THE ONE COMPONENT BOSE GAS J.P. Solovej, Univ. of Copenhagen (joint with E. Lieb)

The one component charged Bose gas (Bosonic Jellium):

N Bosons, unit charge , in box $\Lambda = [0, L]^3$. Neutralizing background, density $\rho = \frac{N}{L^3}$. Hamiltonian:

$$H = \sum_{i=1}^{N} -\frac{1}{2}\Delta_{i} - \rho \sum_{i=1}^{N} \int_{\Lambda} |x_{i} - y|^{-1} dy$$
$$+ \sum_{i < j} |x_{i} - x_{j}|^{-1} + \frac{1}{2}\rho^{2} \iint_{\Lambda \times \Lambda} |x - y|^{-1} dx dy$$

Hilbert Space $\mathcal{H} = \overset{N}{\otimes} L^2(\Lambda)$ ($-\Delta$ Dirichlet or Neumann B.C.) or $\mathcal{H} = \overset{N}{\otimes}^N L^2(\mathbb{R}^3)$ (background still in box).

(Fermionic Jellium: $\mathcal{H} = \bigwedge^N L^2(\mathbb{R}^3; \mathbb{C}^2)$.)

Ground state energy: $E = \inf \operatorname{Spec}_{\mathcal{H}} H$

The two component Bose problem: N charged Bosons, charges $e_i = \pm 1$ (neutrality $\sum e_i = 0$).

$$H_2 = \sum_{i=1}^{N} -\frac{1}{2}\Delta_i + \sum_{i < j} \frac{e_i e_j}{|x_i - x_j|}$$

$$\mathcal{H} = \bigotimes^N L^2(\mathbb{R}^3).$$

Two component ground state energy:

$$E_2 = \inf \operatorname{Spec}_{\mathcal{H}} H_2$$

THEOREM 1 (Lieb-Narnhofer 1973). The thermodynamic limit exists:

$$\lim_{\substack{L \to \infty \\ \frac{N}{L^3} = \rho}} \frac{E}{L^3} = e(\rho)$$

Foldy 1961: Using Bogolubov approximation gets

$$e(\rho) = -0.803(3/4\pi)^{1/4} \rho^{5/4}$$
.

Should be good for large ρ . Using the variational principle Foldy's calculation rigorously establishes:

$$e(\rho) \leq -0.803(3/4\pi)^{1/4} \rho^{5/4} + o(\rho^{5/4}),$$
 as $\rho \to \infty$

MAIN RESULT

THEOREM 2 (Lieb-Solovej 1999). Foldy's calculation is correct:

$$e(
ho) \geq -0.803(3/4\pi)^{1/4}
ho^{5/4} + o(
ho^{5/4})$$
 as $ho \to \infty$.

HISTORY

NON-RIGOROUS RESULTS:

Bogolubov 1947 Invents pairing approximation to explain superfluidity for Bosons.

Bardeen Cooper Schrieffer 1957: Explains superconductivity by similar approximation for fermions

Gell-Mann and Bruckner 1957: For fermionic jellium:

$$e(\rho) = C_{TF}\rho^{5/3} - C_D\rho^{4/3} + C_1\rho\log\rho + C_2\rho + \dots$$

(today used heavily in computational chemistry).

Bogolubov 1958: Explains BCS theory in terms of his approximation.

Foldy 1961: Bosonic Jellium

RIGOROUS RESULTS:

Lieb-Liniger 1963: Solves a 1-dim Bose gas exactly and verifies the Bogolubov approximation for the ground state energy in this case.

Dyson 1967: Motivated by Foldy, Dyson proves that the two component Bose gas is NOT stable: $E_2 \leq -CN^{7/5}$ (Stability requires energy $\geq -CN$). I will give the intuition behind Dyson's result in a moment.

Conlon-Lieb-Yau 1988: Dyson's bound has the right power

$$E_2 \ge -C'N^{7/5}$$
.

As Corollary: Foldy's result has the right power $E \geq -cN\rho^{1/4} \qquad \text{(equivalent formulation)}.$

Graf-Solovej 1993: The first two terms for fermionic jellium are correct:

$$e(\rho) = C_{TF}\rho^{5/3} - C_D\rho^{4/3} + o(\rho^{4/3}).$$

The main theorem establishing Foldy's law for the charged bose gas is the first time that any aspect of the pairing approximation has been rigorously verified for 3-dimensional systems.

The heuristics behind Dyson's argument:

Construct trial state of N Bosons localized in ball of radius R. Density $\rho = \frac{N}{R^3}$.

Localization energy = NR^{-2} .

Foldy energy = $-N\rho^{1/4} = -N^{5/4}R^{-3/4}$.

