
Chapter 19
Point Processes

At the beginning of this book, in Example 1.1 (p. 3), we described the activity of a
neuron recorded from the supplementary eye field. Interpreting Fig. 1.1 we said that,
toward the end of each trial, the neuron fired more rapidly under one experimental
condition than under the other. In that discussion we took for granted one of the
foundational teachings1 of neurophysiology, that neurons respond to a stimulus or
contribute to an action by increasing their firing rate. But what, precisely, do we
mean by “firing rate?” The definition of firing rate turns out to be both subtle and
important for statistical analysis of neural data.

Perhaps the simplest conception is that firing rate (FR) is number of spikes (action
potentials) per unit time. To compute it we would then count spikes over a time
interval of length �t and write

FR = number of spikes

�t
. (19.1)

While useful in many contexts, Eq. (19.1) suffers from a fundamental difficulty: it
depends strongly on the interval used in the calculation. As an extreme case, suppose
we were to examine an interval of length �t = 100 ms containing a single spike.
Rewriting in terms of seconds, we get �t = .1 s (seconds) and this would give us
FR = 10 spikes per second (10 Hz). But now suppose we shrink the interval down
to �t = 5 ms. Then we would have �t = .005 s and we would get FR = 200 Hz,
which is drastically different. How would we know what interval to choose?

To avoid this conundrum, and to begin the process of formulating a statistical
model, we do two things. First, we replace the spike count by its theoretical coun-
terpart, the expected spike count, and then we pass to the limit as �t → 0 so
that we obtain a firing rate at time t that no longer involves an interval. In other
words, we define a theoretical instantaneous firing rate. Note that for small �t the

1 Description of this phenomenon began with work of Edgar Adrian and Keffer Hartline and their
colleagues (e.g., Adrian and Zotterman 1926; Hartline and Graham 1932).
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564 19 Point Processes

spike count in (19.1) is either 0 or 1, which is a Bernoulli event with expected value
P(spike in (t, t+�t)). The theoretical instantaneous firing rate at time t then becomes

FR(t) = lim
�t→0

P(spike in (t, t + �t))

�t
. (19.2)

However, the definition in (19.2) omits any mention of the experimental context of
the observed firing rate. A more inclusive way to write firing rate as a function of
time is to allow it to depend on variables we write, collectively, as a vector xt . The
vector xt might refer to an experimental condition or it could involve such things as
refractory effects due to a previous spike shortly before time t (see Section 19.1.3),
or a local field potential that represents a substantial component of synaptic input
to the cell. We therefore have a more complete conceptualization of firing rate by
putting it in the form

FR(t|xt) = lim
�t→0

P(spike in (t, t + �t)|xt)

�t
. (19.3)

To flesh this out we must say how we calculate the probability in the numerator of
(19.3), which will take us through Section 19.3.2. Granting that we will get there,
we may state the central idea in statistical modeling of spike train data: neurophys-
iological phenomena may be represented through variables xt that are thought to
influence spiking activity. A statistical model for spike trains involves two things:
(1) a simple, universal formula for the probability density of the spike train in terms
of the instantaneous firing rate function, and (2) a specification of the way the firing
rate function depends on variables xt .

A major theme of this book is the use of probability to describe variation. In
Chapter 3 we considered events, which led to our description of variation using
probability distributions, and in Chapter 18 we examined sequences of temporally-
dependent observations, which were modeled as time series. Spike trains, however,
don’t quite fit into any of the molds we have constructed in the foregoing chap-
ters. They are sequences of varying event times, times at which action potentials
(spikes) occur—in repeated trials the spike times typically vary, as may be seen in
Fig. 1.1 of Example 1.1. To handle such sequences of event times we invoke a spe-
cial class of models called point processes. As we discuss in Section 19.3.4, the tools
needed for fitting point processes to spike train data are generalized linear models
(Chapter 14) and nonparametric regression (Chapter 15). Indeed, the models we dis-
cuss that involve instantaneous firing rate, conceptualized by (19.3), are called point
process regression models. The purposes of this chapter are, first, to review the way
point process representations of spike trains are defined in terms of instantaneous
firing-rate functions and, second, to show how point process regression models help
in understanding neural behavior.

The name “point process” reflects the localization of the events as points in time
together with the notion that the probability distributions evolve across time accord-
ing to a stochastic process. Point processes can be more general, so that the points
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can lie in a higher-dimensional physical or abstract space. In PET imaging, for exam-
ple, a radioisotope that has been incorporated into a metabolically active molecule is
introduced into the subject’s bloodstream and after these molecules become concen-
trated in specific tissues the radioisotopes decay, emitting positrons which may be
detected. These emissions represent a four-dimensional spatiotemporal point process
because they are localized occurrences both spatially, throughout the tissue, and in
time. Here, however, we focus on point processes in time and their application to
modeling spike trains.

The simplest point processes are Poisson processes, which are memoryless in the
sense that the probability of an event occurring at a particular time does not depend
on the occurrence or timing of past events. In Section 19.2.1 we discuss homogeneous
Poisson processes, which can describe highly irregular sequences of event times that
have no discernible temporal structure. When an experimental stimulus or behavior is
introduced, however, time-varying characteristics of the process become important.
In Section 19.2.2 we discuss Poisson processes that are inhomogeneous across time.
In Section 19.3 we describe ways that more general processes can retain some of the
elegance of Poisson processes while gaining the ability to describe a rich variety of
phenomena.

Spike trains are fundamental to information processing in the brain, and point
processes form the statistical foundation for distinguishing signal from noise in spike
trains. We have already seen in Chapters 14 and 15 examples of spike train analysis
using Poisson regression with spike counts. For this purpose, the Poisson regression
model may be conceptualized as involving counts observed over time bins of width
�t based on a neural firing rate FR(t). In Poisson regression, each Poisson distribution
has mean equal to FR(t) ·�t and then FR(t) is related to the stimulus (or the behavior)
by a formula we may write in short-hand as

log FR(t) = stimulus effects, (19.4)

meaning that log FR(t) is some function that is determined by the stimulus or behav-
ior. In Example 14.5, for instance, the right-hand side of (19.4) involved a quadratic
function that represented the effective distance of a rat from the preferred location of
a particular hippocampal place cell, and the result was a Poisson regression model
of the place cell’s activity. This sort of model may be considered a kind of simplified
prototype. When we pass to the limit as in (19.2) and use instantaneous firing rate,
the Poisson regression model becomes a Poisson process regression model.

Poisson processes are important, and they are especially useful for analyzing the
trial-averaged firing rate. When, in Example 15.1, we displayed the smoothed PSTH
under two experimental conditions, we were comparing two trial-averaged firing-
rate functions. We spell this out in Section 19.3.3. On the other hand, many phenom-
ena can only be studied within trials. For instance, oscillatory behavior, bursting,
and some kinds of influences of one neuron on another show substantial variation
across trials and may be difficult or impossible to detect from across-trial sum-
maries like the PSTH. Careful examination of spike trains within trials usually reveals
non-Poisson behavior: neurons tend not to be memoryless, but instead exhibit effects
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566 19 Point Processes

of their past history of spiking (e.g., of refractory effects or recent burst activity).
Non-Poisson models that incorporate history effects are described in Section 19.3,
and methods developed in that section produce within-trial analyses of spike trains.
In such cases, the instantaneous firing rate takes the form (19.3) and Eq. (19.4) must
be modified by including additional terms (as components of the variable xt) on the
right-hand side to incorporate effects that occur differently on each trial. For instance,
a firing-rate model might have the form

log FR(t|xt) = stimulus effects + history effects + coupling effects. (19.5)

In Section 19.3.4 we indicate how spike train data may be analyzed by fitting models
suggested by conceptualizations like (19.5), again using the methods developed in
Chapters 14 and 15.

19.1 Point Process Representations

19.1.1 A point process may be specified in terms of event times,
inter-event intervals, or event counts.

If s1, s2, . . . , sn are times at which events occur within some time interval we may
take xi = si − si−1, i.e., xi is the elapsed time between si−1 and si, and define
x1 = s1. This gives the inter-event waiting times xi from the event times and we
could reverse the arithmetic to find the event times from a set of inter-event waiting
times x1, . . . , xn using sj = ∑j

i=1 xi. In discussing point processes, both of these
representations are useful. In the context of spike trains, s1, s2, . . . , sn are the spike
times, while x1, . . . , xn are the inter-spike intervals (ISIs). Nearly all of our discussion
of event-time sequences will involve modeling of spike train behavior.

