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The thermodynamic limit

We now restrict to a box Ω = [0, L]3, i.e., consider the Hilbert space

h = L2(Ω; Cq) and introduce suitable boundary condition for the Laplacian

(Dirichlet, Neumann or periodic). |Ω| = L3, we write Ω → ∞ for L → ∞.

Allow the 1-particle potential VΩ to depend on the domain.

HN,Ω =

N
∑

i=1

(− 1

2
∆i + VΩ(xi)) +

∑

1≤i<j≤N

W (xi − xj).

We say that the ground state energy EN (Ω) has a thermodynamic limit if for

fixed ρ > 0 there is e(ρ) such that

EN (Ω)

|Ω|
→ e(ρ)

as N → ∞, Ω → ∞ with N/|Ω| = ρ .

Existence of thermodynamic limit requires stability of the 2nd kind.
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Short range Fermi and Bose systems

Now V = 0 and W ≥ 0 with finite range and scattering length:

a = lim
R→∞

R3

3
inf

{

∫

|x|<R

|∇φ|2 +

∫

|x|<R

W |φ|2

∣

∣

∣

∣

∣

∫

|x|<R

|φ|2 = 1

}

.

(no 1/2 in front of the kinetic energy; reduced mass).

In particular, we may have a hard core with diameter a: W (x) = ∞ if |x| < a

and 0 otherwise. In this case Hartree and Hartree-Fock are very bad.

For both fermions and bosons the thermodynamic limits exist.

THEOREM 1 (Low density Bose and Fermi gas ). For ρ → 0

eB(ρ) = 2πaρ2 + o(ρ2) Lieb-Yngvason

eF(ρ) = CTFρ5/3 + 2π(1 − q−1)aρ2 + o(ρ2) Lieb-Seiringer-Sol. (in prep.)

A modification of Bogolubov is supposed to give next Bose term.
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Charged systems I: Atoms and molecules

Atoms and Molecules: Two types of particles N electrons and K nuclei.

HN,K =
N

∑

i=1

− 1

2
∆i −

N
∑

i=1

K
∑

k=1

Zk|xi − Rk|
−1 +

∑

1≤i<j≤N

|xi − xj |
−1

+
∑

1≤k<`≤K

ZkZ`|Rk − R`|
−1

The electrons are fermions. The nuclei are classical particles at positions

R1, . . . , RK ∈ R
3 and nuclear charges. Z1, . . . , ZK > 0. Since we look for the

ground state we have ignored the kinetic energy of the nuclei. We simply look for

the energetically best positions. From the point of view of stability this is the

worst case. Recall: Stable of 1st kind by Sobolev.

EF
N,K = inf

R1,...,RK

inf
Ψ,‖Ψ‖=1

(Ψ, HN,KΨ) > −∞.
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Charged systems II: Matter

Fermionic Matter: As above, but confined to box Ω with Dirichlet b.c. and

with Z1 = . . . = ZK = Z. We consider the thermodynamic limit of EF
N,K(Ω)

with N/|Ω| = ρ and N = ZK (neutrality).

Bosonic Matter: We have two species of opposite charge. We will show that

bosonic matter is unstable even if we keep the kinetic energy of both positive and

negative particles:

HN =
N

∑

i=1

− 1

2
∆i +

∑

1≤i<j≤N

zizj |xi − xj |
−1, zi = 1 or zi = −1

EB
N = inf

zi=±1
inf

Ψ,‖Ψ‖=1
(Ψ, HNΨ).

6



Charged systems II: One component plasma

One component plasma (jellium): This is again a charged system confined

to a box Ω, but instead of nuclei we have a uniform background of density ρ.

HN =

N
∑

i=1

− 1

2
∆i − ρ

∫

Ω

|xi − y|−1dy +
∑

1≤i<j≤N

|xi − xj |
−1

+ 1

2
ρ2

∫ ∫

Ω×Ω

|x − y|−1dxdy.

We consider thermodynamics for the neutral system N = ρ|Ω|. The neutral

system has ground state energy EN .

In the physics literature one finds a different formulation on a torus. We discuss

this later.
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Results on Atoms

For neutral atoms N = Z

lim
Z→∞

EZ

ETF
Z

= 1, ETF
Z = cTFZ7/3 Lieb-Simon

For neutral quantum density ρ(x) = TrγΨ(x, x):

Z−2ρ(Z−1/3x) → ρTF
Z=1(x), L1

loc as Z → ∞

Improved asymptotics:

EF
Z − EHF

Z = o(Z5/3) as Z → ∞ Bach, Fefferman-Seco

EF
Z = cTFZ7/3+CSZ2 +CDSZ5/3 +o(Z5/3) Siedentop-Weikards, Fefferman-Seco

TF has minimizer iff N ≤ Z. HF has a minimizer for N < Z + 1 (Lieb-Simon)

and no minimizer for N > Z + Q for some constant Q (Sol.). The quantum

theory has stable ground state for N < Z + 1 (Zhislin) and no ground state for

N > 2Z + 1 (Lieb) or for N � Z when Z large.
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Foldy’s use of Bogolubov aprox. to jellium like system

Bosons on Ω; translation invariant Hamiltonian periodic b.c (“jellium”)

H =
∑

k

1

2
k2a∗

kak + 1

2
Ω−1

∑

k 6=0

4π

k2

∑

p,q

a∗
pa

∗
qap+kaq−k

The sum is over momenta. After Bogolubov approximation (ρ = N/Ω)

1

2

∑

k 6=0

1

2
k2(a∗

kak + a∗
−ka−k) +

4πρ

k2
(a∗

kak + a∗
−ka−k + a∗

ka∗
−k + a∗

−ka∗
k)

=
∑

k 6=0

Dk(a∗
k + αka−k)(a∗

k + αka−k)∗ + Dk(a∗
−k + αkak)(a∗

−k + αkak)∗

−
∑

k 6=0

Dkα2
k([ak, a∗

k] + [a−k, a∗
−k]), 4Dkα2

k = ( 1

2
k2 + 4πρk−2) −

√

1

4
k4 + 4πρ

Thus the ground state energy per volume for Ω → ∞ (thermod. limit)

−(2π)−3

∫

2Dkα2
kdk = −Jρ5/4, J explicit.
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Results for the one-component plasma

The termodynamic limits exist (Lieb-Narnhofer) for both fermionic

(eF(ρ) = limΩ→∞ EF
N/|Ω|) and bosonic (eB(ρ)) neutral (ρ = N/|Ω|) jellium.

For large ρ we have

eB(ρ) = −Jρ5/4 + o(ρ5/4) Lieb-Sol (≥), Sol. (≤)

and

eF(ρ) = eHF(ρ) + o(ρ4/3) Graf-Sol.

eHF(ρ) = CTFρ5/3 − CDρ4/3 + o(ρ4/3) Graf-Sol. based on Dirac.

For small ρ

eB(ρ) = cclρ
4/3 + o(ρ4/3), eF(ρ) = cclρ

4/3 + o(ρ4/3),

where eclassical(ρ) = cclρ
4/3. Conjecture: Optimal classical configuration is a

Body Centered Cubic lattice.
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