a and Bob simultaneously responding with measurement b?

This project presents and works through three models; the classical model, quantum

commuting model and quantum spatial model. These models concerns so-called correlation

matrices; matrices of dimension (nk)2 whose entries belong to [0, 1]. Though these models

try to describe a physical situation, this project is purely a mathematical study of the sets of

correlation matrices. We first consider the classical model which only concerns probability

measures. Physical experiments in the 1980s done by physicist Alain Aspect show that

to describe the physical world completely, quantum mechanics is necessary. This is the

motivation for introducing quantum correlation matrices. First, we describe the quantum

commuting correlation matrices, Cqc(n, k), using states on the maximal tensor products of

the universal C∗-algebra of the k-fold free product of the cyclic group of order n. In doing

so, one concludes that the set of quantum commuting correlation matrices is closed. Here,

the assumption that we require certain projections to commute reflects that Alice and Bob

can measure simultaneously.

Next, we introduce the quantum spatial correlation matrices, Cqs(n, k). It is known and

highly non-trivial to show that Cqs(n, k) is not closed for n, k ≥ 2 and will not be shown in

this project. Instead, we aim to describe the closure of Cqs(n, k) in a similar way as Cqc(n, k)

using the minimal tensor product. These sets are all related as will be shown in the project.

Lastly, we touch upon Tsirelson’s conjecture, asking whether Cqs(n, k) = Cqc(n, k). Here,

we prove that this is the case when you take finite-dimensional Hilbert spaces and show that

Tsirelson’s conjecture is equivalent to several other interesting problems, including Connes

Embedding Problem. In the following, the cases of either n, k equal 1 are uninteresting and

degenerate, hence we will always consider n, k ≥ 2.
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2 Classical correlation matrices

We first describe the classical model of correlation matrices.

Let Mm([0, 1]) be the set of m×m matrices with entries in [0, 1]. For n, k ≥ 1 one can

identify Mnk([0, 1]) with Mn(Mk([0, 1])). For T ∈Mn(Mk([0, 1])) denote its entries by T x,y
a,b

for 1 ≤ a, b ≤ k and 1 ≤ x, y ≤ n. Fix x, y and let T x,y denote the k×k matrix with entries

T x,y
a,b for 1 ≤ a, b ≤ k. Then T becomes the block matrix

T =


T 1,1 T 1,2 · · · T 1,n

T 2,1 T 2,2 · · · T 2,n

...
...

. . .
...

Tn,1 Tn,2 · · · Tn,n

 , T x,y ∈Mk([0, 1]), 1 ≤ x, y ≤ n.

Definition 2.1. Let n, k ≥ 2. Denote Cc(n, k) ⊂Mnk([0, 1]) the set of classical correlation

matrices,

T =
[
µ(Ax

a ∩B
y
b )
]
a,b;x,y

, 1 ≤ a, b ≤ k, 1 ≤ x, y ≤ n

where Ω is a compact Hausdorff space, (Ω,A, µ) is a probability space and {Ax
a}1≤a≤k ,{

By
b

}
1≤b≤k

are measurable partitions of Ω for each 1 ≤ x, y ≤ n.

Remark 2.2. One can also define Cc(n, k) without the assumption of Ω being compact

Hausdorff. In fact, any T ∈ Cc(n, k) can be realized with a finite probability space hence

also one that is compact Hausdorff.

Proposition 2.3. Cc(n, k) is convex.

Proof. Let t ∈ (0, 1) and consider T, S ∈ Cc(n, k) given by

T =
[
µ(Ax

a ∩B
y
b )
]
a,b;x,y

, S =
[
ν(Cx

a ∩Dy
b )
]
a,b;x,y

where (X,A, µ), (Y,A′, ν) are probability spaces and {Ax
a}1≤a≤k ,

{
By

b

}
1≤b≤k

and {Cx
a}1≤a≤k,{

Dy
b

}
1≤b≤k

are measurable partitions of X, respectively, Y . Define X̃ = X × {0}, Ỹ =

Y ×{1}. The disjoint union of X and Y is defined by X ⊔Y = X̃ ∪ Ỹ . It is straightforward

to see that

C :=
{
C ⊂ X ⊔ Y | C ∩ X̃ ∈ A, C ∩ Ỹ ∈ A′

}
is a σ-algebra. For 0 ≤ t ≤ 1, define ρ : C → [0, 1] by ρ(C) = tµ(C ∩ X̃) + (1− t)ν(C ∩ Ỹ ).

That ρ is a probability measure is a consequence of µ and ν being probability measures and

is shown by simple computations. Lastly, note that {Ax
a ⊔ Cx

a}1≤a≤k ,
{
By

b ⊔Dy
b

}
1≤b≤k

are

partitions of X ⊔ Y and letting Kx,y
a,b = (Ax

a ⊔ Cx
a ) ∩ (By

b ⊔Dy
b ) it follows that

ρ(Kx,y
a,b ) = tµ(Kx,y

a,b ∩ X̃) + (1− t)ν(Kx,y
a,b ∩ Ỹ ) = tµ(Ax

a ∩B
y
b ) + (1− t)ν(Cx

a ∩Dy
b )

showing tT + (1− t)S =
[
ρ((Ax

a ⊔ Cx
a ) ∩ (By

b ⊔Dy
b ))
]
a,b;x,y

∈ Cc(n, k) as wanted.
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Definition 2.4. Let n, k ≥ 2. Define E(n, k) to be the set of extreme points of Mnk([0, 1]).

Let E†(n, k) = Cc(n, k) ∩ E(n, k) be the set of deterministic correlation matrices.

Remark 2.5. E(n, k) are exactly the matrices in Mnk([0, 1]) with entries belonging to {0, 1}.
Moreover, both E(n, k) and E†(n, k) are finite.

For a non-empty subset A of a vector space X, we denote the convex hull of A by conv(A).

For K ⊂ X non-empty and convex we denote by ∂eK the set of extreme points of K.

Lemma 2.6. Let (Ω,A, µ) be a probability space and Prob(Ω) be the probability measures

on Ω. The extreme points of Prob(Ω) is the set of ν ∈ Prob(Ω) for which ν(A) = {0, 1}.

Proof. Let ν ∈ Prob(Ω) such that ν(A) = {0, 1}. Assume there is 0 < t < 1 and ν1, ν2 ∈
Prob(Ω) such that ν = tν1+(1−t)ν2. If A ∈ A with ν(A) = 1, then the convex combination

forces ν1(A) = ν2(A) = 1. Similarly, for A ∈ A with ν(A) = 0 we get ν1(A) = ν2(A) = 0

showing ν1 = ν2 = ν, so ν ∈ ∂eProb(Ω).

For the converse, let ν ∈ ∂eProb(Ω). Assume for contradiction that there exists A ∈ A
with 0 < ν(A) < 1. Then, as ν is a probability measure, 0 < ν(Ac) < 1. Let ε, ε̃ > 0 be

such that

ν =
1

2

(
(1 + ε)ν|A + (1− ε̃)ν|Ac

)
+

1

2

(
(1− ε)ν|A + (1 + ε̃)ν|Ac

)
,

where (1 + ε)ν|A + (1− ε̃)ν|Ac and (1− ε)|A + (1+ ε̃)|Ac are probability measures by choice

of ε and ε̃. Since ν is a probability measure, we get ν(A) = {0, 1}, as wanted.

Proposition 2.7. Cc(n, k) = conv E†(n, k). In particular Cc(n, k) is closed.

