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Equivalence of canonical and grand canonical pictures

If the system is stable of the 2nd kind we may define the grand canonical
pressure for pu € [C, 00) for some C' > 0

P inf (U, (H + uN)®).
(1) =y 2of (Y (H A+ pN)0)

The parameter u is called the chemical potential.

In fact P is the Legendre transform of the energy function N — E'n

P(p) = inf(En + pN)

Thus if N — E\ is convex we may reconstruct Ey from P

Ey = s?bp(PW) — ).




The bosonic Hartree approximation

In the following we will consider mainly the case where
Wij = W(x; — z;)

In the bosonic Hartree approximation one restricts attention to wave
functions of the non-interacting form vV =9 ® - - - ® 1.

~~

N

Then
En() == (¥, HyV) =

N (19PN [PV + N = 1) [ [ 0@ PW e — ) Pdedy,

EY —  inf  gH(y) > EB
N wen, wl=1 (V) = Ex

Or we may use the density p = N || If W is positive type (i.e., W > 0) then
EH is convex and the minimizer 1) is unique (up to a constant phase).

Is this a good approximation? Certainly not if W is a hard core.




The Hartree-Fock model

In the Hartree-Fock approximation we do the same for fermions and restrict
to Slater determinants ¥ = 11 A --- A Y. The energy expectation can be
expressed entirely from the 1-particle density matrix v, which is the projection
onto the space spanned by ¥q,...,¥n:

EF () = (U HNY) = T-3A)+ [,V

“ff

— y)p~ (y)dzdy

:07
1 / / Trealy(z, ) [PW (x — y)dzdy

The last two terms are called respectively the direct term and the exchange

term. p, is the density of v




Properties of the Hartree-Fock model

ENY = inf{€MF(y) | v projection Try = N} > EX
THEOREM 1 (Self-consistency, Bach-Lieb-Loss-Sol.). If v is an HF

minimizer then v 1s the unique projection onto the N “lowest” eigenvectors of

the mean field operator

Hyr = —3A+V +p, W —-K,, K,d(z)= / (x,y)"W(x —y)o(y)dy.

The uniqueness means that there are no degeneracies. Put differently: There
are no unfilled shells in Hartree-Fock theory. Minimizer are not

necessarily unique. The approximation is again very bad for hard core.
THEOREM 2 (Lieb’s variational principle).

BN =inf{e"F(y) |0 <y <1, Try = N}




Semiclassics

We want next to approximate the fermionic energy by a functional of the density
alone. We will ignore the exchange term. We make the semiclassical
approximations for a non-interacting system

p(z) = (27T)_3/1 1dp = Cq|V (z)**,
§p2+V(:1:)<O

for the density and for the energy

(27r>‘3/1 Ve O(ép%wx))dpda:: - d/\vﬁ_/z :cTF/p5/3+/pv.
5p?+V(x)<

2

THEOREM 3 (semiclassics).

lim (27h)*Te[~| — h?A + V] -] = - d/mi/?.

Here Tr[—| — h? A + V|_] is the sum of the negative eigenvalues of —h*A +V,
i.e., the minimal fermionic enerqgy.




The Thomas-Fermi approximation

Motivated by semiclassics we define the Thomas-Fermi functional

() i=Cre [ 904 [ oV 4 [ [ o)Wl - y)p(w)dady

ETF = inf (€7 (p)| p > 0, / =N},

If V,W tend to zero at infinity and W is positive type (/W > 0) then the
minimzing p is unique and N — FEi! is convex and non-increasing. There is
N (possibly= c0) such that N — EL" is strictly decreasing for N < N and
constant otherwise. For N < N a minimizing p exists Lieb-Simon).

In many cases one can prove that the TF approximation is good using

semiclassical techniques.




Quasi-free fermionic states

We shall now see that we may improve Hartree-Fock theory by considering a

grand canonical generalization.

We generalize from Slater determinants to ground states ¥ of general quadratic

Hamiltonians

Z Aapagag + Baga,ag — Bagagag
af

(Slater determinants correspond to B = 0). If we introduce

Yii = (\Ij CL%CL‘\IJ), g5 = (\IJ’CLZ- a’j\Ij>

et Aed|

then 72 + aa* =~, [y,a] =0. In particular, 0 < v < 1.
Slater: a(1)" - - a(yn)*|0)

BCS: [o1 + 11a(¥1)"a(y2)"]|o2 + T2a(¥3) a(Ps)™] - - - 0),




BCS theory

The BCS approximation to the pressure is

PECS (1) 1= (U, (H + uN)¥) = €17(y) + Ty
//|Tr@qoz x,y)|W(x —y)dxdy

From Lieb’s variational principle we see that if W > 0 the best choice is a = 0.
Otherwise a # 0 may be better. This has been analyzed in great detail by
Bach-Lieb-Sol. for the Hubbard model: R3 — Z2, —A discrete, V =0, W (z) =0

unless £ = 0.

The BCS mean field operator is a quadratic Hamiltonian.




The Bogolubov approximation

Quadratic Hamiltonians are also important in the Bogolubov approximation for
bosons. Let us write the 2nd quantized Hamiltonian in an eigenbasis for the

one-particle operator
H = Zh Ay + 5 Z Wapuwagasa,a,
afBuv
The Bogolubov approximation is based on the assumption that o = 0

corresponds to a condensate.

Bogolubov approximation: (1) aj,a; — VN, (2) keep only quartic terms
with at least two «, 3, i, v being 0. The Hamiltonian becomes quadratic plus

linear

Zh a’a, + 1N Z Waosajag + Wagooazas + .
aB#0

—|—%N3/2 Z Waoooa:; + ...+ %NQWOOOO.