To represent the variability among the event times we let X1, X2, . . . be a sequence
of positive random variables. Then the sequence of random variables S1, S2, . . .

defined by Sj = ∑j
i=1 Xi is a point process on (0,∞). In fitting point processes to

data, we instead consider finite intervals of time over which the process is observed,
and these are usually taken to have the form (0, T ], but for many theoretical purposes
it is more convenient to assume the point process ranges across (0,∞).

Another useful way to describe a set of event times is in terms of the counts of
events observed over time intervals. The event count in a particular time interval may
be considered a random variable. For theoretical purposes it is helpful to introduce
a function N(t) that counts the total number of events that have occurred up to
and including time t. N(t) is called the counting process representation of the point
process. See Fig. 19.1. If we let �N(t1,t2] denote the number of events observed in
the interval (t1, t2], then we have �N(t1,t2] = N(t2) − N(t1). The count �N(t1,t2] is
often called the increment of the point process between t1 and t2. In the case of a
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Fig. 19.1 Multiple specifications for point process data: the process may be specified in terms of
spike times, waiting times, counts, or discrete binary indicators.

neural spike train, Si would represent the time of the ith spike, Xi would represent
the ith inter-spike interval (ISI), and �N(t1,t2] would represent the spike count in the
interval (t1, t2]. For event times Si and inter-event waiting times Xi we are dealing
with mathematical objects that are already familiar, namely sequences of random
variables, with the index i being a positive integer. The counting process, N(t), on
the other hand, is a continuous-time stochastic process, which determines count
increments that are random variables.

Keeping track of the times at which the count increases is equivalent to keeping
track of increments. Furthermore, for successive spike times si and si+1,if we set
t1 = si and consider t2 < si+1 then �N(t1,t2] = 0 but when t2 = si+1 then �N(t1,t2] =
1. Thus, keeping track of the times at which the count increases is equivalent to
keeping track of events themselves and, therefore, the counts provide a third way to
characterize a point process.

As an example of the way we may identify the event times with the counting
process, the set of times for which the counting process is less than some value j,
{t : N(t) < j}, is equivalent to the set of times for which the jth spike has not yet
occurred,

{
t : Sj > t

}
. Both of these representations express the set of all times that

precede the jth spike, but they do so differently. We can describe a point process
using spike times, interspike intervals, or counting processes and specifying any
one of these fully specifies the other two. It is often possible to simplify theoretical
calculations by taking advantage of these multiple equivalent representations.

19.1.2 A point process may be considered, approximately,
to be a binary time series.

At the beginning of the chapter we said that point process data are analyzed using
the framework of generalized linear models. This requires the discrete representation
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given at the bottom of Fig. 19.1. The event times, inter-event intervals, and count-
ing process all specify the point process in continuous time. Suppose we take an
observation interval (0, T ] and break it up into n small, evenly-spaced time bins.
Let �t = T/n, and ti = i · �t, for i = 1, . . . , n. We can now consider the discrete
increments �Ni = N(ti)−N(ti−1), which count the number of events in a single bin.
If we make �t small enough, it becomes extremely unlikely for there to be more than
one event in a single bin. The set of increments {�Ni; i = 1, . . . , n} then becomes a
sequence of 0s and 1s, with the 1s indicating the bins in which the events are observed
(see Fig. 19.1). In the case of spike trains, data are often recorded in this form, with
�t = 1 ms. To emphasize the point, we define Yi = �Ni, and put pi = P(Yi = 1),
so that Yi ∼ Bernoulli(pi). The Yis form a binary time series, that is, a sequence
of Bernoulli random variables that may be inhomogeneous (the pi may be differ-
ent) and/or dependent. Such a discrete-time process is yet another way to represent
a point process, at least approximately. It loses some information about the precise
timing of events within each bin, but for sufficiently small �t this loss of information
becomes irrelevant for practical purposes. Also, for small �t we have small pi and
the Bernoulli distributions may be approximated by Poisson distributions, according
to the result in Section 5.2.2. In other words, for small �t we may consider the point
process to be essentially a sequence of Poisson random variables. This will allow
us to use Poisson regression methods (which are part of generalized linear model
methodology) in analyzing data modeled as point processes. The rest of this chapter
is largely devoted to filling in the details and fleshing out the consequences, thereby
supplying the substance behind the informal statements (19.4) and (19.5).

19.1.3 Point processes can display a wide variety
of history-dependent behaviors.

In many stochastic systems, past behavior influences the future. The biophysical
properties of ion channels, for example, make it impossible for a neuron to fire
again immediately following a spike, creating a short interval known as the absolute
refractory period. In addition, after the absolute refractory period there is a relative
refractory period during which the neuron can fire again, but requires stronger input
in order to do so. These refractory effects are important cases of history dependence in
neural spike trains. To describe spike train variability accurately (at least for moderate
to high firing rates where the refractory period is important), the probability of a spike
occurring at a given time must depend on how recently the neuron has fired in the
past. A more complicated history-dependent neural behavior is bursting, which is
characterized by short sequences of spikes with small interspike intervals. In addition,
spike trains are sometimes oscillatory. For example, neurons in the CA1 region of
rodent hippocampus tend to fire at particular phases of the EEG theta rhythm. Thus,

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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in a variety of settings, probability models for spike trains make dependence on
spiking history explicit.

Example 19.1 Retinal ganglion cell under constant conditions Neurons in the
retina typically respond to patterns of light displayed over small sections of the visual
field. When retinal neurons are grown in culture and held under constant light and
environmental conditions, however, they will still spontaneously fire action poten-
tials. In a fully functioning retina, this spontaneous activity is sometimes described
as background firing activity, which is modulated as a function of visual stimuli.
A short segment of the spiking activity from one neuron appeared in Fig. 16.1. A
histogram of the ISIs appears in the left panel of Fig. 19.10. Even though this neuron
is not responding to any explicit stimuli, we can still see structure in its firing activity.
Although most of the ISIs are shorter than 20 ms, some are much longer: there is a
small second mode in the histogram around 60–120 ms. This suggests that the neu-
ron may experience two distinct states, one in which there are bursts of spikes (with
short ISIs) and another, more quiescent state (with longer ISIs). From Fig. 16.1 we
may also get an impression that there may be bursts of activity, with multiple spikes
arriving in quick succession of one another. �

Example 19.2 Beta oscillations in Parkinson’s disease Parkinson’s disease, a
chronic progressive neurological disorder, causes motor deficits leading to difficulty
in movement. Clinical studies have shown that providing explicit visual cues, as
guides, can improve movement in many patients, a possible explanation being that
cortical drive associated with cues may lead to dampening of pathological beta oscil-
lations (10–30 Hz) in the basal ganglia. To investigate this phenomenon, Sarma et al.
(2012) recorded from neurons in the basal ganglia (specifically, the substantia nigra)
while patients carried out a hand movement task. Because the period associated with
a 20 Hz oscillation is 50 ms, if a neuron’s activity is related to a beta oscillation it will
tend to fire roughly every 50 ms. Therefore, its probability of firing at time t will be
elevated if it fired previously 50 ms prior to time t. This is a form of history effect,
which the authors built into their neural models in order to examine whether it was
dampened due to visual cues. �

Example 19.3 Spatiotemporal correlations in visual signaling To better under-
stand the role of correlation among retinal ganglion cells, Pillow et al. (2008) exam-
ined 27 simultaneously-recorded neurons from an isolated monkey retina during
stimulation by binary white noise. The authors used a model having the form of
(19.5). They concluded, first, that spike times appear more precise when the spiking
behavior of coupled neighboring neurons is taken into account and, second, that in
predicting (decoding) the stimulus from the spike trains, inclusion of the coupling
term improved prediction by 20 % compared with a method that ignored coupling
and instead assumed independence among the neurons. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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19.2 Poisson Processes

19.2.1 Poisson processes are point processes
for which event probabilities do not depend on
occurrence or timing of past events.

The discussion in Section 19.1.3 indicated the importance of history dependence in
spike trains. On the other hand, a great simplification is achieved by ignoring history
dependence and, instead, assuming the probability of spiking at a given time has
no relationship with previous spiking behavior. This assumption leads to the class
of Poisson processes, which are very appealing from a mathematical point of view:
although they rarely furnish realistic models for data from individual spike trains,
they are a pedagogical—and often practical—starting point for point processes in
much the way that the normal distribution is for continuous random variables. As we
shall see below, it is not hard to modify Poisson process models to make them more
realistic.