Proof. By definition, E†(n, k) ⊂ Cc(n, k) so the inclusion conv(E†(n, k)) ⊂ Cc(n, k) is a

consequence of Cc(n, k) convex.

For the converse inclusion, let T ∈ Cc(n, k). Then T is of the form T =
[
µ(Ax

a ∩B
y
b )
]
a,b;x,y

for some probability space (Ω,A, µ) and partitions {Ax
a}1≤a≤k ,

{
By

b

}
1≤b≤k

of Ω. Define

∆ =
{[
ν(Ax

a ∩B
y
b )
]
a,b;x,y

| ν ∈ Prob(Ω)
}
.

Let Prob(Ω) be equipped with the weak∗-topology. As Ω is compact Hausdorff, Prob(Ω) is

compact. Moreover, ∆ is the image of the weak∗-continuous mapping

Prob(Ω) ∋ ν 7→
[
ν(Ax

a ∩B
y
b )
]
a,b;x,y

∈ ∆,

implying ∆ is compact. Moreover, Prob(Ω) is convex hence ∆ is convex and by definition,

T ∈ ∆. It follows from Lemma 2.6 that ∂e∆ are the matrices
[
ν(Ax

a ∩B
y
b )
]
a,b;x,y

for which

ν ∈ ∂eProb(Ω). By Krein-Milman we get ∆ = conv ∂e∆. It follows T ∈ conv E†(n, k)

implying T ∈ conv E†(n, k), as E†(n, k) is a finite set and the convex hull of a finite set is

closed. Thus, Cc(n, k) is closed.
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Remark 2.8. As E†(n, k) ⊂ Cc(n, k) ⊂Mnk([0, 1]) and the elements of E†(n, k) are extreme

in Mnk([0, 1]) it follows that E†(n, k) ⊂ ∂eCc(n, k). The converse follows from the above

proposition. This shows that ∂eCc(n, k) = E†(n, k). Combined with the above, we conclude

that Cc(n, k) is a closed convex finite polytope spanned by its extreme points.
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3 Quantum commuting correlation matrices

We now move on the quantum models. We will introduce two models for quantum correla-

tion matrices, beginning with the quantum commuting correlation matrices.

Definition 3.1. An n-tuple of operators {Pj}nj=1 ⊂ B(H) for a Hilbert space H and n ≥ 1

is called a Positive Valued Measure (PVM) if each Pj is a projection and
∑n

j=1 Pj = 1.

Definition 3.2. Let n, k ≥ 2. Denote Cqc(n, k) ⊂Mnk([0, 1]) the set of quantum commuting

correlation matrices,

T =
[〈
P x
aQ

y
bξ, ξ

〉]
a,b;x,y

, 1 ≤ a, b ≤ k, 1 ≤ x, y ≤ n

where H is a Hilbert space and ξ ∈ H is a unit vector and for each 1 ≤ x, y ≤ n, {P x
a }1≤a≤k,{

Qy
b

}
1≤b≤k

are commuting PVMs on H in the sense that

P x
aQ

y
b = Qy

bP
x
a , 1 ≤ a, b ≤ k, 1 ≤ x, y ≤ n.

Proposition 3.3. Cqc(n, k) is convex.

Proof. Let T, S ∈ Cqc(n, k). Then for each 1 ≤ x, y ≤ n there exist commuting PVMs

{P x
a }1≤a≤k ,

{
Qy

b

}
1≤b≤k

and {Kx
a}1≤a≤k ,

{
Ly
b

}
1≤b≤k

on Hilbert spaces HT , respectively, HS ,

and unit vectors ξT ∈ HT , ξS ∈ HS such that

T =
[〈
P x
aQ

y
bξT , ξT

〉]
a,b;x,y

, S =
[〈
Kx

aL
y
bξS , ξS

〉]
a,b;x,y

.

Let H = HT ⊕ HS and consider {P x
a ⊕Kx

a}1≤a≤k ,
{
Qy

b ⊕ Ly
b

}
1≤b≤k

. We claim these are

commuting PVM’s on H. Firstly, note that by the properties of the direct sum, for each

1 ≤ x, y ≤ n, 1 ≤ a, b ≤ k it follows that P x
a ⊕Kx

a and Qy
b ⊕Ky

b are projections. Moreover,

k∑
a=1

(P x
a ⊕Kx

a ) =
k∑

a=1

P x
a ⊕

k∑
a=1

Kx
a = 1HT

⊕ 1HS
= 1H

so {P x
a ⊕Kx

a}1≤a≤k is a PVM on H. Likewise,
{
Qy

b ⊕ Ly
b

}
1≤b≤k

is a PVM on H. Note that

for ξ = ξ1 ⊕ ξ2 ∈ H,

(P x
a ⊕Kx

a )(Q
y
b ⊕ Ly

b )(ξ1 ⊕ ξ2) = P x
aQ

y
b (ξ1)⊕Kx

aL
y
b (ξ2) = (Qy

b ⊕ Ly
b )(P

x
a ⊕Kx

a )(ξ1 ⊕ ξ2)

since P x
aQ

y
b = Qy

bP
x
a and Kx

aL
y
b = Ly

bK
x
a . Hence, {P x

a ⊕Kx
a}1≤a≤k ,

{
Qy

b ⊕ Ly
b

}
1≤b≤k

are

commuting PVMs on H. For t ∈ (0, 1), let ξ =
√
tξT ⊕

√
1− tξS ∈ HT ⊕HS . Then〈

(P x
a ⊕Kx

a )(Q
y
b ⊕ Ly

b )ξ, ξ
〉
=
〈
P x
aQ

y
b (
√
tξT )⊕Kx

aL
y
b (
√
1− tξS),

√
tξT ⊕

√
1− tξS

〉
=

√
t
2 〈
P x
aQ

y
bξT , ξT

〉
+
√
1− t

2 〈
Kx

aL
y
bξS , ξS

〉
= tT + (1− t)S,

showing that tT + (1− t)S ∈ Cqc(n, k) as wanted.

7



March 11, 2024

Proposition 3.4. There exists a Hilbert space H and commuting PVMs {P x
a }1≤a≤k,

{
Qy

b

}
1≤b≤k

on H such that for each S ∈ Cqc(n, k),

S =
[〈
P x
aQ

y
bξS , ξS

〉]
a,b;x,y

for a unit vector ξS ∈ H.

Proof. For each T ∈ Cqc(n, k) there exists a Hilbert space HT , a unit vector ψT ∈ HT and

commuting PVMs {(PT )
x
a}1≤a≤k, {(QT )

y
b}1≤a≤k on HT such that

T =
[〈
(PT )

x
a(QT )

y
bψT , ψT

〉]
a,b;x,y

Let

H =
⊕

T∈Cqc(n,k)

HT =

{
ξ = (ξT )T∈Cqc(n,k) | ||ξ||2 =

∑
T

||ξT ||2 <∞

}
.

For each 1 ≤ a, b ≤ k, 1 ≤ x, y ≤ n, define

P x
a =

⊕
T∈Cqc(n,k)

(PT )
x
a, Qy

b =
⊕

T∈Cqc(n,k)

(QT )
y
b .

For each S ∈ Cqc(n, k), define ξ(S) ∈ H by

ξ(S)T =

0 if T ̸= S

ψS if T = S.

