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Equivalence of canonical and grand canonical pictures

If the system is stable of the 2nd kind we may define the grand canonical

pressure for µ ∈ [C,∞) for some C > 0

P (µ) = inf
‖Ψ‖=1, Ψ∈F

(Ψ, (H + µN)Ψ).

The parameter µ is called the chemical potential.

In fact P is the Legendre transform of the energy function N 7→ EN

P (µ) = inf
N

(EN + µN)

Thus if N 7→ EN is convex we may reconstruct EN from P

EN = sup
µ

(P (µ) − µN).
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The bosonic Hartree approximation

In the following we will consider mainly the case where

h = − 1
2∆ + V, Wij = W (xi − xj)

In the bosonic Hartree approximation one restricts attention to wave

functions of the non-interacting form Ψ = ψ ⊗ · · · ⊗ ψ︸ ︷︷ ︸
N

.

Then

EH
N (ψ) := (Ψ, HNΨ) =

1
2N

∫
|∇ψ|2 +N

∫
|ψ|2V + 1

2N(N − 1)

∫ ∫
|ψ(x)|2W (x− y)|ψ(y)|2dxdy.

EH
N = inf

ψ∈h, ‖ψ‖=1
EH(ψ) ≥ EB

N

Or we may use the density ρ = N |ψ|2. If W is positive type (i.e., Ŵ ≥ 0) then

EH is convex and the minimizer ψ is unique (up to a constant phase).

Is this a good approximation? Certainly not if W is a hard core.
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The Hartree-Fock model

In the Hartree-Fock approximation we do the same for fermions and restrict

to Slater determinants Ψ = ψ1 ∧ · · · ∧ ψN . The energy expectation can be

expressed entirely from the 1-particle density matrix γ, which is the projection

onto the space spanned by ψ1, . . . , ψN :

EHF(γ) := (Ψ, HNΨ) = Tr[− 1
2∆γ] +

∫
ργV

+ 1
2

∫ ∫
ργ(x)W (x− y)ργ(y)dxdy

− 1
2

∫ ∫
TrCq |γ(x, y)|2W (x− y)dxdy

The last two terms are called respectively the direct term and the exchange

term. ργ is the density of γ

γ(x, y) =
N∑

k=1

ψk(x)ψk(y)
∗, ργ(x) = TrCqγ(x, x) =

N∑

k=1

|ψk(x)|2.
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Properties of the Hartree-Fock model

EHF
N = inf{EHF(γ) | γ projection Trγ = N} ≥ EF

N

THEOREM 1 (Self-consistency, Bach-Lieb-Loss-Sol.). If γ is an HF

minimizer then γ is the unique projection onto the N “lowest” eigenvectors of

the mean field operator

HMF = − 1
2∆ + V + ργ ∗W −Kγ , Kγφ(x) =

∫
γ(x, y)∗W (x− y)φ(y)dy.

The uniqueness means that there are no degeneracies. Put differently: There

are no unfilled shells in Hartree-Fock theory. Minimizer are not

necessarily unique. The approximation is again very bad for hard core.

THEOREM 2 (Lieb’s variational principle).

EHF
N = inf{EHF(γ) | 0 ≤ γ ≤ 1, Trγ = N}.
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Semiclassics

We want next to approximate the fermionic energy by a functional of the density

alone. We will ignore the exchange term. We make the semiclassical

approximations for a non-interacting system

ρ(x) = (2π)−3

∫
1
2p

2+V (x)<0

1dp = Cd|V (x)|3/2− ,

for the density and for the energy

(2π)−3

∫
1
2p

2+V (x)<0

( 1
2p

2 + V (x))dpdx = −Ccl

∫
|V |5/2− = CTF

∫
ρ5/3 +

∫
ρV.

THEOREM 3 (semiclassics).

lim
h→0

(2πh)3Tr[−| − h2∆ + V |−] = −Ccl

∫
|V |5/2− .

Here Tr[−| − h2∆ + V |−] is the sum of the negative eigenvalues of −h2∆ + V ,

i.e., the minimal fermionic energy.
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The Thomas-Fermi approximation

Motivated by semiclassics we define the Thomas-Fermi functional

ETF(ρ) := CTF

∫
ρ5/3 +

∫
ρV + 1

2

∫ ∫
ρ(x)W (x− y)ρ(y)dxdy

ETF
N = inf{ETF(ρ)| ρ ≥ 0,

∫
ρ = N}.

If V,W tend to zero at infinity and W is positive type (Ŵ ≥ 0) then the

minimzing ρ is unique and N 7→ ETF
N is convex and non-increasing. There is

NTF
c (possibly= ∞) such that N 7→ ETF

N is strictly decreasing for N ≤ NTF
c and

constant otherwise. For N < NTF
c a minimizing ρ exists Lieb-Simon).

In many cases one can prove that the TF approximation is good using

semiclassical techniques.
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Quasi-free fermionic states

We shall now see that we may improve Hartree-Fock theory by considering a

grand canonical generalization.

We generalize from Slater determinants to ground states Ψ of general quadratic

Hamiltonians ∑

αβ

Aαβa
∗
αaβ +Bαβaαaβ −Bαβa

∗
αa

∗
β

(Slater determinants correspond to B = 0). If we introduce

γij = (Ψ, a∗i ajΨ), αij = (Ψ, ai ajΨ)

then γ2 + αα∗ = γ, [γ, α] = 0. In particular, 0 ≤ γ ≤ 1.

Slater: a(ψ1)
∗ · · ·a(ψN )∗|0〉

BCS: [σ1 + τ1a(ψ1)
∗a(ψ2)

∗][σ2 + τ2a(ψ3)
∗a(ψ4)

∗] · · · |0〉, σi, τi ∈ C
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BCS theory

The BCS approximation to the pressure is

PBCS(µ) := (Ψ, (H + µN)Ψ) = EHF(γ) + µTrγ

+ 1
2

∫ ∫
|TrCqα(x, y)|W (x− y)dxdy

From Lieb’s variational principle we see that if W ≥ 0 the best choice is α = 0.

Otherwise α 6= 0 may be better. This has been analyzed in great detail by

Bach-Lieb-Sol. for the Hubbard model: R
3 → Z

3, −∆ discrete, V = 0, W (x) = 0

unless x = 0.

The BCS mean field operator is a quadratic Hamiltonian.
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The Bogolubov approximation

Quadratic Hamiltonians are also important in the Bogolubov approximation for

bosons. Let us write the 2nd quantized Hamiltonian in an eigenbasis for the

one-particle operator

H =
∑

α

hαa
∗
αaα + 1

2

∑

αβµν

Wαβµνa
∗
αa

∗
βaνaµ

The Bogolubov approximation is based on the assumption that α = 0

corresponds to a condensate.

Bogolubov approximation: (1) a∗0, a0 →
√
N , (2) keep only quartic terms

with at least two α, β, µ, ν being 0. The Hamiltonian becomes quadratic plus

linear ∑

α

hαa
∗
αaα + 1

2N
∑

αβ 6=0

Wα0βa
∗
αaβ +Wαβ00a

∗
αa

∗
β + . . .

+ 1
2N

3/2
∑

α

Wα000a
∗
α + . . .+ 1

2N
2W0000.

11