Two kinds of Poisson processes must be distinguished. When event probabilities
are invariant in time Poisson processes are called homogeneous; otherwise they are
called inhomogeneous. We begin with the homogeneous case.

Definition: A homogeneous Poisson process with intensity λ is a point process
satisfying the following conditions:

1. For any interval, (t, t + �t], �N(t,t +�t] ∼ P(μ) with μ = λ�t.
2. For any non-overlapping intervals, (t1, t2] and (t3, t4], �N(t1,t2]

and �N(t3,t4] are independent.

For spike trains, the first condition states that for any time interval of length �t,
the spike count is a Poisson random variable with mean μ = λ ·�t. In particular, the
mean, which is the expected number of spikes in the interval, increases in proportion
to the length of the interval. Furthermore, the distribution of the spike count depends
on the length of the interval, but not on its starting time: �N(t,t + h] has the same
distribution as �N(s,s + h] for all positive values of s, t, h. This homogeneous process
is time-invariant, and is said to have stationary increments. The second condition
states that the spike counts (the counting process increments) from non-overlapping
intervals are independent. In other words, the distribution of the number of spikes
in an interval does not depend on the spiking activity outside that interval. Another
way to state this definition is to say that a homogeneous Poisson process is a point
process with stationary, independent increments.

A detail: There is one technical point to check: we need to be sure
that the distributions of overlapping intervals, given in the definition
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above, are consistent. For example, if we consider intervals (t1, t2) and
(t2, t3) we must be sure that the Poisson distributions for the counts
in each of these are consistent with the Poisson distribution for the
count in the interval (t1, t3). Specifically, in this case, we must know
that the sum of two independent Poisson random variables with means
μ = λ(t2 − t1) and μ = λ(t3 − t2) is a Poisson random variable with
mean μ = λ(t3 − t1). But this follows from the fact that if W1 ∼ P(μ1)

and W2 ∼ P(μ2) independently, and we let W = W1 + W2, then
W ∼ P(μ1 + μ2). We omit the details. �

We now come to an important characterization of homogeneous Poisson processes.

Theorem: A point process is a homogeneous Poisson process with intensity λ if and
only if its inter-event waiting times are i.i.d. Exp(λ).

Proof: We derive the waiting-time distribution for a homogeneous
Poisson process. Recalling that Xi is the length of the inter-event
interval between the (i − 1)st and ith event times, we have Xi > t
precisely when �N(Si−1,Si−1+t] = 0. From the definition of a homo-
geneous Poisson process, P

(
�N(Si−1,Si−1+t] = 0

) = e−λt . Therefore,
the CDF of Xi is FXi(t) = P (Xi ≤ t) = 1 − e−λt , which is the CDF
of an Exp(λ) random variable.
The converse of this theorem involves additional calculations and is
omitted. �

Recall from Section 5.4.2 that the exponential distribution is memoryless. Accord-
ing to this theorem, for a homogeneous Poisson process, at any given moment the
time at which the next event will occur does not depend on past events. Thus, the
homogeneous Poisson process “has no memory” of past events.

Another way to think about homogeneous Poisson processes is that the event times
are scattered “as irregularly as possible.” One characterization of the “irregularity”
notion is that, as noted on p. 120, the exponential distribution Exp(λ) maximizes the
entropy among all distributions on (0,∞) having mean μ = 1/λ. Here is another.

Result: Suppose we observe N(T) = n events from a homogeneous Poisson process
on an interval (0, T ]. Then the distribution of the event times is the same as that of
a sample of size n from a uniform distribution on (0, T ].
Proof: This appears as a corollary to the theorem on p. 577, where it is also stated
more precisely. �

Example 19.4 Miniature excitatory post-synaptic currents Figure 19.2 displays
event times of miniature excitatory postsynaptic currents (MEPSCs) recorded from
neurons in neonatal mice at multiple days of development. To record these events, the
neurons are patch clamped at the cell body and treated so that they cannot propagate
action potentials. These MEPSCs are thought to represent random activations of the
dendritic arbors of the neuron at distinct spatial locations, so that the two assumptions
of a Poisson process are plausible. The sequence of events in Fig. 19.2 looks highly

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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Fig. 19.2 A sequence of MEPSC event times. The inter-event intervals are highly irregular.

Fig. 19.3 Histogram and P–P plot of MEPSC inter-event intervals. Left Overlaid (in red) on the
histogram is an exponential pdf. Right P–P plot falls within diagonal bands, indicating no lack of
fit according to the Kolmogorov-Smirnov test (discussed in Section 19.3.5).

irregular, with no temporal structure. Figure 19.3 displays a histogram of the intervals
between MEPSC events. The distribution of waiting times is captured well by an
exponential fit, as shown both in left panel of Fig. 19.3 and in the P–P plot, in the
right panel, which compares2 the empirical CDF to that of an exponential. �

Important intuition may be gained by considering a discrete time representation
of a sequence of event times, as discussed in Section 19.1.2. Suppose we have an
observation interval (0, T ] and we consider partitioning (0, T ] into successive time
bins of width �t. If we make �t sufficiently small we can force to nearly zero the
probability of getting more than 1 event in any time bin. We then ignore the possibility
of getting more than 1 event in any bin and, as in Section 19.1.2, we then let Yi be
the binary random variable that indicates whether an event has occurred in the ith
time bin with P(Yi = 1) = pi, for i = 1, . . . , n (so that there are n time bins and
T = n�t). Each Yi is a Bernoulli (pi) random variable. If these Bernoulli random
variables are homogeneous (p1 = p2 = · · · = pn = p for some p) and independent,
so that they form Bernoulli trials, then we have

1. For the ith time bin (i�t, (i + 1)�t], �N(i�t,(i+1)�t) ∼ Bernoulli (p).

2 The small deviation of the curve from the diagonal in the lower left-hand corner of the P–P plot
is probably due to inaccuracy of measurement for very short inter-event intervals.
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2. For any two distinct time bins, (i�t, (i + 1)�t] and (j�t, (j + 1)�t],
�N(i�t,(i+1)�t) and �N(j�t,(j+1)�t) are independent.

Let us now put λ = p/�t and use the Poisson approximation to the binomial dis-
tribution (see Section 5.2.2) as �t → 0. The two properties above then become
essentially (for sufficiently small �t) the same as the two properties in the definition
of a Poisson process, given on p. 570. Therefore, leaving aside some mathematical
details (see (19.11)), we may say that the sequence of Bernoulli trials converges to a
Poisson process as �t → 0. That is, a homogeneous Poisson process is essentially a
sequence of Bernoulli trials. We used this idea repeatedly in interpreting the Poisson
distribution in Section 5.2. Rewriting μ = p/�t as p = λ�t and replacing �t with
the infinitesimal dt we obtain the shorthand summary

P(event in (t, t + dt]) = λdt. (19.6)

We extend the fundamental connection between Bernoulli random variables and
Poisson processes (and therefore also Poisson distributions) to the inhomogeneous
case in Section 19.2.2.

19.2.2 Inhomogeneous Poisson processes have time-varying
intensities.

We made two assumptions in defining a simple Poisson process: that the increments
were (i) stationary, and (ii) independent for non-overlapping intervals. The first step in
modeling a larger class of point processes is to eliminate the stationarity assumption.
For spike trains, we would like to construct a class of models where the spike count
distributions vary across time. In terms of the Bernoulli-trial approximation, we wish
to allow the event probabilities pi to differ.

Definition: An inhomogeneous Poisson process with intensity function λ(t) is
a point process satisfying the following conditions:

1. For any interval, (t, t + �t], �N(t,t+�t] ∼ P(μ) with μ = ∫ t2
t1

λ(t)dt.
2. For any non-overlapping intervals, (t1, t2] and (t3, t4], �N(t1,t2] and �N(t3,t4]

are independent.