Then ||ξ(S)|| = 1, and〈
P x
aQ

y
bξ(S), ξ(S)

〉
=
∑
T

〈
(PT )

x
a(QT )

y
bξ(S)T , ξ(S)T

〉
=
〈
(PS)

x
a(QS)

y
bψS , ψS

〉
= Sx,y

a,b ,

as wanted.

The proposition shows that we can describe Cqc(n, k) without varying over Hilbert spaces

and PVMs as in the definition. The rest of this section aims towards describing Cqc(n, k)

using states on a C∗-algebra. A unitary representation of a countable discrete group G on

a Hilbert space H is a homomorphism π : G→ U(H).

Definition 3.5. Let G be a discrete group. Denote by C[G] the group ∗-algebra of G, the

vector space of all complex-valued functions f : G → C with finite support. For f ∈ C[G],
define the universal norm

||f ||u = sup {||π(f)|| | π : C[G] → B(H) is a unitary representation} .

The full group C∗-algebra of G is defined as C∗(G) := C[G]||·||u .
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Remark 3.6. By construction C∗(G) is the C∗-algebra together with a unitary representation

ηG : G → C∗(G) that satisfies the following universal property: Given a unital C∗-algebra

A, for any unitary representation π : G → U(A) there exist a unique ∗-homomorphism

π̃ : C∗(G) → A such that the following diagram is commutative:

G U(A)

C∗(G) A

ηG

π

∃!π̃

ι

The full group C∗-algebra is also called the universal C∗-algebra.

Lemma 3.7. Let Zn denote the cyclic group of order n and let {ej}nj=1 be the standard

basis for Cn. Then C∗(Zn) ∼= Cn and moreover given a PVM {Pj}nj=1 on a Hilbert space

H there exists a unique ∗-homomorphism π : C∗(Zn) → B(H) satisfying π(ej) = Pj.

Proof. For the first part, note that as Zn is abelian, C[Zn] is commutative hence C∗(Zn) is

commutative. Since Zn is a finite group with n elements and C[Zn] has basis {δg | g ∈ Zn},
dimC[Zn] = n so dimC∗(Zn) = n. This implies C∗(Zn) is isomorphic to Cn as C∗-algebras

since Cn is the unique commutative C∗-algebra of dimension n. Thus, we can describe

C∗(Zn) = Ce1 ⊕ Ce2 ⊕ . . .⊕ Cen,

where ei is identified with the i’th basis vector in Cn by the isomorphism above. Let {Pj}nj=1

be a PVM on H. Define π : C∗(Zn) → B(H) by π(ej) = Pj . Expanding linearly to Cn, we

obtain that π is a unique ∗-homomorphism with the wanted property.

The reader is assumed to be familiar with the free product of groups.

Definition 3.8. The free product A ∗ B is the unital C∗-algebra satisfying the following

universal property: Given any unital C∗-algebra D and unit-preserving ∗-homomorphisms

πA : A→ D,πB : B → D, there exists a unique ∗-homomorphism π : A ∗B → D such that

the following diagram is commutative:

A

A ∗B D

B

ιA πA

ιB πB

∃!π

Here, we view A,B ⊂ A ∗B by the inclusions ιA : A→ A ∗B, ιB : B → A ∗B given by

ιA(a) = a1, ιB(b) = 1b.

9
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Proposition 3.9. Let G1, G2 be discrete groups. Then C∗(G1 ∗G2) ∼= C∗(G1) ∗ C∗(G2).

Proof. By the universal property of the free product of groups, for any unital C∗-algebra

D and π1 : G1 → U(D), π2 : G2 → U(D) unitary representations there exists a unique

π : G1 ∗G2 → U(D) such that the following diagram is commutative:

G1

G1 ∗G2 U(D)

G2

ι1 π1

ι2 π2

∃!π

As G1, G2 are subgroups of G1 ∗G2 we have canonical inclusions ι1 : C
∗(G1) → C∗(G1 ∗G2)

and ι2 : C
∗(G2) → C∗(G1∗G2). By the universal property of the full group C∗-algebra there

exist unique ∗-homomorphisms π̃i : C
∗(Gi) → D for i = 1, 2 and π̃ : C∗(G1 ∗G2) → D that,

combined with the commutative diagram above, makes the following diagram commute:

C∗(G1)

C∗(G1 ∗G2) D

C∗(G2)

ι̃1 π̃1

ι̃2 π̃2

∃!π̃

Hence C∗(G1 ∗G2) satisfies the universal property of C∗(G1) ∗ C∗(G2), so we obtain

C∗(G1 ∗G2) ∼= C∗(G1) ∗ C∗(G2).

From now on, let Γ = (Zn)
∗k be the k-fold free product of Zn. Using the above proposition

we get C∗(Γ) ∼= C∗(Zn)
∗k. Recalling C∗(Zn) = Ce1 ⊕ · · · ⊕ Cen, we have the following

C∗(Γ) =
n⊕

i=1

Ce1i ∗
n⊕

i=1

Ce2i ∗ . . . ∗
n⊕

i=1

Ceki ,

where eji denotes the i’th basis vector for the j′th copy of C∗(Zn). This C
∗-algebra will be

an important component in describing Cqc(n, k) later on.
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Lemma 3.10. For each 1 ≤ j ≤ n, let
{
P j
i

}
1≤i≤k

be a PVM on a Hilbert space H. There

exists a unique ∗-homomorphism π : C∗(Γ) → B(H) satisfying π(eji ) = P j
i .

Proof. By Lemma 3.7, for all 1 ≤ i ≤ n and 1 ≤ m ≤ k, there exist ∗-homomorphisms

πm :
n⊕

i=1

Cemi → B(H), emi 7→ Pm
i .

By the universal property of the free product, there exists a unique ∗-homomorphism π1,2 :

C∗(Zn) ∗ C∗(Zn) → B(H) such that the following diagram is commutative:

C∗(Zn)

C∗(Zn) ∗ C∗(Zn) B(H)

C∗(Zn)

ι π1

ι π2

∃!π1,2

Then P 1
i = π1(e

1
i ) = π1,2 ◦ ι(e1i ) and P 2

i = π2(e
2
i ) = π1,2 ◦ ι(e2i ). Using the universal

property for the free product with π1,2 and π3 and so on yields the wanted ∗-homomorphism

π : C∗(Γ) → B(H) satisfying P j
i = πΓ(e

j
i ).

Let A ⊗alg B denote the algebraic tensor product of two unital C∗-algebras A,B. Define

the maximal norm on A⊗alg B by

||x||max = sup {||π(x)|| | π : A1 ⊗alg A2 → B(H) is a ∗ -homomorphism} .

The completion of A⊗algB with respect to the maximal norm is called the maximal tensor

product, denoted by A ⊗max B. The maximal tensor product satisfies the following uni-

versal property: Given a unital C∗-algebra D and unit-preserving ∗-homomorphisms with

commuting images πA : A → D,πB : B → D, there exists a unique ∗-homomorphism

π : A⊗max B → D making the following diagram commute;

A

A⊗max B D

B

ιA πA

ιB πB

∃!π

where ιA : A → A⊗max B and ιB : B → A⊗max B are the inclusion maps. For notational

purposes exa denotes the a’th basis vector for the x’th copy of C∗(Zn) and eyb denotes the

b’th basis vector for the y’th copy of C∗(Zn). From now on, we always consider 1 ≤ x, y ≤ n

and 1 ≤ a, b ≤ k unless otherwise specified.
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Lemma 3.11. Given commuting PVMs {P x
a }1≤a≤k ,

{
Qy

b

}
1≤b≤k

on a Hilbert space H there

exists a unique ∗-homomorphism π : C∗(Γ)⊗max C
∗(Γ) → B(H) satisfying π(exa ⊗ 1) = P x

a

and π(1⊗ eyb ) = Qy
b .

