
Chapter 14
Generalized Linear and Nonlinear Regression

Multiple linear regression is a powerful method of exploring relationships between a
response Y and a set of potential explanatory variables x1, . . . , xp, but it has an obvi-
ous limitation: it assumes the predictive relationship is, on average, linear. In addition,
in its standard form it assumes that the noise contributions are homogeneous and fol-
low, roughly, a normal distribution. During the latter part of the twentieth century a
great deal of attention was directed toward the development of generalized regres-
sion methods that could be applied to nonlinear relationships, with non-constant and
non-normal noise variation. In this chapter and in Chapter 15 we discuss several of
the most common techniques that come under the heading modern regression.

We alluded to modern regression in Chapter 12 by displaying diagram (12.4),

Y ←
{

noise
f (x1, . . . , xp).

To be more specific about the models involved in modern regression let us write the
multiple linear regression model (12.44) in the form

Yi = μi + εi (14.1)

μi = β0 + β1x1i + · · · + βpxpi (14.2)

where εi ∼ N(0,σ2). In (14.1) and (14.2) we are separating two parts of the model.
The deviations from the mean appear in (14.1) as additive noise while, according to
Eq. (14.2), the mean itself is a linear function of the x variables. Modern regression
models have the more general form

Yi ∼ fYi(yi|θi) (14.3)

θi = f (x1i, . . . , xpi) (14.4)
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where fYi(y|θ) is some family of pdfs that depend on a parameter θ, which1

is related to x1, . . . , xp according to a function f (x1, . . . , xp). Here, not only is
f (x1, . . . , xp) in (14.4) allowed to be nonlinear, but also the probabilistic repre-
sentation of noise in (14.3) is more general than in (14.1). The family of pdfs
fYi(y|θ) must be specified. In Sections 14.1.1–14.1.3 and 14.1.4–14.1.5 we take the
response distributions in (14.3) to be binomial and Poisson, respectively, but in
applying (14.4) we retain the linear dependence on x1, . . . , xp for suitable parameters
θi. In Section 14.1.6 we discuss the formal framework known as generalized linear
models that encompasses methods based on normal, binomial, and Poisson distrib-
utions, along with several others. In Section 14.2 we describe the use of nonlinear
functions f (x1, . . . , xp) = f (x1, . . . , xp; θ) that remain determined by a specified
vector of parameters θ (such as f (x; θ) = θ1 exp(−θ2x)).

Modern regression is also used to analyze spike trains, where it becomes point
process regression. We discuss this in Chapter 19. We lay the foundation for
point process regression with our description of Poisson regression, especially in
Examples 14.4 and 14.5 in Section 14.2.2.

We hope that our presentation will make the generalization of the regression
framework to (14.3) and (14.4) seem straightforward. From our current perspective, it
is. Historically, however, the step from least squares to generalized linear models was
huge: it required not only the advent of ML estimation, but also the recognition that
some widely-used probability distributions had well-behaved likelihood functions
(see Section 14.1.6) together with sufficient computational power to perform the
fitting in a reasonable amount of time. All of this came together in the publication
Nelder and Wedderburn (1972).

14.1 Logistic Regression, Poisson Regression,
and Generalized Linear Models

14.1.1 Logistic regression may be used to analyze binary responses.

There are many situations where some y should be a noisy representation of
some function of x1, . . . , xp, but the response outcomes y are binary. For instance,
behavioral responses are sometimes either correct or incorrect and we may wish
to consider the probability of correct response as a function of some explana-
tory variable or variables, or across experimental conditions. Sometimes groups of
binary responses are collected into proportions.
Example 5.5 (continued from p. 226) In Fig. 8.9 we displayed a sigmoidal curve
fitted to the classic psychophysical data of Hecht et al. (1942) on perception of dim
light. There, each response was binary and the 50 binary responses at a given light

1 We apologize for the double use of f to mean both a pdf in fYi (y|θ) and a general function
in f (x1, . . . , xp). These two distinct uses of f are very common. We hope by pointing them out
explicitly we will avoid confusion.
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intensity could be collected into a proportion out of 50 that resulted in perception.
We fit the data by applying maximum likelihood estimation to the logistic regression
model in (8.43) and (8.44). This2 is known as logistic regression. �
Example 2.1 (continued from p. 378) In Section 13.2.2 we discussed ANOVA inter-
actions in the context of the study by Behrmann et al. (2002) on hemispatial neglect,
where the response was saccadic reaction time and one of the explanatory variables
was angle of the starting fixation point of the eyes away from “straight ahead.”
A second response variable of interest in that study was saccadic error, i.e., whether
the patient failed to execute the saccade within a given time window. Errors may
be coded as 0 and successful execution as 1. Behrmann et al. (2002) used logistic
regression to analyze the error rate as a function of the same explanatory variables.
They found, for example, that the probability of error increased as eyes fixated further
to the right. �

From (14.1) and (14.2) together with normality, for a single explanatory variable
x, in linear regression we assume

Yi ∼ N(β0 + β1xi,σ
2).