This process is called an inhomogeneous Poisson process because it still has
Poisson increments but each increment has its own mean, determined by the value of
the rate function over the interval in question. The inhomogeneous Poisson process is
no longer stationary, but its increments remain independent and, as a result, it retains
the memoryless property, according to which the probability of spiking at any instant

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5


574 19 Point Processes

does not depend on occurrences or timing of past spikes. In shorthand notation we
modify (19.6) by writing

P(event in (t, t + dt]) = λ(t)dt. (19.7)

At the beginning of the chapter we said that point process data are analyzed using
the framework of generalized linear models, and in Section 19.1.2 we identified as
a key step the representation of a point process as a binary time series, at least
approximately. To take this step we need to equate, at least approximately, the point
process likelihood function and the likelihood function for a suitable binary time
series. In general, a likelihood function is proportional to the joint pdf of the data.
Suppose we have observed event times s1, . . . , sn. We assume these arise as observed
values of random variables S1, . . . , SN(T), where N(T) is the number of event times
in (0, T ] and is itself a random variable. We write the joint pdf of s1, . . . , sn as
fS1,...,SN(T)

(s1, . . . , sn), where we acknowledge in our subscript notation3 that N(T)

is also a random variable (taking the value N(T) = n in data consisting of n events).
Now suppose this joint pdf depends on some parameter vector θ. The likelihood
function becomes

L(θ) = fS1,...,SN(T)
(s1, . . . , sn|θ). (19.8)

In Example 14.5, for instance, we could consider the spike times to follow an inhomo-
geneous Poisson process and the parameter vector in (19.8) would consist of the para-
meters characterizing the spatial place cell distribution, θ = (μx,μy,σx,σy,σxy). To
get a formula for the likelihood function, the mathematical result we need is the
formula for the joint pdf of the spike times. To be sure we get essentially the same
likelihood function when we instead treat the spike train as a binary time series we
also need a statement that the joint pdf of the spike times is approximately equal
to the joint pdf for the binary time series. We provide both of these results below.
We then also present an additional fact about inhomogeneous Poisson processes that
aids intuition.

We begin with the joint pdf.

Theorem The event time sequence S1, S2, . . . , SN(T) from a Poisson process
with intensity function λ(t) on an interval (0, T ] has joint pdf

fS1,...,SN(T)
(s1, . . . , sn) = exp

{

−
∫ T

0
λ(t)dt

} n∏

i=1

λ(si). (19.9)

Proof: See Section 19.4. �

3 A more explicit notation would be fS1,...,SN(T),N(T)(S1 = s1, . . . , SN(T) = sn, N(T) = n), see
p. 577, where we make explicit the randomness due to N(T).
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We now turn to our ability to treat an inhomogeneous Poisson process as if it were
approximately the same as a binary time series described in Section 19.1.2, with

P(event in (t, t + �t]) ≈ λ(t)�t. (19.10)

We give a rigorous statement that the joint pdf of the spike times is approximately
equal to the joint pdf for the corresponding binary time series. More specifically, we
show that the joint pdf in Eq. (19.9) is the limit of relevant binary pdfs as �t → 0.

Let us consider a set of points s1, . . . , sn in the interval (0, T ] that, while concep-
tually representing event times, are for the purposes of the analysis below, taken to
be fixed. They represent the observed data. We will call them “atoms” because they
are points where probability mass will be placed. Suppose (0, T ] is decomposed into
N subintervals of length �t, so that �t = T/N . For i = 1, . . . , N let xi = 1 if the
ith subinterval contains one of the atoms and 0 otherwise.

Theorem Let λ(t) be a continuous function on [0, T ], set λi = λ(ti) for subinterval
midpoints ti, and let pi = (�t)λi. Then as �t → 0 we have

1

(�t)n

n∏

i=1

pxi
i (1 − pi)

1−xi → e− ∫ T
0 λ(t)dt

n∏

i=1

λ(si). (19.11)

To prove this result we need two lemmas. Let S = Sn be the set of i indices for
which xi = 1 and Sc the set of indices for which xi = 0.

Lemma 1 As �t → 0 we have

∏

S

λ(ti) →
n∏

i=1

λ(si).

Proof: The lemma follows immediately from continuity of λ(t). �
Lemma 2 As �t → 0 we have

∑

Sc

log(1 − (�t)λi) → −
∫ T

0
λ(t)dt.

Proof: This follows immediately from a first-order Taylor series expansion of the log
(Equation (A.5)), together with the definition of the integral as a limit4 of sums. �
Proof of the theorem: Putting the two lemmas together we easily prove the theorem.
We have

4 The limit of the sum over Sc is the same as the limit of the sum over S ∪ Sc because S has n
elements for all sufficiently small values of �t, so that lim

∑
S �tλi = 0.
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1

(�t)n

N∏

i=1

pxi
i (1 − pi)

1−xi = 1

(�t)n
(
∏

S

(�t)λi)(
∏

Sc

1 − (�t)λi)

= (
∏

S

λi)e
∑

Sc log(1−(�t)λi)

→ e− ∫ T
0 λ(t)dt

n∏

i=1

λ(si). �

To recap: taken together, the two theorems above show that the inhomogeneous
Poisson process spike time joint pdf is approximately equal to a binary time series
joint pdf, which allows us to use the binary random variables Yi (with pi = P(Yi = 1))
defined in Section 19.1.2 in place of the Poisson process. The memorylessness of the
Poisson process translates into independence among the Yis. However, the values of
pi may vary across time, corresponding to the inhomogeneity of the process. Impor-
tantly, we may estimate λ(t) by likelihood methods, applying Poisson regression
with suitably small time bins (e.g., having width 1 ms).

Example 1.1 (continued) In Chapter 1 we introduced the SEF neuron example, the
problem being to characterize the neural response under two different experimen-
tal conditions. In Chapter 8 we returned to the example to describe the benefit of
smoothing the PSTH, and in Chapter 15, p. 422, we showed how smoothing may be
accomplished using Poisson regression splines. The smoothing model was

Yi ∼ P(λi) (19.12)

log λi = f (ti) (19.13)

where ti was the time at the midpoint of the ith time bin (of the PSTH), Yi was the
corresponding spike count in that bin, and f(t) was taken to be a natural cubic spline
with two knots at specified locations.

An inhomogeneous Poisson process model may be constructed that is very similar
to the PSTH-based regression model. To get a Poisson process model we must take
the time bins to be smaller—small enough that on any trial there is at most one spike
in any bin. For instance, we may take the bins to have width 1 ms. Then, we must
define the resulting binary counts: for trial r let Yri be 1 if a spike occurs in the ith
bin and 0 otherwise. We write the model

Yri ∼ P(λi) (19.14)

log λi = f (ti) (19.15)

where, again, f(t) is a natural cubic spline with two knots at the locations specified
previously. Comparing (19.14) and (19.15) with (19.12) and (19.13) we have a model
of almost the same form. Aside from the width of the time bins, the distinction is that
(19.14) and (19.15) is a within-trial model, in terms of Yri, while (19.12) and (19.13)
is a model that pools events across trials by using the PSTH spike counts Yi. It turns

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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out that the intensity that results from fitting (19.14) and (19.15) is nearly identical to
the fit of f(t) resulting from (19.12) and (19.13). The closeness of results holds quite
generally because the smoothing of the PSTH is not very sensitive to the choice of
bin widths as long as the firing rate varies slowly enough to be nearly constant within
bins. Smoothing the PSTH amounts to fitting a Poisson process after jittering all the
spike times within a bin so that they are equal to the midpoint of that bin. �

The final theorem of this section gives another interesting way to think about
inhomogeneous Poisson processes. Let us begin by considering the PSTH, as used
in Examples 1.1 and 15.1. The PSTH is the peristimulus time histogram. But in what
sense is it a histogram? A histogram is a plot that displays counts, as does the PSTH,
but the counts are presumed to be repeated observations from a random variable, and
the histogram is supposed to be a rough estimate of the random variable’s pdf. What
are the repeated observations that generate the PSTH? And what pdf is it estimating?
The data are the event times. But, as we have already taken pains to point out, these
event times are not i.i.d. observations from a fixed distribution: they follow a point
process, which is different. How are they transformed into i.i.d. observations that
are suitable for making a histogram and estimating a pdf? While these questions are
puzzling at first, the answer turns out to be simple. According to the next theorem,
given some number n of events in an interval (0, T ], the event times will be scattered
across (0, T ] as if they were i.i.d. observations from a distribution having as its pdf
the normalized intensity λ(t). In other words, the positions of the event times are
just like i.i.d. observations; therefore, the PSTH is just like a histogram, and could
be treated as if it were an estimator of the normalized intensity function.

To state the result, let us first recall that the length of the sequence of event times
S1, S2, . . . , SN(T) depends on the random quantity N(T). Thus, to be more thorough
we might write the joint pdf above in the form

fS1,...,SN(T)
(s1, . . . , sn) = fS1,...,SN(T),N(T)(S1 = s1, . . . , SN(T) = sn, N(T) = n).

That is, the pdf on the left-hand side is really a short-hand notation for the pdf on
the right-hand side. This observation is used in the proof of the following theorem.
We will write fN (n) for the pdf of N(T) and note that, for a Poisson process with
intensity λ(t), N(T) ∼ P(μ) with μ = ∫ T

0 λ(t)dt.