Proof. Let πΓ : C∗(Γ) → B(H) be the unique ∗-homomorphism obtained in Lemma 3.10.

By the universal property of the max tensor product, there exists a unique ∗-homomorphism

π : C∗(Γ)⊗max C
∗(Γ) → B(H) such that P x

a = πΓ(e
x
a) = π ◦ ι(exa) = π(exa ⊗ 1) and likewise

Qy
b = πΓ(e

y
b ) = π ◦ ι(eyb ) = π(1⊗ eyb ).

This leads to the following description of the quantum commuting correlation matrices.

Given a unital C∗-algebra A, we denote by S(A) the set of states on A.

Theorem 3.12. Let n, k ≥ 2. Then

Cqc(n, k) =
{[
ρ(exa ⊗ eyb )

]
a,b;x,y

| ρ ∈ S(C∗(Γ)⊗max C
∗(Γ))

}
.

Proof. Let T ∈ Cqc(n, k) be given and write

T =
[〈
P x
aQ

y
bξT , ξT

〉]
a,b;x,y

for PVMs {P x
a }1≤a≤k ,

{
Qy

b

}
1≤b≤k

on H and unit vector ξT ∈ H as in Proposition 3.4. Let

π : C∗(G) ⊗max C
∗(G) → B(H) be the unique ∗-homomorphism obtained in Lemma 3.11.

Let ρ : C∗(Γ)⊗max C
∗(Γ) → C be given by ρ(x) = ⟨π(x)ξ, ξ⟩ . We claim ρ is a state:

Firstly, ρ is clearly linear and ρ(1) = ||ξ||2 = 1. Let x ∈ C∗(Γ) ⊗max C
∗(Γ) be positive

and y ∈ C∗(Γ)⊗max C
∗(Γ) be such that x = y∗y. Then

ρ(x) = ⟨π(x)ξ, ξ⟩ = ⟨π(y)∗π(y)ξ, ξ⟩ = ||π(y)ξ||2 ≥ 0,

showing ρ is a state. Moreover,

T =
[
ρ(exa ⊗ eyb )

]
a,b;x,y

=
[〈
π(exa ⊗ eyb )ξ, ξ

〉]
a,b;x,y

=
[〈
P x
aQ

y
bξ, ξ

〉]
a,b;x,y

∈ Cqc(n, k),

as wanted.

For the converse inclusion, let ρ ∈ S(C∗(Γ)⊗maxC
∗(Γ)) be given. By the GNS construc-

tion, there exists a Hilbert space Hρ, a ∗-homomorphism πρ : C∗(Γ)⊗max C
∗(Γ) → B(Hρ)

and a unit vector ξρ ∈ Hρ such that ρ(ω) = ⟨πρ(ω)ξρ, ξρ⟩ for ω ∈ C∗(Γ)⊗max C
∗(Γ). Con-

sider the family {P x
a }1≤a≤k of projections on Hρ given by P x

a = πρ(e
x
a ⊗ 1). Likewise, let{

Qy
b

}
1≤b≤k

be the family of projections on Hρ defined by Qy
b = πρ(1⊗ eyb ). Moreover

k∑
a=1

P x
a =

k∑
a=1

πρ(e
x
a ⊗ 1) = πρ

(
k∑

a=1

exa ⊗ 1

)
= πρ(1) = 1

12
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and similarly,
∑k

b=1Q
y
b = 1, Lastly,

P x
aQ

y
b = πρ(e

x
a ⊗ eyb ) = Qy

bP
x
a

showing {P x
a }1≤a≤k and

{
Qy

b

}
1≤b≤k

are commuting PVMs on Hρ. Thus,[
ρ(exa ⊗ eyb )

]
a,b;x,y

=
[〈
πρ(e

x
a ⊗ eyb )ξρ, ξρ

〉]
a,b;x,y

=
[〈
P x
aQ

y
bξρ, ξρ

〉]
a,b;x,y

∈ Cqc(n, k),

which proves the inclusion.

From this theorem, we can immediately conclude the following;

Corollary 3.13. Cqc(n, k) is closed.

Proof. It is well-known that the set of states on a C∗-algebra is a compact and convex

subset of the unit ball with respect to the weak∗-topology. The surjective mapping

φ : S(C∗(Γ)⊗max C
∗(Γ)) → Cqc(n, k), φ(ρ) =

[
ρ(exa ⊗ eyb )

]
a,b;x,y

is weak∗-continuous and affine hence φ(S(C∗(Γ))⊗max C
∗(Γ))) = Cqc(n, k) is closed.

Remark 3.14. One can also show Cqc(n, k) is closed in the following way: Using the Hilbert

space H and PVMs given by Proposition 3.4, define A(n, k) ⊂ B(H) to be the C∗-algebra

generated by {P x
a }1≤a≤k ,

{
Qy

b

}
1≤b≤k

. Then, using techniques similar to the ones used in

the proof of Theorem 3.12, it can be shown that

Cqc(n, k) =
{[
ρ(P x

aQ
y
b )
]
a,b;x,y

| ρ ∈ S(A(n, k))
}
.

It follows that Cqc(n, k) is closed by the same argument as above.

13
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4 Quantum spatial correlation matrices

The second quantum model is that of quantum spatial correlation matrices.

Let A1, A2 be unital C∗-algebras and consider the spatial norm on A1 ⊗alg A2

||x||min = sup {||(π1 ⊗ π2)(x)|| | πi : Ai → B(Hi) is a ∗ -homomorphism, i = 1, 2} .

where π1 ⊗ π2 : A1 ⊗alg A2 → B(H1 ⊗H2) is defined by (π1 ⊗ π2)(v ⊗ w) = π1(v)⊗ π2(w).

The spatial tensor product, A1 ⊗min A2, is the completion of A1 ⊗alg A2 with respect to the

minimal norm. We denote A1 ⊗min A2 by A1 ⊗A2.

Definition 4.1. Let n, k ≥ 2. Denote Cqs(n, k) ⊂ Mnk([0, 1]) the set of quantum spatial

correlation matrices

T =
[〈
P x
a ⊗Qy

bξ, ξ
〉]

a,b;x,y

where ξ ∈ HA ⊗HB is a unit vector for Hilbert spaces HA, HB and for each 1 ≤ x, y ≤ n,

{P x
a }1≤a≤k is a PVM on a HA, and

{
Qy

b

}
1≤b≤k

is a PVM on HB.

Proposition 4.2. Cqs(n, k) is convex.

Proof. Let T, S ∈ Cqs(n, k) and 0 < t < 1. Then there exist Hilbert spacesHA1 , HB1 , HA2 , HB2 ,

{P x
a }1≤a≤k ,

{
Qy

b

}
1≤b≤k

PVMs onHA1 , respectivelyHB1 , and {Kx
a}1≤a≤k ,

{
Ly
b

}
1≤b≤k

PVMs

on HA2 , respectively HB2 , and unit vectors ψ1 ∈ HA1 ⊗HB1 , ψ2 ∈ HA2 ⊗HB2 such that

T =
[〈
P x
a ⊗Qy

bψ1, ψ1

〉]
a,b;x,y

, S =
[〈
Kx

a ⊗ Ly
bψ2, ψ2

〉]
a,b;x,y

.