There are three problems in applying ordinary linear regression with binary responses
to obtain fitted probabilities: (i) a line won’t be constrained to (0, 1), (ii) the variances
are not equal, and (iii) the responses are not normal (unless we have proportions
among large samples, in which case the proportions would be binomial for large
n and thus would be approximately normal, as in Section 5.2.2). The first problem,
illustrated in Fig. 8.9, is that the linear regression may not make sense beyond a limited
range of x values: if y = a + bx and b > 0 then y must become infinitely large,
or small, as x does. In many data sets with dichotomous or proportional responses
there is a clear sigmoidal shape to the relationship with x. The second problem was
discussed in the simpler context of estimating a mean, in Section 8.1.3. There we
derived the best set of weights to be used for that problem, and showed that an
estimator that omits weights can be very much more variable, effectively throwing
away a substantial portion of the data. Much more generally it is also possible to solve

2 The analysis of Hecht et al. (1942) was different, but related. They wished to obtain the minimum
number of quanta, n, that would produce perception. Because quanta are considered to follow a
Poisson distribution, in the notation we used above, they took W ∼ P(λ) and c = n, with λ, the
mean number of quanta falling on the retina, being proportional to the intensity. This latter statement
may be rewritten in the form log λ = β0 + x, with x again being the log intensity. Then Y = 1 (light
is perceived) if W ≥ n which occurs with probability p = 1− P(W ≤ n− 1) = 1− F(n− 1|λ),
where F is the Poisson cdf. This is a latent-variable model for the proportional data (similar to but
different than the one on p. 399). It could be fitted by finding the MLE of β0, though Hecht et al.
apparently did the fitting by eye. Hecht et al. then determined the value of n that provided the best
fit. They concluded that a very small number of quanta sufficed to produce perception, but see also
Teich et al. (1982).
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problem (ii) by using weighted least squares, as discussed surrounding Eq. (12.64),
and such solutions apply to the logistic regression setting. The third problem can
make distributional results (standard errors and p-values) suspect. The method of
logistic regression, which applies maximum likelihood to the logistic regression
model, fixes all three problems.

The logistic regression model begins with the log-odds transformation. Recall that
when p is a probability the associated odds are p/(1− p). The number p lies in the
range (0, 1) while the associated odds is in the range (0,∞). If we then take logs, the
number log(p/(1 − p)) will lie in the range (−∞,∞), which corresponds to what
we need for infinite straight lines. Therefore, instead of taking the expected value of
Y to be linear in x (E(Yi) = β0 + β1xi) we note that when Yi ∼ B(ni, pi) we have
E(Yi/ni) = pi and we apply log(pi/(1−pi)) = β0+β1xi. First, from the algebraic
manipulations given in our discussion of Example 5.5 on p. 226, substituting z for u
and w for p in (9.8) and (9.9), we have

z = log(
w

1− w
)⇐⇒ w = exp(z)

1+ exp(z)
. (14.5)

In (14.5) we replace w with pi and z with β0 + β1xi. The logistic regression model
(8.43) and (8.44) may then be written in the form

Yi ∼ B(ni, pi)

log
pi

1− pi
= β0 + β1xi.

The log-odds (or logit) transformation is helpful in interpreting results. The log odds
(of a response) are linear in x. Thus, β1 is the change in the log odds for a unit change
in x.

The log odds scale itself is a bit awkward to think about, though if the base of
the logarithm is changed from e to 2 or 10 it becomes easier. It is often useful to
transform back to the odds scale, where an increase of 1 unit in x is associated with an
increase in the odds (that Y = 1) by a factor of exp(β1). If we wish to interpret the
change in probabilities, we must pick a particular probability p and conclude that a
unit increase in x is associated with an increase from p to expit(logit(p)+β1), where
logit(z) = log(z/(1 − z)) and expit(w) = exp(w)/(1 + exp(w)). To illustrate, we
provide some interpretation in the context of Example 5.5.

Example 5.5 (continued) On p. 213 we found β̂1 = 10.7 with standard error
SE = 1.2. We interpret the fitted model as saying that, on average, for every increase
of intensity by a factor of 10 (1 unit on the scale of the explanatory variable) there is
a 10.7 ± 1.2 increase in the log odds of a response. To get an approximate 95 % CI
for the factor by which the odds increase we exponentiate, exp(10.7 ± 2(1.2)), i.e.,
(4023, 489000). A more interpretable intensity change, perhaps, would be doubling.
An increase in intensity by a factor of 2 corresponds to .30 units on the scale of the
explanatory variable (because log10(2) = .301). For an increase of intensity by a

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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factor of 2 the log odds thus increase by 3.22 ± .72 (where 3.22 = (.301)(10.7) and
.72 = (.301)(2.4)). This gives an approximate 95 % CI for the factor by which the
odds increase, when the intensity doubles, of exp(3.22 ± .72) = (12.2, 51.4).

We can go somewhat further by converting odds to the probability scale by
inverting

odds = p

1− p

to get

p = odds

1+ odds
.

Let us pick p = .5, so that the odds are 1. If we increase the odds by a factor ranging
from 12.2 to 51.4 then the probability would go from .5 to somewhere between .92
and .98 (where .92 = 12.2/(1+12.2) and .98 = 51.4/(1+51.4)). Thus, if we begin
at the x50 intensity (where p = .5) and then double the intensity, we would obtain a
probability of perception between .92 and .98, with 95 % confidence. This kind of
calculation may help indicate what the fitted model implies. �

Logistic regression extends immediately to multiple explanatory variables: for m
variables x1, . . . , xm we write

log
pi

1− pi
= β0 + β1x1i + · · · + βmxmi.

The multiple logistic regression model may be written in the form

Yi ∼ B(ni, pi)

log
pi

1− pi
= xiβ (14.6)

where β is the coefficient vector and xi is the 1 × (m + 1) vector of values of the
several explanatory variables corresponding the ith unit under study.

14.1.2 In logistic regression, ML is used to estimate
the regression coefficients and the likelihood
ratio test is used to assess evidence
of a logistic-linear trend with x.

