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The one component charged Bose gas
(Bosonic Jellium):
N Bosons, unit charge , in box A = [0, L]3.

Neutralizing background, density p = %
Hamiltonian:
N N .
H = Z—in—pZ/lwi—yI_ dy
i:]. izl/\
+ 3 Jwi = 257 + 302 [ |z — y " dwdy
1<J AXA

N
Hilbert Space H = ® L2(A) (—A Dirichlet or
Neumann B.C.) or H = QN L2(R3) (background
still in box).

N
(Fermionic Jellium: H = A L2(R3:C?2).)

Ground state energy: E = inf SpecyH



The two component Bose problem: N charged
Bosons, charges e; = +1 (neutrality >.e; = 0).

N
Hy= ) —30;+ )

i=1 i<
H = QN L2(R3).

Two component ground state energy:

E> = inf SpecfHHQ

THEOREM 1 (Lieb-Narnhofer 1973). The
thermodynamic limit exists:
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lim 3= e(p)
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Foldy 1961: Using Bogolubov approximation
gets

e(p) = —0.803(3/4r)/4p2/4.

Should be good for large p. Using the vari-
ational principle Foldy's calculation rigorously
establishes:

e(p) < —0.803(3/4m)1/4p5/* + o(p®/%),

as p — oo

MAIN RESULT
THEOREM 2 (Lieb-Solovej 1999). Foldy’s
calculation is correct:

e(p) > —0.803(3/4m)1/4p5/* + o(p°/*)

as p — oo.



HISTORY

NON-RIGOROUS RESULTS:

Bogolubov 1947 Invents pairing approxima-
tion to explain superfluidity for Bosons.
Bardeen Cooper Schrieffer 1957: EXxplains
superconductivity by similar approximation for
fermions

Gell-Mann and Bruckner 1957: For fermionic
jellium:

e(p) = Orpp®/® —Cpp*/3+C1plogp+ Cop+...

(today used heavily in computational chem-
istry).

Bogolubov 1958: Explains BCS theory in
terms of his approximation.

Foldy 1961: Bosonic Jellium

RIGOROUS RESULTS:

Lieb-Liniger 1963: Solves a 1-dim Bose gas

exactly and verifies the Bogolubov approxima-

tion for the ground state energy in this case.
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Dyson 1967: Motivated by Foldy, Dyson proves
that the two component Bose gas is NOT

stable: FE», < —CNT'/5 (Stability requires en-

ergy > —CN). I will give the intuition behind

Dyson’s result in a moment.

Conlon-Lieb-Yau 1988: Dyson’s bound has
the right power

E> > —C'NT/5.
As Corollary: Foldy's result has the right power

E > —chl/4 (equivalent formulation).

Graf-Solovej 1993: The first two terms for
fermionic jellium are correct:

e(p) = Crpp®3 — Cpp*/3 + o(p*3).

The main theorem establishing Foldy’s law for
the charged bose gas is the first time that any
aspect of the pairing approximation has been
rigorously verified for 3-dimensional systems.
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T he heuristics behind Dyson’s argument:

Construct trial state of N Bosons localized in
ball of radius R. Density p = %.

Localization energy = NR—2.

Foldy energy = —Npl/4 = —N5/4R—3/4

Total energy:

NR™2_ N5/4R—3/4

optimal for R = N—1/5 and gives energy —N7/3.
Foldy’s calculation and pairing theory:

Foldy uses periodic boundary conditions for
—/A. Problem is on torus.
Replaces |z —y|~! by

S L 3p| % exp(ip(z — y)).

p70
sum is over ‘periodic momenta’' (note p # 0 soO
average is 0).



Hamiltonian
N

H' =3 —5Ai+3 > L77Ipl ™2 exp(ip(ei—z;))

1=1 1<J p#0

p = 0 supposed to make up for missing back-
ground!17??

2nd quantization formulation

2 31—2
lel apap+ > L77IpI77 ) apypag-paqa
p70 k,q
Observation: since p = 0 no terms with 3 or 4

CLO.
Bogolubov approximation: Motivation is Bose

condensation: Almost all particles are in the
state of momentum p = O created by aj. Thus:

Step 1: Keep only quartic terms with preasely
two a% (ignore terms with one or no ao)

H" Z|p|2a*ap + > L™ 3|p|~ 2[a, apapag
p#o
—I—aoa_paoa_p +a p _paoao + apagpapa—p]

-



Step 2 in Bogolubov appr.: Replace the OP-
ERATORS aﬁo by the number v NV:

H"= Y |p|2a;;ap + p|p|_2[a;;ap +a®jay
p70
+a, apa —p + apa—p]

Complete the square:
H" = Z Ap(a;; + 5pa—p)(ap + 5pa*—p)
p

+Ap(a’, + Bpap)(a—p + Bpay)

2y Apﬁg
p#0

Last term due to [ap,ag] = dpq.
Ap(L+65) = 3lpI +plpl 2
24pBp = plp|™?

The ground state energy is given by the last
term above.

e= lim —— Z ApB3 = [ ApB3 = Cpp®/*.

L—o0



Ground state wave function i satisfies

(ap + ﬁpaip)ib =0,
for all p #= 0.

In the original language (ag an operator) this
corresponds to function of the form

v = 14 ) f(z;— =)

i<j

+c Z flx; —x;) f(x —xp) + ...
difzf"glr’lént

where f(p) = Bp. In fact, f(p) = G(|p|*/p), G
independent of p.

Thus f varies on a length scale p—1/4 (the typ-
ical interpair distance).



Ideas in rigorous proof: No need to prove
Bose condensation globally enough to do it on
short scale.

e Localize by Neumann bracketing in “small”
boxes of size ¢. Constant function (con-
densate not affected). Function f “not af-
fected” if £ > p_1/4. We choose ¢ close to
o1/

e Control electrostatics between boxes using
an averaging method of Conlon-Lieb-Yau.
Error = N/¢ < Npt/4,

e Establish condensation on scale ¢: First
non-zero Neumann eigenvalue ~ £=2. The
expected number N4 of particles not in
condensate in the “small box”. Their en-
ergy: Ni£72 ~ Nyp'/2. if consistent with
total energy —Np1/4 we should expect N <K
Np~1/4, i.e., local condensation.

One establishes this through a bootstrapping procedure.
Having established local condensation one starts the
hard work of establishing the Bogolubov approximation.
Difficulty: We cannot use periodic b.c.
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