It is clear that {P x
a ⊕Kx

a}1≤a≤k are projections on HA1 ⊕ HA2 and that {Qy
b ⊕ Ly

b}1≤b≤k

are projections on HB1 ⊕HB2 . Moreover,

k∑
a=1

(P x
a ⊕Kx

a ) =
k∑

a=1

P x
a ⊕

k∑
a=1

Kx
a = 1HA1

⊕ 1HA2
,

and
∑k

b=1(Q
y
b ⊕L

y
b ) = 1HB1

⊕1HB2
. Thus, {P x

a ⊕Kx
a}1≤a≤k and {Qy

b ⊕L
y
b}1≤b≤k are PVMs

on HA1 ⊕HA2 , respectively HB1 ⊕HB2 . It is true that

(HA1 ⊕HA2)⊗ (HB1 ⊕HB2)
∼= (HA1 ⊗HB1)⊕ (HA1 ⊗HB2)⊕ (HA2 ⊗HB1)⊕ (HA2 ⊗HB2).

Define φ ∈ (HA1 ⊕HA2)⊗ (HB1 ⊕HB2) by φ =
√
tψ1 ⊕ 0⊕ 0⊕

√
1− tψ2. Then ||φ|| = 1,

and moreover〈
(P x

a ⊕Kx
a )⊗ (Qy

b ⊕ Ly
b )φ,φ

〉
= t

〈
(P x

a ⊗Qy
bψ1, ψ1

〉
+ (1− t)

〈
(Kx

a ⊗ Ly
bψ1, ψ1

〉
.

Hence,

tT + (1− t)S =
[〈
(P x

a ⊕Kx
a )⊗ (Qy

b ⊕ Ly
b )φ,φ

〉]
a,b;x,y

∈ Cqs(n, k),

14



March 11, 2024

as wanted.

It is highly non-trivial to show that Cqs(n, k) is not closed for n, k ≥ 2. The main theorem

of this section is the following characterization of the closure of Cqs(n, k);

Theorem 4.3. Let n, k ≥ 2. Then

Cqs(n, k) =
{[
ρ(exa ⊗ eyb )

]
a,b;x,y

| ρ ∈ S(C∗(Γ)⊗min C
∗(Γ))

}
.

In order to prove this, we need to further describe the set on the right-hand side.

A subspace M ⊂ B(H) is called an operator space if M contains the identity I and is

self-adjoint, i.e., T ∈ M implies T ∗ ∈ M. A state on M is a linear functional ρ : M → C
satisfying ρ(I) = ||ρ|| = 1. Denote by S(M) the set of states on M. It follows from

Hahn-Banach that each ρ ∈ S(M) extends to a linear functional ρ ∈ B(H) satisfying

1 = ||ρ|| = ρ(I), i.e., ρ ∈ S(B(H)). In particular, ρ is positive.

Proposition 4.4. Let M be a finite dimensional operator space on H and for each unit

vector ξ ∈ H let ωξ : B(H) → C denote the vector state given by ωξ(T ) = ⟨Tξ, ξ⟩. Then

S(M) = conv {ωξ|M | ξ ∈ H, ||ξ|| = 1}.

For a proof see Corollary 4.3.10 in [Kadison and Ringrose, 1983].

In the following let {exa}1≤a≤k ,
{
eyb
}
1≤b≤k

be as in Lemma 3.11. A representation of a unital

C∗-algebra A on a Hilbert space H is a ∗-homomorphism π : A→ B(H).

Lemma 4.5. Let π : C∗(Γ) → B(H) be a faithful representation. For 1 ≤ x, y ≤ n,

1 ≤ a, b ≤ k set π(exa) = P x
a and π(eyb ) = Qy

b . Let φ = π ⊗ π : C∗(Γ)⊗C∗(Γ) → B(H ⊗H).

Then φ is a faithful representation with P x
a ⊗Qy

b = φ(exa ⊗ eyb ) and

M = span
{
P x
a ⊗Qy

b | 1 ≤ a, b ≤ k, 1 ≤ x, y ≤ n
}

is a finite-dimensional operator space on B(H ⊗H). Moreover{[
ρ(exa ⊗ eyb )

]
a,b;x,y

| ρ ∈ S(C∗(Γ)⊗ C∗(Γ))
}
=
{[
σ(P x

a ⊗Qy
b )
]
a,b;x,y

| σ ∈ S(M)
}
.

Proof. That φ is a faithful representation follows from π being faithful, the property of the

minimal tensor product and

φ(exa ⊗ eyb ) = π(exa)⊗ π(eyb ) = P x
a ⊗Qy

b .

By definition, M is finite-dimensional with dimM ≤ (nk)2. Moreover, as {P x
a }1≤a≤k and{

Qy
b

}
1≤b≤k

are PVMs on H,
∑

b

∑
a P

x
a ⊗ Qy

b = 1 ⊗ 1 ∈ M and M is self-adjoint. We

conclude that M is an operator space. It remains to show the equality of sets;

15
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Let ρ ∈ S(C∗(Γ)⊗C∗(Γ)). Note that as φ is faithful, ρ ◦φ−1 : φ(C∗(Γ)⊗C∗(Γ)) → C is

well-defined and moreover is a state, as ρ is a state. By definition, M ⊂ φ(C∗(Γ)⊗C∗(Γ)).

Thus, σ = (ρ ◦ φ−1)|M is a state on M for which

σ(P x
a ⊗Qy

b ) = σ(φ(exa ⊗ eyb )) = (ρ ◦ φ−1)φ(exa ⊗ eyb ) = ρ(exa ⊗ eyb ),

showing the wanted inclusion.

For the converse, take σ ∈ S(M). Extend to σ on B(H⊗H) and define ρ = σ ◦φ. Then
ρ ∈ S(C∗(Γ)⊗ C∗(Γ)) with

ρ(exa ⊗ eyb ) = σ(φ(exa ⊗ eyb )) = σ(P x
a ⊗Qy

b ) = σ(P x
a ⊗Qy

b ),

which finishes the proof.

We are now ready to prove the main theorem of this section. For notational purposes, set

K :=
{
[ρ(exa ⊗ eyb )] | ρ ∈ S(C∗(Γ)⊗min C

∗(Γ))
}
.

Proof of Theorem 4.3. For the inclusion Cqs(n, k) ⊂ K note that K is the image under the

weak∗-continuous and affine map ρ 7→
[
ρ(exa ⊗ eyb )

]
a,b;x,y

for ρ ∈ S(C∗(Γ) ⊗min C
∗(Γ)). As

S(C∗(Γ) ⊗min C
∗(Γ)) is compact, K is closed. Hence it suffices to show Cqs(n, k) ⊂ K.

Let T ∈ Cqs(n, k) be given and write T =
[〈
P x
a ⊗Qy

bξ, ξ
〉]

a,b;x,y
where {P x

a }1≤a≤k and{
Qy

b

}
1≤b≤k

are PVMs on HA, respectively HB and ξ ∈ HA ⊗ HB is a unit vector. Let

πA : C∗(Γ) → B(HA) and πB : C∗(Γ) → B(HB) be the ∗-homomorphisms given by Lemma

3.10. Consider the representation πA ⊗ πB : C∗(Γ) ⊗ C∗(Γ) → B(HA ⊗ HB). Define

ρ : C∗(Γ)⊗ C∗(Γ) → C by

ρ(x) = ⟨(πA ⊗ πB)(x)ξ, ξ⟩ ,

for x ∈ C∗(Γ)⊗C∗(Γ). That ρ is linear, ρ(1) = 1 and ρ is positive is straightforward to see.