Theorem Let S1, S2, . . . , SN(T) be an event sequence from a Poisson process with
intensity function λ(t) on an interval (0, T ]. Conditionally on N(T) = n, the sequence
S1, S2, . . . , Sn, has the same joint distribution as an ordered set of i.i.d. observations
from a univariate distribution having pdf

g(t) = λ(t)
∫ T

0 λ(u)du
.

Proof: We write the conditional pdf as
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fS1,...,SN(T)
(s1, . . . , sn|N(T) = n) = fS1,...,SN(T)

(s1, . . . , sn)

fN (n)

= e− ∫ T
0 λ(t)dt ∏n

i=1 λ(si)

e− ∫ T
0 λ(t)dt

(∫ T
0 λ(t)dt

)n

n!

= n!
n∏

i=1

λ(si)
∫ T

0 λ(t)dt

= n!
n∏

i=1

g(si).

Noting that there are n! ways to order the observations s1, . . . , sn, this completes the
proof. �

The theorem says that we may consider an inhomogeneous Poisson process with
intensity λ(t) to be equivalent to a two-stage process in which we (1) generate an
observation N = n from a Poisson distribution with mean μ = ∫ T

0 λ(t)dt; this tells
us how many events are in (0, T ]; we then (2) generate n i.i.d. observations from a
distribution having g(t) = λ(t)/

∫ T
0 λ(u)du as its pdf. We motivated the theorem by

suggesting that it shows how the PSTH acts like a histogram: the intensity function
λ(t) describes the event times that come from pooling together all the spike times
across all of the trials; the PSTH then estimates λ(t)/

∫ T
0 λ(u)du. Not only does

this explain the sense in which the PSTH is actually a histogram, it also motivates
application of a density estimator (e.g., a normal kernel density estimator or Gaussian
filter), as in Section 15.4, to smooth the PSTH.

When we specialize the theorem above to homogeneous Poisson processes we
get, as a corollary, the result stated as a theorem on p. 571.

Corollary Let S1, S2, . . . , SN(T) be an event sequence from a homogeneous Pois-
son process with intensity λ on an interval (0, T ]. Conditionally on N(T) = n, the
sequence S1, S2, . . . , Sn, has the same joint distribution as an ordered set of i.i.d.
observations from a uniform distribution on [0, T ].
Proof: This is a special case of the theorem in which λ(t) = λ so that g(t) = 1/T ,

i.e., g(t) is the pdf of the uniform distribution on (0, T ]. �

19.3 Non-Poisson Point Processes

19.3.1 Renewal processes have i.i.d. inter-event waiting times.

The homogeneous Poisson process developed in Section 19.2.1 assumed that the
point process increments were both stationary and independent of past event history.

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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To accommodate event probabilities that change across time, we generalized from
homogeneous to inhomogeneous Poisson processes. This eliminated the assump-
tion of stationary increments but it preserved the independence assumption, which
entailed history independence. Systems that produce point process data, however,
typically have physical mechanisms that lead to history-dependent variation among
the events, which cannot be explained with Poisson models. Therefore, it is necessary
to further generalize by removing the independence assumption.

The simplest kind of history-dependent behavior occurs when the probability of
the ith event depends on the occurrence time of the previous event si−1, but not on
any events prior to that. If the ith waiting time Xi is no longer memoryless, then
P(Xi > t + h|Xi > t) may not be equal to P(Xi > u + h|Xi > u) when u �= t, but
Xi is independent of event times prior to Si−1, and is therefore independent of all
waiting times Xj for j < i. Thus, the waiting time random variables are all mutually
independent. In the time-homogeneous case, they also all have the same distribution.
A point process with i.i.d waiting times is called a renewal process. We already saw
that homogeneous Poisson processes have i.i.d. exponential waiting times. There-
fore, renewal processes may be considered generalizations of homogeneous Poisson
processes.

A renewal model is specified by the distribution of the inter-event waiting times.
Typically, this takes the form of a probability density function, fXi(xi), where xi

can take values in [0,∞). In principle we can define a renewal process using any
probability distribution that takes on positive values, but there are some classes of
probability models that are more commonly used either because of their distributional
properties, or because of some physical or physiological features of the underlying
process.

For example, the gamma distribution, which generalizes the exponential, may be
used when one wants to describe interspike interval distributions using two para-
meters: the gamma shape parameter gives it flexibility to capture a number of char-
acteristics that are often observed in point process data. If this shape parameter is
equal to one, then the gamma distribution simplifies to an exponential, which as we
have shown, is the ISI distribution of a simple Poisson process. Therefore, renewal
models based on the gamma distribution generalize simple Poisson processes, and
can be used to address questions about whether data are actually Poisson. If the shape
parameter is less than one, then the density drops off faster than an exponential. This
can provide a rough description of ISIs when a neuron fires in rapid bursts. If the
shape parameter is greater than one, then the gamma density function takes on the
value zero at xi = 0, rises to a maximum value at some positive value of xi, and
then falls back to zero. This can describe the ISIs for a relatively regular spike train,
such as those from a neuron having oscillatory input. Thus, this very simple class
of distributions with only two parameters is capable of capturing, at least roughly,
some interesting types of history dependent structure.

While the gamma distribution is simple and flexible, it doesn’t have any direct
connection with the physiology of neurons. For neural spiking data, a renewal model
with a stronger theoretical foundation is the inverse Gaussian. As described in
Section 5.4.6, the inverse Gaussian also has two parameters and is motivated by

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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the integrate-and-fire conception of neural spiking behavior. Thus, a renewal process
with inverse Gaussian ISIs would be a simple yet natural model for neural activity
in a steady state.

One way to quantify the regularity of a renewal process is through the ISI coeffi-
cient of variation. We noted in (3.14) that exponentially-distributed random variables
have CV = 1, so this corresponds to a Poisson process. When CV < 1 the process
is more regular than Poisson (as would be a spike train from an oscillatory neuron),
while when CV > 1 the process is more irregular than Poisson (as would be a spike
train from a bursty neuron). This regularity or irregularity of a renewal process will
also be apparent in the distribution of counts and is often measured by the Fano
factor,

F(t, t + �t) = V(�N(t,t +�t])
E(�N(t,t +�t])

.

For a Poisson process we have F(t, t + �t) = 1. The counts will be relatively less
dispersed for regular renewal processes, so that F(t, t +�t) < 1, and more dispersed
for irregular processes, so that F(t, t + �t) > 1.

A general result that has implications for spike train analysis is the renewal the-
orem, which5 examines the expected number of events in an interval (t, t + h] as
t → ∞. For a Poisson process with intensity λ we have E(�N(t,t + h]) = λh, and
the waiting time distribution is exponential with mean μ = 1/λ. In other words, the
expected number of events in (t, t + h] is λh = h/μ, so that the expected number
of events is just the length of the interval divided by the average waiting time for an
event. For a renewal process the same statement is approximately true for large t.

Renewal Theorem Suppose a renewal process has waiting times with a continuous
pdf and a mean μ. Defining λ = 1/μ we have

lim
t→∞ E(�N(t,t + h]) = λh.

Proof: Omitted. �
Notice that if we take h sufficiently small in the renewal theorem, the count

�N(t,t+h] will, with high probability, be either 0 or 1 and then its expectation is
E(�N(t,t+h]) = P(�N(t,t+h] = 1). Thus, if we pick a large t and ask for the proba-
bility of an event in the infinitesimal interval (t, t + dt] by ignoring the time of the
most recent event and instead letting the renewal process start at time 0 and run until
we get to time t, we find that (19.6) continues hold.

A related result arises when we consider what happens when we combine multi-
ple renewal processes by pooling together all their event times. This sort of pooling
occurs, for example, in a PSTH when multiple spike trains are collected across mul-
tiple trials: in making the PSTH every spike time is used but the trial on which
it occurred is ignored. Such combination of point processes is called superpo-
sition. Specifically, if we have counting processes Ni(t), for i = 1, . . . , n then

5 A more general version of this result is often called Blackwell’s Theorem.

http://dx.doi.org/10.1007/978-1-4614-9602-1_3


19.3 Non-Poisson Point Processes 581

N(t) = ∑n
i=1 Ni(t) is the process resulting from superposition. First, we consider

the Poisson case.