Total energy:

$$NR^{-2} - N^{5/4}R^{-3/4}$$

optimal for $R = N^{-1/5}$ and gives energy $-N^{7/5}$.

Foldy's calculation and pairing theory:

Foldy uses periodic boundary conditions for $-\Delta$. Problem is on torus.

Replaces $|x-y|^{-1}$ by

$$\sum_{p \neq 0} L^{-3} |p|^{-2} \exp(ip(x-y)).$$

sum is over 'periodic momenta' (note $p \neq 0$ so average is 0).

Hamiltonian

$$H' = \sum_{i=1}^{N} -\frac{1}{2}\Delta_i + \sum_{i < j} \sum_{p \neq 0} L^{-3} |p|^{-2} \exp(ip(x_i - x_j))$$

 $p \neq 0$ supposed to make up for missing background!!??

2nd quantization formulation

$$H' = \sum_{p} |p|^2 a_p^* a_p + \sum_{p \neq 0} L^{-3} |p|^{-2} \sum_{k,q} a_{k+p}^* a_{q-p}^* a_q a_k$$

Observation: since $p \neq 0$ no terms with 3 or 4 a_0^{\sharp} .

Bogolubov approximation: Motivation is Bose condensation: Almost all particles are in the state of momentum p = 0 created by a_0^* . Thus:

Step 1: Keep only quartic terms with precisely two a_0^{\sharp} (ignore terms with one or no a_0^{\sharp}).

$$H'' = \sum_{p} |p|^2 a_p^* a_p + \sum_{p \neq 0} L^{-3} |p|^{-2} [a_p^* a_0^* a_p a_0 + a_0^* a_{-p}^* a_0 a_{-p} + a_p^* a_{-p}^* a_0 a_0 + a_0^* a_0^* a_p a_{-p}]$$

Step 2 in Bogolubov appr.: Replace the OP- $ERATORS \ a_0^{\sharp}$ by the number \sqrt{N} :

$$H''' = \sum_{p \neq 0} |p|^2 a_p^* a_p + \rho |p|^{-2} [a_p^* a_p + a_{-p}^* a_{-p} + a_p^* a_{-p}^* + a_p a_{-p}]$$

Complete the square:

$$H''' = \sum_{p} A_{p}(a_{p}^{*} + \beta_{p}a_{-p})(a_{p} + \beta_{p}a_{-p}^{*})$$

$$+A_{p}(a_{-p}^{*} + \beta_{p}a_{p})(a_{-p} + \beta_{p}a_{p}^{*})$$

$$-2\sum_{p\neq 0} A_{p}\beta_{p}^{2}$$

Last term due to $[a_p, a_q^*] = \delta_{pq}$.

$$A_p(1+\beta_p^2) = \frac{1}{2}|p|^2 + \rho|p|^{-2}$$

 $2A_p\beta_p = \rho|p|^{-2}$

The ground state energy is given by the last term above.

$$e = \lim_{L \to \infty} -\frac{2}{L^3} \sum_{p \neq 0} A_p \beta_p^2 = \int A_p \beta_p^2 = C_F \rho^{5/4}.$$

Ground state wave function ψ satisfies

$$(a_p + \beta_p a_{-p}^*)\psi = 0,$$

for all $p \neq 0$.

In the original language (a_0 an operator) this corresponds to function of the form

$$\psi = 1 + \sum_{i < j} f(x_i - x_j)$$

$$+ c \sum_{i,j,l,k} f(x_i - x_j) f(x_l - x_k) + \dots$$
 different

where $\hat{f}(p) = \beta_p$. In fact, $\hat{f}(p) = G(|p|^4/\rho)$, G independent of ρ .

Thus f varies on a length scale $\rho^{-1/4}$ (the typical interpair distance).

Ideas in rigorous proof: No need to prove Bose condensation globally enough to do it on short scale.

- Localize by Neumann bracketing in "small" boxes of size ℓ . Constant function (condensate not affected). Function f "not affected" if $\ell\gg \rho^{-1/4}$. We choose ℓ close to $\rho^{-1/4}$.
- Control electrostatics between boxes using an averaging method of Conlon-Lieb-Yau. Error $=N/\ell\ll N\rho^{1/4}$.
- Establish condensation on scale ℓ : First non-zero Neumann eigenvalue $\sim \ell^{-2}$. The expected number N_+ of particles not in condensate in the "small box". Their energy: $N_+\ell^{-2} \sim N_+\rho^{1/2}$. if consistent with total energy $-N\rho^{1/4}$ we should expect $N_+ \ll N\rho^{-1/4}$, i.e., local condensation.

One establishes this through a bootstrapping procedure. Having established local condensation one starts the hard work of establishing the Bogolubov approximation. Difficulty: We cannot use periodic b.c.