Hence ρ is a state. By construction,[
ρ(exa ⊗ eyb )

]
a,b;x,y

=
[〈
(P x

a ⊗Qy
b )ξ, ξ

〉]
a,b;x,y

∈ K,

as wanted.

For the converse inclusion, let π : C∗(Γ) → B(H) be a faithful representation and define

M as in Lemma 4.5. It suffices to show that
[
σ(P x

a ⊗Qy
b )
]
a,b;x,y

∈ Cqs(n, k) for σ ∈ S(M).

See first for a unit vector ξ ∈ H ⊗H that[
ωξ|M(P x

a ⊗Qy
b )
]
a,b;x,y

=
[〈
(P x

a ⊗Qy
b )ξ, ξ

〉]
a,b;x,y

∈ Cqs(n, k).

As Cqs(n, k) is convex it follows that conv {ωξ|M | ξ ∈ H, ||ξ|| = 1} ⊂ Cqs(n, k). Take

σ ∈ S(M) and note that by Proposition 4.4, σ ∈ conv {ωξ|M | ξ ∈ H, ||ξ|| = 1}, implying[
σ(P x

a ⊗Qy
b )
]
a,b;x,y

∈ Cqs(n, k), as wanted.
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We move on to a further description of Cqs(n, k). For this, we restrict to the correlation

matrices with finite-dimensional Hilbert spaces;

Definition 4.6. Let n, k ≥ 2. Denote Cfin
qs (n, k) ⊂ Cqs(n, k) the set of quantum spatial

correlation matrices with finite-dimensional Hilbert spaces H1 and H2.

Theorem 4.7. Cfin
qs (n, k) is dense in Cqs(n, k).

In order to prove this we will take a detour into the world of RFD C∗-algebras.

Definition 4.8. Let A be a unital C∗-algebra and H a Hilbert space. Denote by Rep(A,H)

the set of all representations of A on H equipped with the coarsest topology for which the

maps π 7→ π(a)ξ ∈ H are continuous for all a ∈ A.

Definition 4.9. A representation π ∈ Rep(A,H) is finite-dimensional if π(A) ⊂ H is

finite-dimensional. A representation π ∈ Rep(A,H) is residually finite-dimensional (RFD)

if π can be approximated by finite-dimensional representations.

Definition 4.10. A state ρ ∈ S(A) in A is said to be finite-dimensional if the GNS-

representation πρ is finite-dimensional. Let Sfin(A) denote the set of finite-dimensional

states.

Definition 4.11. A family of representations (πα)α∈I is called separating if for all x ∈ A

πα(x) = 0 for all α ∈ I if and only if x = 0. A C∗-algebra A is residually finite-dimensional

(RFD) if A has a separating family of finite-dimensional representations.

Theorem 4.12. Let A be a unital C∗-algebra. Then the following are equivalent:

(i) Sfin(A) is dense in S(A);

(ii) Every cyclic representation of A is RFD;

(iii) Every representation of A is RFD;

(iv) A admits a faithful RFD representation

(v) A is RFD.

Lemma 4.13. Let A be a unital C∗-algebra. Let π ∈ Rep(A,H) non-degenerate and suppose

there exists a net (πα)α ⊂ Rep(A,H) that converges to π. If (ρα)α ⊂ Rep(A,H) is another

net on the same directed set such that for each a ∈ A the restriction of ρα(a) to the essential

space Hα ⊂ H of πα coincides with πα(a), then ρα also converges to π.

We refer the reader to [Exel and Loring, 2012] for a proof of Thm. 4.12 and Lemma 4.13.

Theorem 4.14. Let A,B be unital C∗-algebras. Then A ∗ B is RFD if and only if A and

B are RFD.

17
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Proof. Assume A ∗B is RFD. The RFD property passes to subalgebras, implying A and B

both are RFD.

For the other implication, we use the equivalence of (iv) and (v) in Theorem 4.12. Thus,

let π be a faithful non-degenerate representation of A1 ∗A2 on H. For each i = 1, 2, define

πi = π|Ai to be the restriction of π to Ai. Since Ai is RFD, the equivalence of (v) and (iii)

in Theorem 4.12 gives that πi is RFD, hence there exists a net (πiα)α of finite-dimensional

representations converging to πi. Note that we can use a common directed set by taking

the product of the directed sets.

Consider now πiα : Ai → B(H i
α). Now, for each α, choose a finite-dimensional subspace

Kα ⊂ H such that H1
α, H

2
α ⊂ Kα with dim(Kα) a common multiple of dim(H1

α) and

dim(H2
α). Let ρiα be a representation of Ai on H i

α such that ρiα = Ai → B(Kα) and

ρiα|B(Hi
α)

= πiα. Note that π1, π2 are unital hence non-degenerate, so using Lemma 4.13, it

follows ρiα converges to πi.

For each α, define then ρα = ρ1α ∗ ρ2α which is a well-defined finite-dimensional represen-

tation of A1 ∗A2 on H. Moreover, ρα converges to π by definition, so the equivalence from

Theorem 4.12 gives A ∗B is RFD.

It follows by definition that finite-dimensional C∗-algebras are RFD. As dim(C∗(Zn)) = n

we get C∗(Zn) is RFD. Using Theorem 4.14 we conclude that

C∗(Γ) ∼= C∗(Zn) ∗ ... ∗ C∗(Zn)

is RFD. We are now ready to prove the density of Cfin
qs (n, k) in Cqs(n, k).

Proof of Theorem 4.7. Let πn : C∗(Γ) → B(Hn) such that {πn}n≥1 is a separating sequence

of finite dimensional representations. We know such a sequence exists as C∗(Γ) is both RFD

and separable. Define

H =
⊕
n≥1

Hn,

and let

π =
⊕
n≥1

πn : C∗(Γ) → B(H).

For ξ = (ξn)n≥1 ∈ H we have π(x)ξ = (πn(x)ξn)n≥1 for x ∈ C∗(Γ). By definition, π is a

representation and moreover it is faithful as the sequence {πn}n≥1 is separating. Let

H(m) =
m⊕

n=1

Hn = {ξ ∈ H | ξn = 0 for all n > m} ⊂ H.

Here we consider H(m) as a finite-dimensional subspace of dimension m. Define faithful

representation φ = π ⊗ π : C∗(Γ) ⊗ C∗(Γ) → B(H ⊗ H) and M as in Lemma 4.5. Note

that by definition of H(m), P x
a ⊗Qy

b is invariant under H(m) ⊗H(m) so we can consider the

18
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restriction of P x
a ⊗Qy

b to said subspace. Consider σ = ωξ|M ∈ S(M) for some unit vector

ξ ∈ H(m) ⊗H(m) ⊂ H ⊗H and any m ≥ 1. Then[
σ(P x

a ⊗Qy
b )
]
a,b;x,y

∈ Cfin
qs (n, k).

See that
⋃

m≥1H
(m) ⊗ H(m) is dense in H ⊗ H. Take ξ ∈ H ⊗ H and let (ξn)n≥1 be a

sequence in
⋃

m≥1H
(m)⊗H(m) such that ξn → ξ. Then ωξn |M → ωξ|M and it follows from

the above that [
ωξ|M(P x

a ⊗Qy
b )
]
a,b;x,y

∈ Cfin
qs (n, k).