It is not hard to write down the likelihood function for logistic regression. The
responses Yi are independent observations from B(ni, pi) distributions, so each pdf
has the form

(ni
yi

)
pyi

i (1− pi)
ni−yi and the likelihood function is
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Table 14.1 Linear regression results for data from subject S.S. in Example 5.5.

Variable Coefficients SE tobs p-value

Intercept −1.78 .30 −5.9 .0042
Intensity 1.20 .16 7.5 .0017

Table 14.2 Logistic regression results for data from subject S.S. in Example 5.5.

Variable Coefficients SE tobs p-value

Intercept −20.5 2.4 −8.6 p < 10−6

Intensity 10.7 1.2 8.9 p < 10−6

L(β0,β1) =
n∏

i= 1

pyi
i (1− pi)

ni−yi

pi = exp(β0 + β1xi)

1+ exp(β0 + β1xi)

where the second equation is substituted into the first. Standard statistical software
may be used to maximize this likelihood. The standard errors are obtained from the
observed information matrix, as described in Section 8.3.2.

For a single explanatory variable, the likelihood ratio test of Section 11.1.3 may
be used to test H0 : β1 = 0. More generally, if there are variables x1, . . . , xp in
model 1 and additional variable xp+1, . . . , xp+m in model 2, then the likelihood ratio
test may again be applied to test H0 : βp+1 = · · · = βp+m = 0. The log likelihood
ratio has the form

−2 log LR = −2[log(L̂1)− log(L̂2)]

where L̂i is the maximum value of the likelihood under model i. For large samples,
under H0, −2 log LR follows the χ2 distribution with m degrees of freedom.

In some software, the results are given in terms of “deviance.” The deviance for a
given model is−2 log(L̂). The null deviance is the deviance for the “intercept-only”
model, and we denote it by−2 log L̂(0). Often, the deviance from the full fitted model
is called the residual deviance. In this terminology, the usual test of H0 : β1 = 0 is
based on the difference between the null deviance and the residual deviance.

Example 5.5 (continued) The output from least-squares regression software is given
in Table 14.1. The F statistic in this case is the square of tobs and gives the p = .0017,
as in Table 14.1. The results for logistic regression are given in Table 14.2. The null
deviance was 257.3 on 5 degrees of freedom and the residual deviance was 2.9 on 4
degrees of freedom. The difference in deviance is

null deviance − residual deviance = 257.3− 2.9 = 256.4

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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Table 14.3 Quadratic logistic regression results for data from subject S.S. in Example 5.5.

Variable Coefficients SE tobs p-value

Intercept −4.3 15.8 −.27 .78
Intensity −6.6 17.0 −.39 .70
Intsq 4.6 4.6 1.0 .31

Table 14.4 Quadratic logistic regression results for data from subject S.S. in Example 5.5, after
first centering the intensity variable.

Variable Coefficient SE tobs p-value

Intercept −20.3 2.3 −8.7 p < 10−6

Intensity 10.5 1.2 8.6 p < 10−6

Int2 4.6 4.6 1.0 .31

which should be compared to the chi-squared distribution on 1 degree of freedom.
It is very highly significant, consistently with the result in Table 14.2. �

Polynomial terms in x may be handled in logistic regression just as they are in
linear regression (Section 12.5.4).

Example 5.5 (continued) To consider whether an additional, nonlinear component
might contribute usefully to the linear logistic regression model, we may square
the intensity and try including it in a two-variable logistic regression model. In this
case it is interesting to note that intensity and its square are highly correlated. To
reduce the correlation it helps to subtract the mean before squaring. Thus, we define
intsq = (intensity)2 and int2 = (intensity − mean(intensity))2. The results using
the alternative variables intsq and int2 are shown in Tables 14.3 and 14.4, respectively.
Using either of these two logistic regression summaries we would conclude the
quadratic term does not improve the fit. The results in Table 14.3 might, at first, be
confusing because of the nonsignificant p-values. As we noted in Section 12.5.5, this
is a fairly common occurrence with highly correlated explanatory variables, as x
and x2 often are. Recall that each nonsignificant p-value leads to the conclusion that
its corresponding variable contributes little in addition to the other variable. Since
we already found a very highly significant logistic linear relationship, we would
conclude that the quadratic doesn’t improve the fit. Again, though, the interpretation
appears cleaner in the second formulation. �

In non-normal regression models there is no fully satisfactory generalization of the
measure of fit R2. One useful measure, proposed by Nagelkerke (1991) and usually
called the Nagelkerke R2, is defined by

R2
N = 1−

(
L̂(0)

L̂

) 2
n

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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where, again, L̂(0) is the maximized likelihood for the intercept-only model and L̂
is the maximized likelihood for the model being considered. Because the maximum
value of R2

N may be less than 1, a scaled version is often used:

R2
scaled N

= R2
N

R2
max

where

R2
max = 1−

(
L̂(0)

) 2
n
.

14.1.3 The logit transformation is one among many that may be
used for binomial responses, but it is the most commonly
applied.

The expit function exp(x)/(1 + exp(x)), defined in Section 14.1.1, is one of many
possible sigmoidal curves and thus logistic regression is only one of many possible
models for binary or proportion data. In fact, expit(x) has an asymptote at 0 as
x → −∞ and at 1 as x → ∞, and is increasing, so it is a cumulative distribution
function. The distribution having expit(x) as its cdf is called the logistic distribution,
but the cdf of any continuous distribution could be used instead. One important
alternative to logistic regression is the Probit regression model, which substitutes the
normal cdf in place of the expit: specifically, the probit model is

Yi ∼ B(ni, pi)

�−1(pi) = β0 + β1xi

where �(z) = P(Z ≤ z), with Z ∼ N(0, 1). The fitted curve is then obtained from
y = �(β̂0 + β̂1x).

