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Quantum Mechanics of charged Particles

PROBLEM: Describe ground state/ground state
energy of N charged particles, either identical
fermions or identical bosons moving in a back-
ground electric field.

FERMIONS: The state is a normalized wave

function ψ ∈ HF =
N∧︸︷︷︸

antisym

L2(R3; C2︸︷︷︸
spin states

)

BOSONS: The state is a normalized wave

function ψ ∈
N⊗

symL
2(R3).

The system is given by a Hamilton (energy)
operator

HN,V =
N∑
n=1

[
−1

2∆n + V (xn)
]
+

∑
n<m

|xn−xm|−1.

Here V is the background electric potential.
Units: ~ = e = 2m = 1, HN,V is a semi-
bounded, self-adjoint operator if

V ∈ W := L3/2(R3) + L∞(R3)
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Def of ground state: A ground state ψ (if it
exists) minimizes the energy E(ψ) = (ψ,HN,V ψ),
i.e., ψ is an eigenfunction of the Hamiltonian
with smallest possible eigenvalue (recall (ψ,ψ) =
1). We denote the minimizing, i.e., ground
state energy E(N,V ).

The background field: We consider fields
produced by static charges:

V (x) = −
∫
|x− y|−1dµ(y)

Two particular cases:
(a) Molecule with K nuclei, positions
R1, . . . , Rk ∈ R3, charges Z1, . . . , ZK

µ(y) =
K∑
k=1

Zkδ(y −Rk)

(b) A uniformly charged background (Jel-
lium), approximation for electrons in crystals
or nuclei in sea of electrons

µ(x) = ρ1[0,L]3(x)dx

ρ > 0, ρL3 = N (neutrality), L large.
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The wave function ψ is an extremely compli-

cated object. A simpler object which contains

much (but far from all) of the information

about the state is the 1-particle density

ρψ(x) = N
∫
|ψ (x;x2, . . . ;xN)|2 dx2 · · · dxN .

Note
∫
ρ = N . In case of spin there is also a

sum over spin (for all N particles).

Hohenberg-Kohn ‘Theorem’: The density

determines the ground state.

Really not that simple: On the set of ρ that

are ground state densities for some HN,V , for

which the ground state is unique and V is

“well-behaved” then ρ determines V and hence

the ground state.
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The HK ‘Theorem’ is one of the most sig-
nificant results in quantum chemistry, but
it is never actually used:

• V depends on ρ in a completely unknown
way

• The set of ρ coming from ‘unique’ ground
states is completely uncontrollable.

What is being used in density functional theo-
ries is that one may find energy functionals de-
pending in an explicit way on the density that
are good approximations, e.g. in the high den-
sity limit. An example is the Thomas-Fermi
functional for molecules and its various im-
provements.

There are really two issues. Understanding the
non-interacting problem and understanding the
effect of correlations. For fermions the non-
interacting problem in the high density limit is
related to Weyl type semiclassical estimates.
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Here I shall be interested in correlations. I
therefore restrict attention to Jellium where
the non-interacting problem is almost trivial.
Locally charged systems may look like Jellium.

HJellium
N =

N∑
i=1

−1
2∆i − ρ

N∑
i=1

∫
Λ

|xi − y|−1dy

+
∑
i<j

|xi − xj|−1 + 1
2ρ

2
∫∫

Λ×Λ

|x− y|−1dxdy

︸ ︷︷ ︸
background self-energy

,

Λ = [0, L]3 and N = ρL3 (neutrality). Here ρ
is simply a constant, i.e., the density of the
background not of the ground state, but the
two are in fact nearly the same for large ρ. We
are interested in the energy asymptotics for
large ρ. Note the extra term above, which is
the background self-energy. When we include
it we have for both fermions and bosons:
THEOREM 1 (Lieb-Narnhofer 1973).
The thermodynamic limit exists:

lim
L→∞
N
L3=ρ

E(N)

L3
= e(ρ)
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FERMIONIC JELLIUM:

THEOREM 2 (Graf-Solovej 1994).

e(ρ) = CTFρ
5/3 − CDρ

4/3 + o(ρ4/3)

as ρ→∞
TF=THOMAS-FERMI (1927), D=Dirac (1931).