Note that it is a consequence of Lemma 4.5 and the proof of Theorem 4.3 that

Cqs(n, k) ⊂
{[
σ(P x

a ⊗Qy
b )
]
a,b;x,y

| σ ∈ S(M)
}
.

Thus, for T ∈ Cqs(n, k) let σ ∈ S(M) such that T =
[
σ(P x

a ⊗Qy
b )
]
a,b;x,y

. It follows from

Proposition 4.4 that T ∈ Cfin
qs (n, k), as wanted.

19



March 11, 2024

5 Tsirelson’s conjecture

Having introduced three models of correlation matrices, it is natural to ask how they relate

to one another. In these studies, one naturally reaches Tsirelson’s conjecture, which will be

stated later on. First, we show some results concerning the classical correlation matrices.

Definition 5.1. Let n, k ≥ 1. Let ∆(k) denote the set of matrices T ∈ Mk([0, 1]) with

entries Ta,b for 1 ≤ a, b ≤ k such that
∑k

a,b=1 Ta,b = 1. Furthermore, let ∆(n, k) denote the

set of matrices T ∈Mn(Mk([0, 1])) for which T
x,y ∈ ∆(k) for all 1 ≤ x, y ≤ n.

Definition 5.2. Let n, k ≥ 2. Define E∗(n, k) = ∆(n, k) ∩ E(n, k).

A matrix unit in Mn([0, 1]) is a matrix E for which one entry is equal to 1 and all other

entries are equal to 0. Recall the definition of E(n, k) and note that a matrix E ∈ E∗(n, k)

if and only if each Ex,y is a matrix unit for all 1 ≤ x, y ≤ n. Thus, for each E ∈ E∗(n, k)

there exists a unique map fE : [n]× [n] → [k]× [k], where [n] = {1, . . . , n}, such that

Ex,y
a,b =

1 (a, b) = fE(x, y),

0 else.

A function f : [n] × [n] → [k] × [k] is independent if there exist f1, f2 : [n] → [k] such that

f(x, y) = (f1(x), f2(y)). A matrix E ∈ E∗(n, k) for which fE is independent is called an

independent deterministic correlation matrix.

Definition 5.3. Let n, k ≥ 2. Let E∗
indep(n, k) ⊂ E∗(n, k) denote the set of independent

correlation matrices.

Recall E†(n, k) = Cc(n, k) ∩ E(n, k).

Proposition 5.4. E†(n, k) = E∗
indep(n, k).

Proof. Note that E∗
indep(n, k) ⊂ E(n, k) so it suffices to show E∗

indep(n, k) ⊂ Cc(n, k). Take

E ∈ E∗
indep(n, k) and let f1, f2 : [n] → [k] be such that fE(x, y) = (f1(x), f2(y)). Let

(Ω,A, µ) be a one-point probability space. For 1 ≤ x, y ≤ n and 1 ≤ a, b ≤ k define

Ax
a =

Ω, if a = f1(x)

∅, else
, By

b =

Ω, if b = f2(y)

∅, else
.

Then {Ax
a}1≤a≤k ,

{
By

b

}
1≤b≤k

are partitions of Ω and it follows that µ(Ax
a ∩B

y
b ) = Ex,y

a,b .

For the converse inclusion, let E ∈ Cc(n, k) ∩ E(n, k) and write

E =
[
Ex,y

a,b

]
a,b;x,y

=
[
µ(Ax

a ∩B
y
b )
]
a,b;x,y
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for some probability space (Ω,A, µ) and partitions {Ax
a}1≤a≤k ,

{
By

b

}
1≤b≤k

. Fix 1 ≤ x, y ≤ n

and let ax, by be such that Ex,y
ax,by

= 1. That such ax, by exist follows as {Ax
a}1≤a≤k and{

By
b

}
1≤b≤k

are partitions of Ω. Clearly µ(Ax
ax ∩B

y
by
) = 1 forces µ(Ax

ax) = µ(By
by
) = 1. Since

1 = µ(Ω) =

k∑
a=1

µ(Ax
a), 1 = µ(Ω) =

k∑
b=1

µ(By
b )

we get µ(Ax
a) = µ(By

b ) = 0 for all (a, b) ̸= (ax, by). Define now f1, f2 : [n] → [k] by

f1(x) = ax, f2(y) = by. Then

Ex,y
a,b = µ(Ax

a ∩B
y
b ) =

1, if (a, b) = (f1(x), f2(y))

0, else

showing E ∈ E∗
indep(n, k).

Proposition 5.4 combined with Proposition 2.7 shows that Cc(n, k) is spanned by the inde-

pendent deterministic correlation matrices. In particular, we can describe Cc(n, k) without

reference to the specific probability spaces and partitions as in Definition 2.1.

Recall that Cqs(n, k) is not closed.

Proposition 5.5. Cc(n, k) ⊊ Cqs(n, k).

Proof. That Cc(n, k) ̸= Cqs(n, k) is immediate since Cc(n, k) is closed but Cqs(n, k) is not.

For the inclusion, since Cqs(n, k) is convex, it suffices to show ∂eCc(n, k) ⊂ Cqs(n, k),

cf. Proposition 2.7. By Proposition 5.4, ∂eCc(n, k) = E∗
indep(n, k). Let E ∈ E∗

indep(n, k) be

given. Then there exist f1, f2 : [k] → [n] such that

Ex,y
a,b =

1, if (a, b) = (f1(x), f2(y))

0, else

Let H = C⊗ C. For each 1 ≤ x, y ≤ n, let ax = f1(x), by = f2(y) and define

P x
a =

1, if a = ax

0, else
, Qy

b =

1, if b = by

0, else

Then {P x
a }1≤a≤k ,

{
Qy

b

}
1≤b≤k

are a PVMs on C and given a unit vector ξ ∈ H,

〈
P x
a ⊗Qy

bξ, ξ
〉
=

1, if (a, b) = (ax, by)

0, else

hence E = [⟨P x
a ⊗Qbξ, ξ⟩]a,b;x,y ∈ Cqs(n, k).

Proposition 5.6. Cqs(n, k) ⊊ Cqs(n, k) ⊂ Cqc(n, k).
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Proof. Let T ∈ Cqs(n, k), write T =
[〈
P x
a ⊗Qy

bξ, ξ
〉]

a,b;x,y
for {P x

a }1≤a≤k and
{
Qy

b

}
1≤b≤k

PVMs on Hilbert spaces HA, respectively HB, and ξ ∈ HA ⊗ HB a unit vector. Then

{P x
a ⊗ 1}1≤a≤k ,

{
1⊗Qy

b

}
1≤b≤k

are commuting PVMs on the Hilbert space HA ⊗HB, im-

plying T ∈ Cqc(n, k). The inclusion Cqs(n, k) ⊂ Cqc(n, k) now follows from the fact that

Cqc(n, k) is closed.

It is now clear that Cc(n, k) ⊂ Cqc(n, k). One can show that E∗
indep(n, k) = Cqc(n, k)∩E(n, k)

meaning all deterministic quantum correlation matrices are classical.

Whether or not the latter inclusion in Proposition 5.6 is indeed an equality of sets is a

famous conjecture of Tsirelson;

Conjecture 5.7 (Tsirelson). Cqs(n, k) = Cqc(n, k) for all n, k ≥ 2.