Example 5.5 (continued) Figure 14.1 displays the fitted curves from probit and
logistic regression for the data shown previously in Fig. 8.9. The two models produce
nearly identical fitted curves. �

As with the threshold data, the fitted curves from probit and logistic regression are
generally very close to each other. This is because the graph of the logistic cdf (the
expit function) is close to the graph of the normal cdf. Two things are special about
the logistic regression model. First, it gives a nice interpretation of the coefficients
in terms of log odds. Second, in the logistic regression model (but not the Probit or
other versions) the loglikelihood function is necessarily concave (as long as there
are at least two distinct values of x). This means that there is a unique MLE, which
can be obtained from an arbitrary starting value in the iterative algorithm. Logistic

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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Fig. 14.1 Two curves fitted to the data in Fig. 8.9. The fitted curve from probit regression (dashed
line) is shown together with the fitted curve from logistic regression. The fits are very close to each
other.

regression is the standard method for analyzing dichotomous or proportional data,
though in some contexts probit regression remains popular.3

An interesting interpretation of binary phenomena involves the introduction of
latent variables, meaning random variables that become part of the statistical model
but are never observed (see the illustration on p. 216 and Section 16.2). Let us discuss
this in terms of perception, and let us imagine that the binary experience of perception,
as “perceived” or “not perceived” is controlled by an underlying continuous random
variable, which we label W . We may think of W as summarizing the transduction
process (from light striking the retina to firing rate among multiple ganglion cells),
so that perception occurs whenever W > c for some constant c. Neither the precise
meaning of W , nor the units of c need concern us. Let us take W to be normally
distributed and, because the units are arbitrary, we take its standard deviation to be 1.
Finally, we take this latent transduction variable, on average, to be a linear function of
the log intensity of light x and we write this in the form μW = c+β0+β1x. We now
have the probit regression model: Y = 1 when W > c but, defining−Z = W−μW

(so that −Z ∼ N(0, 1) and Z ∼ N(0, 1)),

W > c⇐⇒ W − μW > c− μW ⇐⇒ −Z > c− μW ⇐⇒ Z < μW − c.

In other words, Y = 1 when Z < β0 + β1x, which occurs with probability p =
�(β0 + β1x).

This latent-variable interpretation helps transfer the intuition of linear regression
models over to the binary case, and provides an appealing way to think about many

3 We have not discussed residual analysis here. It may be performed using deviance residuals, or
other forms of residuals. See Agresti (1990) or McCullagh and Nelder (1989).

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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Table 14.5 Spike counts
from an SEF neuron during
directional saccades.

left 9 6 9 9 6 6 8 5 7 9 4 8 8 3 6
Up 2 0 6 4 4 0 0 0 5 2 1 0 3 0
Right 4 8 2 2 4 0 3 4 1 1 0 3 4 0 2
Down 1 5 1 2 0 4 4 4 4 3 6 1 1 1

phenomena. Note that logistic regression is obtained by taking W to have a logistic
distribution,4 having cdf

F(w) = 1

1+ e−w
.

14.1.4 The usual Poisson regression model transforms the mean λ
to log λ.

The simplest distribution for counts is Poisson, Y ∼ P(λ). Here, the Poisson mean
must be positive and it is therefore natural to introduce dependence on explanatory
variables through log λ. In Section 14.1.6 we will note that models defined in terms
log λ have special properties. The usual multiple Poisson regression model is

Yi ∼ P(λi)

log λi = xiβ

where β is the coefficient vector and xi is the 1 × (m + 1) vector of values of the
explanatory variables corresponding to the ith unit under study. Poisson regression
is useful when we have counts depending on one or more explanatory variables.

Example 14.1 Directional sensitivity of an SEF neuron Olson et al. (2000)
reported data collected from many individually-recorded neurons in the supplemen-
tary eye field (SEF). In this experiment, a monkey was trained to translate one of
four possible icons displayed at the fixation point into an instruction of a location
to which he was to move his eyes: either left, up, right, or down. SEF neurons tend
to be directionally sensitive. To establish direction sensitivity, Olson et al. examined
the number of spikes occurring 600–750 ms after presentation of the cue. The spike
count data for one neuron across the various trials are given in Table 14.5. Is this
neuron directionally sensitive?

By eye it appears that the firing rate is higher for the “left” condition than for the
other conditions. There are various versions of ANOVA that may be used to check
this. Analysis of spiking activity from these SEF neurons revealed that while the

4 Probit regression was introduced by Chester Bliss in 1934, but the latent variable idea and normal
cdf-transformation was part of Fechner’s thinking about psychophysics in 1860; logistic regression
was apparently discussed first by Ronald Fisher and Frank Yates in 1938. See Agresti (1990) for
much more extensive discussion of the methods described briefly here.
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spike counts deviated from that predicted by a Poisson distribution, the deviation
was small (Ventura et al. 2002). Here we will use the data to illustrate a version of
ANOVA based on Poisson regression. Note that in Table 14.5 there are a total of 58
spike counts, from 58 trials. �

The problem of fitting counts is analogous to, though less extreme than, that
of fitting proportions. For proportions, the (0,1) range could make linear regression
clearly inappropriate. Counts have a range of (0,∞). Because the ordinary regression
line is not constrained, it will eventually go negative. The simple solution is to use a
log transformation of the underlying mean. The usual Poisson regression model is

Yi ∼ P(λi) (14.7)

λi = exp(β0 + β1xi). (14.8)

To interpret the model we use the log transformation:

log λi = β0 + β1xi.