Theorem For i = 1, . . . , n, let Ni(t) be the counting process representation of a
homogeneous Poisson process having intensity λi. Then the point process specified
by N(t) = ∑n

i=1 Ni(t) is a homogeneous Poisson process having intensity λ =∑n
i=1 λi.

Sketch of Proof: Because the sum of independent Poisson random variables is Pois-
son, condition 1 of the definition of a homogenous Poisson process is satisfied for
the superposition process. Because condition 2 is satisfied for all n independent
processes, it is also satisfied for the superposition process. �

Result The superposition of a large number of independent renewal processes
having waiting times with continuous pdfs and finite means is, approximately,
a Poisson process.

Proof: The mathematics involved in stating this result precisely are
rather intricate. We omit the proof, but offer the following heuristics
to make the result plausible.

Suppose that the n independent renewal processes have mean waiting
times μi = 1/λi, for i = 1, . . . , n. Let us consider intervals (t, t + h],
with h so small that, with large probability, across all n processes
at most 1 event occurs. Then the superposition increments �N(t,t+h]
are essentially binary variables. For the superposition to be Poisson,
these binary variables must be homogeneous and independent. By the
renewal theorem, for large t,

P(�Ni
(t,t+h] = 1) ≈ λih,

where λi = 1/μi and

P(�Ni
(t,t+h] = 0) ≈ 1 − λih.

When we pool all the processes together, the event �N(t,t + h] = 1 will
occur if at least one process has an event, and otherwise�N(t,t + h] = 0,
which has probability

P(�N(t,t+h]=0) ≈ (1−λ1h)(1−λ2h) · · · (1−λnh) ≈ e−λt ≈ 1−λh

and this, in turn, shows that

P(�N(t,t+h] = 1) ≈ λh,
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as for a Poisson process, so that homogeneity holds, approximately.
As far as independence is concerned, the key point is that the renewal
processes are independent of one another, so that the only depen-
dence in the superposition is due to events from the same process,
which are very rare among the large numbers of events in the super-
position process. That is, if we assume n is so large that, for all k,
P(�N(t,t+h] = 1) >> P(�Nk

(t,t+h] = 1), then when we consider two
non-overlapping intervals (t1, t1 + h] and (t2, t2 + h], relative to the
superposition process, the probability that the kth process has events
in both intervals is negligible. This is another way of saying that the
identity of events in the superposition gets washed out as the number
of processes increases. �

By combining this superposition result and the renewal theorem we obtain a prac-
tical implication: the superposition of multiple renewal processes will be approxi-
mately a Poisson process, but we can expect the approximation to be better for large
t, after initial conditions die out. If, for example, we take multiple spike trains, and if
time t = 0 has a physiological meaning related to the conditions of the experiment,
then we may expect the initial conditions to affect the spike trains in a reproducible
way from trial to trial so that even after pooling we might see non-Poisson behavior
near the beginning of the trial; as such effects dissipate across time we would expect
the pooled spike trains to exhibit Poisson-process-like variation.

19.3.2 The conditional intensity function specifies the joint
probability density of spike times for a general point process.

In Section 19.2.2 we described the structure of an inhomogeneous Poisson process
in terms of an intensity function that characterized the instantaneous probability of
firing a spike at each instant in time, as in (19.6). In an analogous way, a general point
process may be characterized by its conditional intensity function. Poisson processes
are memoryless but, in general, if we want to find the probability of an event in a
time interval (t, t + �t] we must consider the timing of the events preceding time t.
Let us denote the number of events prior to t by N(t−),

N(t−) = maxu<tN(u).

We call the sequence of event times prior to time t the history up to time t and write
it as Ht = (S1, S2, . . . , SN(t−)). For a set of observed data we would write Ht =
(s1, s2, . . . , sn) with the understanding that N(t−) = n. The conditional intensity
function is then given by

λ(t|Ht) = lim
�t→0

P(�N(t,t+�t] = 1|Ht)

�t
, (19.16)
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where P(�N(t,t+�t] = 1|Ht) is the conditional probability of an event in (t, t + �t]
given the history Ht . Taking �t to be small we may rewrite Eq. (19.16) in the form

P(�N(t,t+�t] = 1|Ht) ≈ λ(t|Ht)�t. (19.17)

Or, in shorthand,
P(event in (t, t + dt]|Ht) = λ(t|Ht)dt, (19.18)

which generalizes (19.6). According to (19.18) the conditional intensity function
expresses the instantaneous probability of an event. It serves as the fundamental
building block for constructing the probability distributions needed for general point
processes.6 A mathematical assumption needed for theoretical constructions is that
the point process is orderly, which means that for a sufficiently small interval, the
probability of more than one event occurring is negligible. Mathematically, this is
stated as

lim
�t→0

P(�N(t,t+�t] > 1|Ht)

�t
= 0. (19.19)

This assumption is biophysically plausible for a point process model of a neuron
because neurons have an absolute refractory period. In most situations, the probability
of a neuron firing more than one spike is negligibly small for �t < 1 ms.

Once we specify the conditional intensity for a point process, it is not hard to
write down the pdf for the sequence of event times in an observation interval (0, T ].
In fact, the argument is essentially the same as in the case of the inhomogeneous
Poisson process, with the conditional intensity λ(t|Ht) substituted for the inten-
sity λ(t). The key observation is that the conditional intensity behaves essentially
like a hazard function, the only distinction being the appearance of the stochastic
history Ht .

Theorem The event time sequence S1, S2, . . . , SN(T) of an orderly point process on
an interval (0, T ] has joint pdf

fS1,...,SN(T)
(s1, . . . , sn) = exp

{

−
∫ T

0
λ(t|Ht)dt

} n∏

i=1

λ(si|Hsi) (19.20)

where λ(t|Ht) is the conditional intensity function of the process.

6 Because the history Ht = (S1, S2, . . . , SN(t−)) is itself a point process, it is stochastic and,
therefore, the conditional intensity is stochastic. The definition (19.18) includes two separable
steps: first, we define the conditional intensity

λ(t|s1, . . . , sn) = lim
�t→0

P(�N(t,t+�t] = 1|N(t−) = n, S1 = s1, . . . , Sn = sn)

�t

for every possible vector (s1, . . . , sn) making up the history Ht , and then we replace the specific
values N(t−) = n and (S1 = s1, . . . , Sn = sn) with their stochastic counterparts written as
Ht = (S1, S2, . . . , SN(t−)).
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Proof: See Section 19.4. �
Equation (19.20) has the same form as (19.9), the only distinction being the

replacement of the Poisson intensity λ(t) in (19.9) with the conditional intensity
λ(t|Ht) in (19.20).

We may also approximate a general point process by a binary process. For small
�t, the probability of an event in an interval (t, t + �t]

P(event in (t, t + �t]|Ht) ≈ λ(t|Ht)�t (19.21)

and the probability of no event is

P(no event in (t, t + �t]|Ht) ≈ 1 − λ(t|Ht)�t. (19.22)

Equation (19.21) generalizes (19.10). If we consider the discrete approximation,
analogous to the Poisson process case, we may define pi = ∫

λ(t|Ht)dt where the
integral is over the ith time bin. We again get Bernoulli random variables Yi with
P(Yi = 1) = pi but now these Yi random variables are dependent, e.g., we may
have P(Yi = 1|Yi−1 = 1) �= pi. The theorem giving (19.11) holds again when we
replace λ(t) with λ(t|Ht). In practice, spike train analyses using dependent binary
variables are a little more complicated than those using independent binary vari-
ables, but it remains relatively easy to formulate history-dependent models for these
dependent variables by following a regression strategy that is very similar to that
used previously, on p. 576. We give examples in Section 19.3.4.

19.3.3 The marginal intensity is the expectation
of the conditional intensity.

Equation (19.16) gave the definition of the conditional intensity function. We now
define the unconditional or marginal intensity function as

λ(t) = lim
�t→0

P(�N(t,t+�t] = 1)

�t
. (19.23)

Definition (19.23) may be rewritten in some informative ways. First, note that if X
is a binary random variable its expectation is E(X) = P(X = 1), as in (15.2). For
�t sufficiently small, �N(t,t+�t] is a binary random variable so that (19.23) may be
written

λ(t) = lim
�t→0

E(�N(t,t+�t])
�t

. (19.24)

That is, the marginal intensity is the expected spike count density.

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Next, according to the law of total probability (p. 86), for a pair of random variables
Y and X and an event A we have P(X ∈ A) = EY (P(X ∈ A|Y)). Letting Ht play the
role of Y and �N(t,t+�t] = 1 the role of X ∈ A, we get, similarly,

P(�N(t,t+�t] = 1) = EHt

(
P(�N(t,t+�t] = 1|Ht)

)

and

λ(t) = lim
�t→0

EHt

(
P(�N(t,t+�t] = 1|Ht)

)

�t
.