Uses method of Bach, who proved that the

Dirac correction CD
∫
ρ(x)4/3dx is good for molecules

(where ρ(x) is not a constant, i.e., locally molecules

almost like Jellium.

Conjecture (Gell-Mann & Bruckner (1959)):

The next terms in the expansion above are

C1ρ log(ρ) + C2ρ

Sawada (1959) explains the Gell-Mann and

Bruckner results in terms of a Bogolubov type

approximation.
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BOSONIC JELLIUM:

Foldy 1961: Using Bogolubov approximation

gets

e(ρ) = −0.402(3/4π)1/4ρ5/4.

Should be good for large ρ. Using the vari-

ational principle Girardeau (1962) ‘rigorously’

establishes:

e(ρ) ≤ −0.402(3/4π)1/4ρ5/4 + o(ρ5/4),

as ρ→∞

THEOREM 3 (Lieb-Solovej 2000). Foldy’s

calculation is correct:

e(ρ) ≥ −0.402(3/4π)1/4ρ5/4 + o(ρ5/4)

as ρ→∞.
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Foldy’s calculation and pairing theory:
Not rigorous
Step 1: Motivation is Bose condensation: Al-
most all particles are in the state of momentum
p = 0 (periodic BC).

Use 2nd quantization: a∗0 creates. particles in
the condensate. Keep only the following terms

Happr =
∑
p
|p|2a∗pap +

∑
p6=0

L−3|p|−2[a∗pa
∗
0apa0

+a∗0a
∗
−pa0a−p + a∗pa

∗
−pa0a0 + a∗0a

∗
0apa−p]

i.e., all quartic terms have presicely two a
]
0

(ignore terms with one or no a
]
0).

Note |p|−2 comes from Coulomb potential.

Step 2 in Bogolubov appr.: Replace the oper-
ators a]0 by the number

√
N :

HFoldy =
∑
p6=0

|p|2a∗pap + ρ|p|−2[a∗pap + a∗−pa−p

+a∗pa
∗
−p + apa−p]

Note: not particle number preserving.

9



Complete the square:

HFoldy =
∑
p
Ap(a

∗
p + βpa−p)(ap + βpa

∗
−p)

+Ap(a
∗
−p + βpap)(a−p + βpa

∗
p)

−2
∑
p6=0

Apβ
2
p

Last term due to [ap, a∗q] = δpq.

Ap(1 + β2
p ) = 1

2|p|
2 + ρ|p|−2

2Apβp = ρ|p|−2

The ground state energy is given by the last

term above.

e = lim
L→∞

−
2

L3

∑
p6=0

Apβ
2
p = −2

∫
Apβ

2
p = −CFρ5/4.

Ground state wave function ψ satisfies

(ap + βpa
∗
−p)ψ = 0,

for all p 6= 0.
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In the original language (a0 an operator) this
corresponds to function of the form

ψ = 1 +
∑
i<j

f(xi − xj)

+c
∑
i,j,l,k

different

f(xi − xj)f(xl − xk) + . . .

where f̂(p) = βp. In fact, f̂(p) = G(|p|4/ρ), G
independent of ρ.
Thus f varies on a length scale ρ−1/4 (the typ-
ical interpair distance).

Ideas in rigorous proof: No need to prove
Bose condensation globally enough to do it on
short scale `� ρ−1/4.

• Localize by Neumann bracketing in “small”
boxes of size `.
– Condensate not affected: Constant func-

tion 1 always Neumann ground state
– The Function f “not affected” since
`� ρ−1/4. We choose ` close to ρ−1/4.
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• Control electrostatics between boxes using

an averaging method of Conlon-Lieb-Yau.

Error = N/`� Nρ1/4.

• Establish condensation on scale `: First

non-zero Neumann eigenvalue ∼ `−2. The

expected number N+ of particles not in

condensate in the “small box”. Their en-

ergy: N+`
−2 ∼ N+ρ

1/2. if consistent with

total energy −Nρ1/4 we should expect

N+ � Nρ−1/4, i.e., local condensation.

One establishes this through a bootstrapping procedure.

Having established local condensation one starts the

hard work of establishing the Bogolubov approximation.

Difficulty: We cannot use periodic b.c.
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