For example, in the SEF data of Example 14.1 Yi is the spike count and xi is the
experimental condition (up, down, left, right) for the ith trial. The advantage of
viewing ANOVA as a special case of regression is apparent: we immediately gen-
eralize Poisson ANOVA by applying our generalization of linear regression to the
Poisson regression model above.

14.1.5 In Poisson regression, ML is used to estimate coefficients
and the likelihood ratio test is used to examine trends.

As in logistic regression we use ML estimation and the likelihood ratio test (“analysis
of deviance”).

Example 14.1 (continued) We perform Poisson regression using indicator variables
as described in Section 13.2.1 to achieve an ANOVA-like model. Specifically, we
concatenate the data in Table 14.5 so that the counts form a 58× 1 vector and define
a variable left to be 1 for all data corresponding to the left saccade direction and
0 otherwise, and similarly define vectors up and right. The results from ordinary
least-squares regression are shown in Table 14.6. The F-statistic was 18.76 on 3 and
54 degrees of freedom, giving p < 10−6. The Poisson regression output, shown in
Table 14.7 is similar in structure. Here the null Deviance was 149.8 on 57 degrees of
freedom and the residual Deviance was 92.5 on 54 degrees of freedom. The difference
in deviances is

null deviance - residual deviance = 149.8− 92.5 = 57.3

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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Table 14.6 ANOVA Results
for the SEF data in Table 14.5
shown in the form of
regression output.

Variable Coefficient SE tobs p-value

Intercept 3.49 .26 13.2 p < 10−6

Left 2.11 .37 5.6 p < 10−6

Up −.74 .21 −3.5 .0011
Right −.52 0.15 −3.4 .0014

Table 14.7 Poisson
regression results for the SEF
data in Table 14.5. The form
of the results is similar to that
given in Table 14.6.

Variable Coefficients SE tobs p-value

Intercept 1.12 .079 14.2 p < 10−6

Left .475 .096 4.9 3× 10−6

Up −.173 .063 −2.76 .0039
Right −.155 .052 −2.96 .0023

which should be compared to the chi-squared distribution on 3 degrees of freedom.
It is very highly significant. �

In Example 14.1 the results from Poisson regression were the same as with
ordinary linear regression (standard ANOVA), but the details are different. In some
situations the conclusions drawn from the two methods could be different.

14.1.6 Generalized linear models extend regression methods
to response distributions from exponential families.

We began this chapter by saying that modern regression models have the form given
by (14.3) and (14.4), which for convenience we repeat:

Yi ∼ p(yi|θi)

θi = f (xi).

The simple logistic regression model may be put into this form by writing

Yi ∼ B(ni, pi)

θi = β0 + xiβ1

where
θi = log

pi

1− pi

or, more succinctly,
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Yi ∼ B(ni, pi)

log
pi

1− pi
= β0 + xiβ1.

Similarly, the simple Poisson regression model may be written

Yi ∼ P(λi)

log λi = β0 + xiβ1.

Logistic and Poisson regression are special cases of generalized linear models. These
generalize linear regression by allowing the response variable to follow a distribution
from a certain class known as exponential families. They also use a link function that
links the expected value (the mean) μi of the data with the linear model β0 + β1xi.
For example, the usual link functions for binomial and Poisson data are the log odds
and the log, respectively, as shown above.

Exponential families have pdfs of the form

fY (y|η(θ)) = h(y) exp(η(θ)T(y)− B(θ)). (14.9)

For instance, in the Poisson case Y ∼ P(λ), the pdf (from Chapter 5, p. 112) is

P(Y = y) = 1

y!λ
ye−λ.

We can rewrite this in the form

1

y!λ
ye−λ = 1

y! exp(y log λ− λ).

If we let θ = λ, η(θ) = log λ, B(λ) = λ, T(y) = y and h(y) = 1/y! we obtain
(14.9). Now, with μ = λ, if we define the link function to be

g(μ) = log μ (14.10)

the simple Poisson regression model becomes

g(μ) = β0 + β1xi.

Here, the log provides the link in the sense that it is the function by which the mean
is transformed before being equated to the linear model.

We may rewrite (14.9) in the form

fY (y|η) = h(y) exp(ηT(y)− A(η))

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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in which case η = η(θ) is called the natural parameter (or canonical parameter). In
the Poisson case the natural parameter is log λ. The logarithmic link function is thus
often called the canonical link. In the binomial case the log odds function becomes
the canonical link. The statistic T(y) is sufficient in the sense described on p. 200. The
extension to the multiparameter case, in which η and T(y) are vectors, is immediate:

fY (y|η) = h(y) exp(ηT T(y)− A(η)). (14.11)

Assuming that Yi comes from an exponential family, we obtain a generalized linear
model by writing

g(μi) = β0 + β1xi, (14.12)

where μi = E(Yi). Equation (14.10) provided an example in the Poisson case, but
in (14.12) g(μ) may be any link function.