By interchanging7 the expectation and limiting operation we may then write

λ(t) = EHt (λ(t|Ht)). (19.25)

Equation (19.25) explains the name “marginal” intensity. The intensity λ(t) is mar-
ginal in much the same sense as when we have a pair of random variables (X, Y) and
speak of the distribution of X as a marginal distribution because it is derived by aver-
aging over all possible values of Y . Here, λ(t) results from averaging the conditional
intensity over all possible histories Ht . In the case of spike trains, the conditional
intensity would apply to individual trials, while the marginal intensity would be the
theoretical time-varying firing rate after averaging across trials. Importantly, we may
consider λ(t) to be the function being estimated by the PSTH. This does not require
us to assume the trials are in any sense all the same. There could be some source of
trial-to-trial variation, or even systematic variation (such as effects associated with
learning across trials). Consideration of λ(t) takes place whenever the average across
trials seems meaningful and interesting.

As in Eq. (19.17) we may also write

P(�N(t,t+�t] = 1) ≈ λ(t)�t (19.26)

and we have the shorthand

P(event in (t, t + dt]) = λ(t)dt, (19.27)

keeping in mind that we also take the left-hand side to mean

P(event in (t, t + dt]) = EHt P(event in (t, t + dt]|Ht).

Equation (19.27) must be compared with (19.18) and, of course, it has the same form
as (19.6). We may therefore think of the average across histories (for spike trains,
the average across trials) as defining a theoretical inhomogeneous Poisson process
intensity. This is the intensity that is estimated by the PSTH.

7 General theory justifying the interchange of limit and expectation applies here.
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The distinction between conditional and marginal intensities is so important for
spike train analysis that we emphasize it, as follows.

If we consider spike trains to be point processes, within trials the instantaneous
firing rate is λ(t|Ht) and we have

P(spike in (t, t + dt]|Ht) = λ(t|Ht)dt,

while the across-trial average firing rate is λ(t) and we have

P(spike in (t, t + dt]) = λ(t)dt.

19.3.4 Conditional intensity functions may be fitted
using Poisson regression.

On p. 576 we discussed the way Poisson regression may be used to fit inhomoge-
neous Poisson process models. The key theoretical result that made this possible was
Eq. (19.11) in conjunction with (19.10). As we said on p. 584, that theorem holds
again for conditional intensity functions using Eq. (19.21). This means that Poisson
regression can again be used for non-Poisson point processes.

We now give some examples in which conditional intensity functions have been
fitted to spike train data.

Example 19.1 (continued from p. 569) Let us take time bins to have width �t = 1
ms and write λk = λ(tk|Htk ), where tk is the midpoint of the kth time bin. Defining

log λk = α0 +
120∑

j=1

αj�N(k−j−1,k−j], (19.28)

we get a model with 120 history-related explanatory variables, each indicating
whether or not a spike was fired in a 1 ms interval at a different time lag. The para-
meter α0 provides the log background firing rate in the absence of prior spiking
activity within the past 121 ms. Using Poisson regression with ML estimation (as in
Section 14.1) we obtained α̂0 = 3.8 so that, if there were no spikes in the previous
121 ms, the conditional intensity would become λk = exp(α̂0) = 45 spikes per
second, corresponding to an average ISI of 22 ms. The MLEs α̂i obtained from the
data are plotted in Fig. 19.4, in the form exp{α̂i}. The α̂i values related to 0–2 ms
after a spike are large negative numbers, so that exp{α̂i} is close to zero, leading
to a refractory period when the neuron is much less likely to fire immediately after

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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Fig. 19.4 Parameter estimates for history-dependent retinal conditional intensity model (bold line)
together with confidence intervals (dotted line), which indicate uncertainty in the estimates (based
on maximum likelihood). The x-axis indicates the lag time in milliseconds.

another spike. However, the estimates related to 4–13 ms after a spike are substan-
tially positive, leading to an increase in the firing probability. For example, if the only
spike in the 120 ms history occurred 6 ms in the past, then the background conditional
intensity of 45 spikes per seconds is multiplied by a factor of about 3.1, leading to
a conditional intensity of 140 spikes per second. This phenomenon accounts for the
rapid bursts of spikes observed in the data. (The same data were discussed in the con-
text of burst detection in Example 16.3 on p. 458.) Many of the remaining parameters
are close to zero, and hence exp{α̂i} is close to one, indicating that the correspond-
ing history term has no effect on the spiking probability. Figure 19.5 displays the
ISI histogram with exponential and Inverse Gaussian renewal model pdfs overlaid,
and also the pdf for the model of Eq. (19.28). The exponential model overestimates
the number of very short ISIs (0–4 ms), and both renewal models underestimate the
number of ISIs between 5–10 ms and overestimate the number of ISIs between 10–
60 ms. In contrast, the conditional intensity model in Eq. (19.28) accurately predicts
the number of ISIs across all ISI lengths. �
Example 19.2 (continued) On p. 569 we said that a beta oscillation at 20 Hz could
be represented in the history effects as an elevated probability of firing at time t
when the neuron fired previously 50 ms prior to time t. Using Eq. (19.28) this would
be represented by positive αj coefficients around j = 50. Sarma et al. reduced the
number of parameters, replacing (19.28) with

log λk = α0 +
10∑

j=1

αj�Nk−j +
14∑

i=1

γi�N(k−(10i+9),k−10i]. (19.29)

In this version of the model, when γi is positive there is an increase in the log prob-
ability of firing when the neuron previously fired in the interval from 10i to 10i + 9
ms in the past. Thus, the presence of a beta oscillation would produce a positive
coefficient γ5 (corresponding to 50–59 ms in the past, or 17–20 Hz). An example of
a neuron having a positive γ5 coefficient was given by the authors, reproduced here
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(a) (b)

Fig. 19.5 ISI histogram and fitted pdfs. Panel a: ISI histogram overlaid with pdfs from exponential
(solid line) and inverse Gaussian (dashed line) renewal models. Panel b: ISI histogram overlaid
with pdf (solid line) from model defined by Eq. (19.28).

Fig. 19.6 Plots of γ coefficients using model (19.29) for a neuron recorded from the substantia
nigra for a cued hand movement. Left coefficients before initiation of movement. Right coefficients
after initiation of movement. Adapted from Sarma et al.

in Fig. 19.6. Results before and after movement initiation are shown in Fig. 19.6,
when an explicit visual cue showed the subject where to move. In this case there
was a dampening of beta oscillations during movement. The authors decomposed
the timing of beta oscillations further and found that, among many substantia nigra
cells, there was evidence of decreased beta oscillation beginning immediately fol-
lowing illumination of the visual cue. Based on additional results they suggested that
execution of a motor plan following a cue may be suppressing pathological activity
in the substantia nigra, which may explain improved task performance. �

A second way to introduce history dependence is to begin with the hazard function
of a renewal process and then modify the conditional intensity so that it can vary
across time. This extends to renewal processes the method used for allowing Poisson
processes to become inhomogeneous. In a homogeneous Poisson process, the waiting
times are not only i.i.d., they are also memoryless: the probability of an event does not
depend on when the last event occurred. To get an inhomogeneous Poisson process,
we retain the memorylessness but introduce a time-varying conditional intensity.
A simple idea is to take a renewal process and, similarly, introduce a time-varying
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factor. For a renewal process, the probability of an event at time t depends on the
timing of the most recent previous event s∗(t), but not on any events prior to s∗(t).
If we allow the conditional intensity to depend on both time t and the time of the
previous event s∗(t) we obtain a form

λ(t|Ht) = g(t, s∗(t)) (19.30)

where g(x, y) is a function to be specified. Models of this type are sometimes called
Markovian or Inhomogeneous Markov Interval (IMI) models.8 In an inhomogeneous
Poisson process the conditional intensity takes the form

λ(t|Ht) = g0(t)

where g0(t) becomes the intensity λ(t). In a renewal process the conditional intensity
takes the form

λ(t|Ht) = g1(t − s∗(t))

where g1(t − s∗(t)) becomes the hazard function for the waiting time distribution.
The IMI model generalizes both of these, creating an inhomogeneous version of a
renewal model.9 The simplest IMI model takes the conditional intensity to be of the
multiplicative form10

λ(t|Ht) = g0(t)g1(t − s∗(t)). (19.31)

A point process having conditional intensity of the form (19.30) or (19.31) may be
fitted using binary Poisson regression, as in Example 1.1 on p. 576, except now with
the additional terms representing the function g1(u) (where u = t − s∗(t)). A simple
method is to fit the functions g0(t) and g1(u) using Poisson regression splines, in
much the same way as discussed previously on p. 422 and 576 for Example 1.1.