We are able to prove a weaker version concerning Cfin
qs (n, k) and C

fin
qc (n, k) called Tsirelson’s

Theorem. We define Cfin
qc (n, k) in a similiar way as Cfin

qs (n, k) in Definition 4.6 with a finite

dimensional Hilbert space H. In order to prove Tsirelson’s Theorem, we need the following

lemma.

Lemma 5.8. Let A =Mn1(C)⊕Mn2(C)⊕· · ·⊕Mnm(C) be a finite-dimensional C∗-algebra

acting on the Hilbert space H = Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnm. Then

S(A) = conv {ωξ|A | ξ ∈ H, ||ξ|| = 1} .

Proof. A state ρ on A extends to a state on B(H). It is well-known that when H is finite-

dimensional, any state on B(H) is a convex combination of vector states, as wanted.

Theorem 5.9 (Tsirelson). Cfin
qs (n, k) = Cfin

qc (n, k).

Proof. It is straightforward that Cfin
qs (n, k) ⊂ Cfin

qc (n, k). For the reverse, let T ∈ Cfin
qc (n, k)

be given by

T =
[〈
P x
aQ

y
bξ, ξ

〉]
a,b;x,y

for commuting PVM’s {P x
a }1≤a≤k ,

{
Qy

b

}
1≤b≤k

on a finite-dimensional Hilbert space H and

a unit vector ξ ∈ H. Define

P = {P x
a | 1 ≤ a ≤ k, 1 ≤ x ≤ n} , Q =

{
Qy

b | 1 ≤ b ≤ k, 1 ≤ y ≤ n
}

and let A1 and A2 be the sub-C
∗-algebras of B(H) generated by P and Q respectively and A

be the sub-C∗-algebra of B(H) generated by P∪Q. Note that each element in P commutes

with all elements in Q as they are defined by sets of commuting PVMs. In particular, A1

and A2 commute and moreover there are canonical inclusion of Ai into A, i = 1, 2. By

the universal property of the maximal tensor product there is a unital ∗-homomorphism
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ψ : A1⊗maxA2 → A such that ψ(a⊗b) = ab for all a ∈ A1, b ∈ A2. Moreover, ψ is surjective

by definition of A. Since A1, A2 are finite they are in particular finite-dimensional so the

maximal and minimal tensor product agree, hence we can consider ψ : A1 ⊗ A2 → A. Let

ρ : A → C be the state given by ρ(S) = ⟨Sξ, ξ⟩. By definition, T =
[
ρ(P x

aQ
y
b )
]
a,b;x,y

.

Consider now ρ̃ = ρ ◦ψ : A1 ⊗A2 → C. Since ρ is a state and ψ is a ∗-homomorphism, ρ̃ is

a state and moreover

ρ̃(P x
a ⊗Qy

b ) = ρ(ψ(P x
a ⊗Qy

b )) = ρ(P x
aQ

y
b ),

hence T =
[
ρ̃(P x

a ⊗Qy
b )
]
a,b;x,y

. Now, since A1, A2 are finite dimensional, we have

Ai =Mn(1,i)(C)⊕Mn(2,i) ⊕ · · · ⊕Mn(k,i), i = 1, 2

and that Ai acts on the finite dimensional Hilbert space

Hi = Cn(1,i) ⊕ Cn(2,i) ⊕ · · ·Cn(k,i), i = 1, 2.

Since A1 ⊗A2 has a representation on H1 ⊗H2 and A1 ⊗A2 is finite-dimensional, Lemma

5.8 gives

S(A1 ⊗A2) = conv {ωξ|A1⊗A2 | ξ ∈ H1 ⊗H2, ||ξ|| = 1} .

Thus, we can write ρ̃ =
∑r

j=1 λjωξj where λj > 0,
∑r

j=1 λj = 1 and ξj ∈ H1 ⊗H2. Then

T =
[
ρ̃(P x

a ⊗Qy
b )
]
a,b;x,y

=

 r∑
j=1

λjωξj (P
x
a ⊗Qy

b )


a,b;x,y

=
r∑

j=1

λj
[〈
(P x

a ⊗Qy
b )ξj , ξj

〉]
a,b;x,y

and as
[〈
(P x

a ⊗Qy
b )ξj , ξj

〉]
a,b;x,y

∈ Cfin
qs (n, k), convexity of Cfin

qs (n, k) gives T ∈ Cfin
qs (n, k).

We now have the following picture of inclusions:

Cfin
qs (n, k) = Cfin

qc (n, k)

∩ ∩

Cc(n, k) ⊂ Cqs(n, k) ⊊ Cqs(n, k) ⊂ Cqc(n, k)

A motivation for studying Tsirelson’s conjecture is the relation between Tsirelson’s con-

jecture and the Connes embedding problem. To understand the statement of the Connes

embedding problem, we need a few definitions. Recall that a von Neumann algebra M is a

factor if the center of M is trivial, i.e., Z(M) = C1.
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Definition 5.10. A factor M is of type II1 (called a II1-factor) if it is infinite-dimensional

and admits a faithful tracial state τ :M → C.

We say M is hyperfinite if it contains a dense ∗-subalgebra which is an increasing union of

finite-dimensional ∗-algebras. Let R be the unique hyperfinite II1-factor up to isomorphism.

For any free ultrafilter ω, define the ultrapower of R by

Rω =
∞∏
n=1

R/Iω, Iω =

{
(xn) ∈

∞∏
n=1

R | lim
ω

||xn||2 = 0

}
.

It can be shown that Rω is also a II1-factor.

Conjecture 5.11 (The Connes Embedding Problem). Every separable II1-factor embeds

into Rω.

Theorem 5.12. The following are equivalent:

(i) Tsirelson’s conjecture holds,

(ii) Cfin
qc (n, k) = Cqc(n, k) for all n, k ≥ 2,

(iii) C∗(Γ)⊗max C
∗(Γ) = C∗(Γ)⊗ C∗(Γ) for all n, k ≥ 2,

(iv) C∗(F∞)⊗max C
∗(F∞) = C∗(F∞)⊗ C∗(F∞),

(v) The Connes Embedding Problem is true.

Proof. (i) ⇒ (ii). Suppose Cqs(n, k) = Cqc(n, k). Since Cfin
qs (n, k) is dense in Cqs(n, k),

Tsirelson’s theorem gives

Cqc(n, k) = Cqs(n, k) = Cfin
qs (n, k) = Cfin

qc (n, k),

as wanted.

(ii) ⇒ (i). Let n, k ≥ 2. Suppose Cfin
qc (n, k) = Cqc(n, k). Using again that Cfin

qs (n, k) is

dense in Cqs(n, k) and Tsirelson’s Theorem, we get

Cqc(n, k) = Cfin
qc (n, k) = Cfin

qs (n, k) = Cqs(n, k),

as wanted.

(iii) ⇒ (i). This follows directly by

Cqc(n, k) =
{[
ρ(exa ⊗ eyb )

]
a,b;x,y

| ρ ∈ S(C∗(Γ)⊗max C
∗(Γ))

}
=
{[
ρ(exa ⊗ eyb

]
a,b;x,y

| ρ ∈ S(C∗(Γ)⊗ C∗(Γ))
}
= Cqs(n, k).

(i) ⇒ (iii). This was proved by Ozawa.

The equivalences (iv) ⇔ (v) ⇔ (vi) were proved in [Kirchberg, 1993]. Moreover, to prove

(iii) ⇔ (iv) one can use techniques of Kirchberg.
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