Common distributions forming exponential families include binomial, multino-
mial, Poisson, normal, inverse Gaussian, gamma, and beta. The introduction of gen-
eralized linear models allowed regression methods to be extended immediately to all
of these families, and a multiple-variable generalized linear model may be written

Yi ∼ fYi(yi|ηi)

g(μi) = xiβ (14.13)

where fYi(yi|ηi) is an exponential family pdf as in (14.11), μi = E(Yi), and g(μ) is
the link function. The unification of mathematical form meant that implementation
of maximum likelihood, and likelihood ratio tests, could use the same algorithms
with only minor changes in each particular case. Furthermore, for the canonical
link it turns out (under relatively mild conditions on the x and y variables5) that the
loglikelihood function is concave so that the MLE is unique. This guarantees that
the maximum of the loglikelihood function will be found by the function maximizer
(using Newton’s method, i.e., iterative quadratic approximation) beginning with any
starting value, and convergence will tend to be fast. Generalized linear models are
part of most statistical software.

In addition to the canonical link, several other link functions are usually available
in software. For example, it is usually possible to perform binomial regression using
the probit link instead of the log odds, or logit link. Similarly, a Poisson regression
could be performed using the identity link so that

log λi = β0 + β1xi

is replaced by

5 The regularity conditions insure non-degeneracy. For example, if there is only one x variable,
it must take on at least two distinct values so that a line may be fitted. The y observations also
must correspond to values that are possible according to the model; in dealing with proportions, for
instance, the observed proportions can not all be zero.
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λi = β0 + β1xi.

Occasionally, the identity link provides a better description of the data than the
canonical link, as in Example 14.3 on p. 406.

The terminology “generalized linear model” should not to be confused with “the
general linear model,” which is the matrix form of regression and includes ANOVA.
Both have the acronym GLM. Also, the “linear” part of the terminology is mislead-
ing because the framework really includes nonlinear and nonparametric models, as
well. Specifically, while linear models with the canonical link have especially nice
properties, more generally in Equation (14.4) f (xi) does not need to be linear. See
Examples 14.3, 14.4, and 14.5 in Section 14.2.1 and 14.2.2.

14.2 Nonlinear Regression

14.2.1 Nonlinear regression models may be fitted by least squares.

In Section 12.5.4 we pointed out that when f (x) is a polynomial in x, linear regression
could be used to fit a function of the form y = f (x) to (x, y) data. This involved the
“trick” of starting with an initial definition of x, relabeling it as x1 and then defining
the new variable x2 = x2

1, and so on for higher-order polynomials. The resulting
expectation of Y ,

E(Y) = β0 + β1x1 + β2x2,

followed the form required in the linear regression model. In particular, although the
relationship of Y and x, on average, was nonlinear, the coefficients entered linearly
into the model and therefore—as in any linear regression model—the likelihood
equations could be solved easily by linear algebra. A similar trick was used to fit
directional tuning data with a cosine function.

There are, however, many nonlinear relationships where this sort of manipulation
does not apply. For example, if

E(Y) = θ1e−θ2x

it is not possible to redefine the x variable so that the form becomes linear in the
parameters. Instead, we have the nonlinear regression model,

Yi = f (xi; θ)+ εi (14.14)

f (xi; θ) = θ1eθ2xi . (14.15)

Here, the usual assumption is εi ∼ N(0,σ2), independently (though, again, normality
is not crucial).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Models of the form (14.14)–(14.15) may still be fit by least-squares and, in fact,
least squares remains a special case of ML estimation. What is different is that the
equations defining the least-squares solution (the likelihood equations) are no longer
solved by a single linear algebraic step. Instead, they must be solved iteratively.
The problem is thus usually called nonlinear least squares. Example 1.6 on p. 14
provided an illustration, with the nonlinear function given by (1.6) and the fit based
on nonlinear squares given in Fig. 1.5.

Example 14.2 Magnesium block of NMDA receptors NMDA receptors, which
are ubiquitous in the vertebrate central nervous system, may be blocked by Mag-
nesium ions (Mg2+). To investigate the quantitative dependence of NMDA-receptor
currents on the concentration of Mg2+, Qian et al. (2005) measured currents at various
concentrations, then summarized the data using the equation

I

I0
= 1

1+ (
[Mg2+]

IC50
)nH

where the measurements are the current I and the Magnesium concentration [Mg2+],
I0 being the current in the absence of Mg2+. The free parameters are the “Hill
constant” nH and the 50 % inhibition concentration IC50 (when [Mg2+] = IC50 we
get I/I0 = .5). The authors estimated these constants using nonlinear least squares,
and they examined IC50 across voltages, and across receptor subunit types. �

The term “nonlinear regression” usually refers to models of the form (14.14). How-
ever, similar models may be used with binomial or Poisson responses, and may be
fit using ML. The next example illustrates nonlinear regression models using both
normal and Poisson distributions.

Example 14.3 Non-cosine directional tuning of motor cortical neurons
Amirikian and Georgopoulos (2000) investigated cosine and non-cosine directional
tuning for 2-dimensional hand movement among motor cortical neurons. In Sec-
tion 12.5.4 we considered the cosine tuning model given by (12.67) and (12.68)
where, according to (12.67), a neuron’s firing rate μ(v) when the movement is
in direction v was linear in the components v1 and v2 and the model could be fit
using linear regression. To investigate departures from cosine tuning, Amirikian and
Georgopoulos used a class of functions involving exponentials that are not amenable
to reconfiguration in a linear model and, as a result, reported that the tuning curves in
motor cortical neurons, for 2-dimensional hand movement, tend to be substantially
narrower than cosine tuning curves.

Examples of nonlinear fits to data from two neurons are shown in Fig. 14.2. The
functions fitted were

μ(v) = μ+ β exp(κ cos(θ − τ + η cos(θ − τ ))) (14.16)

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 14.2 Fits to activity of two neurons in primate motor cortex (reprinted with permission from
Kaufman et al. 2005). Each datapoint represents the observed firing rate of a neuron in the motor
cortex of a monkey during one repetition of a wrist movement to a particular target. The cosine
fits use the cosine function in Eq. (12.67) and the von Mises fits use more complicated parametric
forms given by Eq. (14.16), for Neuron 1, and Eq. (14.17) for Neuron 2. The cosine and von Mises
parametric fits use Poisson maximum likelihood for Neuron 1 and least squares for Neuron 2. Also
shown is the fit from a nonparametric regression method called cBARS, described by Kaufman
et al. (2005).

for the first neuron, where θ = arctan(v2/v1), and

μ(v) = μ+ β1 exp(κ1 cos(θ − τ1))+ β2 exp(κ2 cos(θ − τ2)) (14.17)

for the second neuron. These results come from Kaufman et al. (2005), who also
considered nonparametric methods, discussed in Chapter 15. The function in (14.16)
includes parameters corresponding roughly to the baseline firing rate, the amplitude,
width, and location of the mode, and the skewness about the mode. The function in
(14.17) includes parameters corresponding to two modes, one of which is constrained
to be in the positive direction and the other in the negative direction. This is of use
in fitting the data for the Neuron 2 in Fig. 14.2. For both neurons the data indicate
mild but noticeable departures from cosine tuning.

In fact, the data in Fig. 14.2 coming from Neuron 1 exhibited roughly Poisson
variation. The fits shown there were based on Yi ∼ P(μi) with μi = μ(v) given by
Eq. (14.16). This is a Poisson nonlinear regression model (with the identity link, as
defined in Section 14.1.6). �

Another example of nonlinear least squares has been discussed in earlier chapters.
We provide some more details here.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Example 8.2 (continued from p. 241) In presenting this example on p. 193 we said
the model took Y to be the spike width and x the preceding ISI length, and assumed
there was an ISI length τ such that, on average, Y is quadratic for x < τ and constant
for all x ≥ τ . As we noted, τ is called a change point. Specifically, the statistical
model was

Yi ∼ N(μ(xi),σ
2) (14.18)

independently for i = 1, . . . , n where

μ(x;β0,β1, τ ) =
{

β0 + β1(x − τ )2 if x < τ
β0 if x ≥ τ

(14.19)

and the least-squares estimate (β̂1, β̂1, τ̂ ) becomes defined by

n∑
i= 1

(
yi − μ(xi; β̂0, β̂1, τ̂ )

)2 = min
β0,β1,τ

n∑
i= 1

(yi − μ(xi;β0,β1, τ ))2 . (14.20)

The parameter τ enters nonlinearly into the statistical model, and this makes (14.20)
a nonlinear least squares problem. However, for every value of τ we may for-
mulate a simple linear regression problem as follows. Let us define new values
u1(τ ), . . . , un(τ ) by

ui(τ ) =
{

(xi − τ )2 if xi < τ
0 if x ≥ τ

so that μ(xi) in (14.19) may be rewritten as

μ(xi;β0,β1, τ ) = β0(τ )+ β1(τ )ui(τ ).

We then define (β̂0(τ ), β̂1(τ )) by

n∑
i= 1

(
yi − (β̂0(τ )+ β̂1(τ )ui)

)2 = min
β0(τ ),β1(τ )

n∑
i= 1

(yi − (β0(τ )+ β1(τ )ui))
2

which has the form of the simple least-squares regression problem on p. 12 and thus
is easily solved. Finally, defining

g(τ ) =
n∑

i= 1

(
yi − (β̂0(τ )+ β̂1(τ )ui)

)2
,

the nonlinear least squares problem in (14.20) is found by minimizing g(τ ). This can
be achieved in software (e.g., in Matlab) with one-dimensional nonlinear minimiza-
tion. Therefore, it was easy to implement nonlinear least squares for this change-point
problem. �
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Fig. 14.3 Initiation of firing in a neuron from the basal ganglia: change-point and bootstrap
confidence intervals when a quadratic model is used for the post-change-point firing rate. Two
forms of approximate 95 % confidence intervals are shown. The first is the usual estimate ±2SE
interval. The second is the interval formed by the .025 and .975 quantiles among the bootstrap
samples. The latter typically performs somewhat better, in the sense of having coverage probability
closer to .95. See Sect. 9.2.2.

14.2.2 Generalized nonlinear models may be fitted using maximum
likelihood.

Nonlinear relationships also arise in the presence of non-normal noise. We use the
term generalized nonlinear model to refer to a model in which the linear function
g(μi) in (14.13) is replaced by a nonlinear function. We give two examples of non-
linear Poisson regression. The first involves determination of a change-point, and is
similar to Example 8.2 in Section 14.2.1.

Example 14.4 Onset latency in a basal ganglia neuron An unfortunate symp-
tom of Parkinson’s disease (PD) is muscular rigidity. This has been associated with
increased gain and inappropriate timing of the long latency component of the stretch
reflex, which is a muscular response to sudden perturbations of limb position. One
of the important components of the stretch reflex is mediated by a trans-cortical
reflex, probably via corticospinal neurons in primary motor cortex that are sensi-
tive to kinesthetic input. To investigate the neural correlates of degradation in stretch
reflex, Dr. Robert Turner and colleagues at the University of Pittsburgh have recorded
neurons in primary motor cortex of monkeys before and after experimental produc-
tion of PD-like symptoms. One part of this line of work aims at characterizing neu-
ronal response latency following a limb perturbation (see Turner and DeLong 2000).
Figure 14.3 displays a PSTH from one neuron prior to drug-induced PD symptoms.
The statistical problem is to identify the time at which the neuron begins to increase

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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its firing rate, with the goal being to compare these latencies in the population of
neurons before and after induction of PD.

To solve this problem we used a change-point model similar to that used in
Example 8.2 on p. 408. In this case, we assume the counts within the PSTH time
bins—after pooling the data across trials—follow Poisson distributions. Let Yt be
the pooled spike count in the bin centered at time t and let μ(t) be its mean. The
change-point model assumes the mean counts are constant up until time t = τ ,
at which time they increase. For simplicity, we assume the count increases as a
quadratic. This gives us the Poisson change-point model

Yt ∼ P(μ(t))

with

μ(t) =
{

β0 if t ≤ τ
β0 + β1(t − τ )2 if t > τ .

The value τ is the change point. For any fixed τ the change-point model becomes
simply a Poisson regression model. Specifically, for a given τ we define

x =
{

0 if t ≤ τ
(t − τ )2 if t > τ .

We then apply Poisson regression with the regression variable x.
However, the parameter τ is unknown and is, in fact, the object of interest. We may

maximize the likelihood function iteratively over τ . That is, in software such as R or
Matlab we set up a loop within which, for a fixed τ , we perform Poisson regression
and obtain the value of the loglikelihood. We then iterate until we maximize the
loglikelihood across values of τ . This gives us the MLE of τ . We may then obtain a
SE for τ by applying a parametric bootstrap. Results are given in Fig. 14.3. �

Here is another example of a nonlinear model for spike counts.

Example 14.5 A Poisson regression model for a hippocampal place cell Neu-
rons in rodent hippocampus have spatially specific firing properties, whereby the
spiking intensity is highest when the animal is at a specific location in an environ-
ment, and falls off as the animal moves further away from that point (e.g., Brown et
al., 1998). Such receptive fields are called place fields, and neurons that have such
firing properties are called place cells. The left panel of Fig. 14.4 shows an example
of the spiking activity of one such place cell, as a rat executes a free-foraging task
in a circular environment. The rat’s path through this environment is shown, and the
location of the animal at spike times is overlain as dark dots. It is clear that the firing
intensity is highest slightly to the southwest of the center of the environment, and
decreases when the rat moves away from this point.

One very simple way to describe this hippocampal neural activity is to use a
Poisson generalized linear model for spike counts in successive time bins while the
rat forages, and to assume that the spike count depends on location in the environment
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Fig. 14.4 Spiking activity of a rat Hippocampal place cell during a free-foraging task in a circular
environment. Left Visualization of animal’s path and locations of spikes. Right Place field model
for this neuron, with parameters fit by the method of maximum likelihood.

based on a 2-dimensional bell-shaped curve. For this purpose of specifying the de-
pendence of spiking activity on location a normal pdf may be used. Let us take
Yt ∼ P(λt), with t signifying time, and then define

λt = exp

{
α− 1

2

(
x(t)− μx y(t) − μy

) (
σ2

x σxy

σxy σ2
y

)−1 (
x(t)− μx

y(t)− μy

)}
. (14.21)

The explanatory variables in this model are x(t) and y(t), the animal’s x and
y-position. The model parameters are (α,μx,μy,σ

2
x ,σ2

y ,σxy), where (μx,μy) is the
center of the place field, exp α is the maximum firing intensity at that point, and σ2

x ,
σ2

y , and σxy express how the intensity drops off away from the center. Note that it is
the shape of the place field that is assumed normal, not the distribution of the spiking
activity. The right panel of Fig. 14.4 displays a fit of the place field to the data in the
left panel. We will discuss models of this sort when we discuss point processes in
Chapter 19. �

14.2.3 In solving nonlinear optimization problems, good starting
values are important, and it can be helpful to
reparameterize.

As in maximization of any likelihood, use of the numerical procedures requires care.
Two important issues are the choice of initial values, and of parameterization. Both
of these may be illustrated with the exponential model (14.15).

Illustration: Exponential regression To fit the exponential model (14.15) a first
step is to reparameterized from θ to ω using ω1 = log(θ1) and ω2 = θ2 so that the
expected values have the form

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
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E(Y) = exp(ω1 + ω2x).

The loglikelihood is typically closer to being quadratic as a function of ω than as a
function of θ. Taking logs of both sides of this expectation equation gives

log E(Y) = ω1 + ω2x.

This suggests we may define Ui = log(Yi) and apply the linear model,

Ui = β0 + β1xi + εi. (14.22)

The resulting fitted values β̂0 β̂1 make good starting values for the iterative procedure
used to obtain ω1 and ω2. �

It is important to recognize the distinction between the exponential model in
(14.14) and (14.15) and the linearized version (14.22). Either could be used to fit
data, but they make different assumptions about the way the noise contributes. In
many examples, the fits based on (14.14) and (14.22) would be very close, but
sometimes the resulting inferences would be different. It is an empirical question
which model does a better job of describing the data. The point here, however, is that
if the exponential form is preferred, the log-linear form may still be used to obtain
starting values for the parameters. The linearization method of obtaining starting
values is frequently used in fitting nonlinear models. (See Bates and Watts (1988)
for further discussion.) These issues also arise in generalized nonlinear models.
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