Example 1.1 (continued from p. 576) Kass and Ventura (2001) fitted a model of
the form (19.31) to data from an SEF neuron recorded for the study of Olson et al
(2000). To do this they wrote

log λ(t|Ht) = log g0(t) + log g1(t − s∗(t))

8 The terminology is intended to signify that the history dependence is limited to the previous spike
time. A discrete-time stochastic process is a Markov process if the probability that the process will
be in a particular state at time t depends only on the state of the process at time t − 1.
9 Because integrate-and-fire neurons reset to a baseline subthreshold voltage after firing, they
necessarily follow Eq. (19.30). Further discussion of IMI models and their relationship to integrate-
and-fire neurons is given in Koyama and Kass (2008).
10 The functions g0(t) and g1(u) are defined only up to a multiplicative constant. That is, for any
nonzero number c if we multiply g0(t) by c and divide g1(u) by c we do not change the result. Some
arbitrary choice of scaling must therefore be introduced. In Fig. 19.7 the constant was chosen so
that g0(t) was equal to the Poisson process intensity at time t = 50 ms after the appearance of the
visual cue.
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Fig. 19.7 Plot of the function g1(t − s∗(t)) defined in (19.31) for the SEF data. The function is
scaled so that a value of 1 makes the conditional intensity equal to the Poisson process intensity at
time t = 50 ms after the appearance of the visual cue. Adapted from Kass and Ventura (2001).

Fig. 19.8 Refractory effects in sciatic nerve of a frog. The y-axis is the reciprocal of the voltage
threshold required to induce a second spike following a previous spike. The value 100 on the y-axis
indicates the required reciprocal voltage when there was a long gap between the two successive
action potentials. Adapted from Adrian and Lucas (1912).

which is an instance of (19.5) without coupling terms. Kass and Ventura took both
log g0(t) and log g1(u) to be splines with a small number of knots and applied Poisson
regression (see p. 422) using standard software. They showed that the model fitted
the data better than an inhomogeneous Poisson model (using the graphical method
in Section 19.3.5), and that inclusion of cross-product terms did not improve the fit
(the likelihood ratio test for the additional terms was not significant).

A plot of the resulting non-Poisson recovery function g1(u) is shown in Fig. 19.7.
For a Poisson process this function would be constant and equal to 1. The plot shows
neural firing to be inhibited, compared with Poisson, for about 10 milliseconds and
then it becomes more likely to fire, with the increase declining gradually until it
returns to a baseline value. �
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Fig. 19.9 Plots of inverse Gaussian hazard function for three different values of the coefficient
of variation, .7 (top curve), 1 (middle curve), and 1.3 (bottom curve). These values correspond to
the rough range of those commonly observed in cortical interspike interval data. The theoretical
coefficient of variation is given by Eq. (5.16).

The non-monotonic behavior of the recovery function g1(t − s∗(t)) in the forego-
ing analysis of Example 1.1 may seem somewhat surprising, but anecdotal evidence
suggests it may be common. Interestingly, Adrian and Lucas (1912) found a qualita-
tively similar result by a very different method. They stimulated a frog’s sciatic nerve
through a second electrode and examined the time course of “excitability,” which
they defined as the reciprocal of the voltage threshold required to induce an action
potential. Figure 19.8 plots this excitability as a function of time since the previous
stimulus. There is again a relative refractory period of approximately 10 ms followed
by an overshoot and a gradual return to the baseline value. Furthermore, the the-
oretical inter-spike interval distribution for an integrate-and-fire neuron (following
a random walk generated by excitatory and inhibitory post-synaptic potentials) is
inverse Gaussian (see Section 5.4.6), and the hazard function for an inverse Gaussian
has a non-monotonic shape, shown in Fig. 19.9, that closely resembles the typical
recovery function. The qualitative shape of the recovery function shown in Fig. 19.7
is thus consistent with what we would expect from the point of view of theoretical
neurobiology.

In many experimental settings spike trains are collected to see how they differ
under varying experimental conditions. The conditions may be summarized by a
variable or vector, often called a covariate (as in regression, see p. 332). Furthermore,
there may be other variables that may be related to spiking activity, which could be
time-varying, such as a local field potential. Let us collect any such covariates into
a vector denoted by ut if we regard them as fixed by the experimenter, and Vt if

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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they should be considered stochastic. We then write Xt = (Ht, ut, Vt) and let the
conditional intensity become a function not only of time and history, but also of
the covariate vector Xt . Thus, for an observation Xt = xt we write the conditional
intensity in the form λ(t|xt). With this in hand we may generalize the statement on
p. 586, allowing it to cover the interesting cases implied by our discussion surrounding
Eq. (19.5), as follows:

If we consider spike trains to be point processes, within trials the instantaneous
firing rate is λ(t|xt) and we have

P(spike in (t, t + dt]|Ht) = λ(t|xt)dt. (19.32)

We may also generalize formula (19.20).

Theorem If the conditional intensity of an orderly point process on an interval
(0, T ] depends on the random process Xt , so that when Xt = xt it may be written
in the form λ(t|xt), then, conditionally on Xt = xt , the event time sequence
S1, S2, . . . , SN(T) has joint pdf

fS1,...,SN(T)|Xt (s1, . . . , sn|Xt = xt) = exp

{

−
∫ T

0
λ(t|xt)dt

} n∏

i=1

λ(si|xt).

(19.33)

Proof: The proof is the same as that given for (19.20) in Section 19.4 with xt replacing
Ht . �

A detail: If we are interested in the variation of the conditional intensity
with the random vector Xt we can emphasize this by writing it in the
form λ(t|Xt). For example, in a multi-trial experiment, the firing rate
may vary across trials, and the conditional intensity could include a
component that changes across trials (see Ventura et al. 2005b). In
such situations, the model includes two distinct sources of variability:
one due to variability described by the point process pdf in (19.33)
and the second due to the way the conditional intensity varies with Xt .
The resulting point process is often called doubly stochastic. �

Example 16.6 (continued from p. 472) We now give some additional details about
the model used by Frank et al (2002). They applied a multiplicative IMI model to
characterize spatial receptive fields of neurons from both the CA1 region of the
hippocampus and the deep layers of the entorhinal cortex (EC) in awake, behaving
rats. In their model, each neuronal spike train was described in terms of a conditional
intensity function of the form (19.31), where the temporal factor g0(t) became
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g0(t) = gS(t, ut)

where ut is the animal’s two-dimensional spatial location at time t. In other words,
gS(t, ut) is a time-dependent place field. As we said on p. 472 the authors adopted
a state-space model (see Section 16.2.4), where the state variables involved features
of the place field. By modeling the resulting conditional intensity in the form

λ(t|xt) = gS(t, ut)g1(t − s∗(t))

the authors found consistent patterns of plasticity in both CA1 hippocampal neurons
and deep entorhinal cortex (EC) neurons, which were distinct: the spatial intensity
functions of CA1 neurons showed a consistent increase over time, whereas those of
deep EC neurons tended to decrease. They also found that the ISI-modulating factor
g1(t − s∗(t)) of CA1 neurons increased only in the “theta” region (75–150 ms),
whereas those of deep EC neurons decreased in the region between 20 and 75 ms. In
addition, the minority of deep EC neurons whose spatial intensity functions increased
in area over time fired in a more spatially specific manner than non-increasing deep
EC neurons. This led them to suggest that this subset of deep EC neurons may
receive more direct input from CA1 and may be part of a neural circuit that transmits
information about the animal’s location to the neocortex. �

It is easy to supplement (19.31) with terms that consider not only the spike
s∗(t) immediately preceding time t, but also the spike s2∗(t) preceding s∗(t), s3∗(t)
preceding s2∗(t), etc. One way to do this is to write

λ(t|Ht) = g0(t)g1(t − s∗(t))g2(t − s2∗(t))g3(t − s3∗(t)) (19.34)

or, equivalently,

log λ(t|Ht) = log g0(t) + log g1(t − s∗(t))
+ log g2(t − s2∗(t)) + log g3(t − s3∗(t))

and then use additional spline-based terms to represent log g2(t − s2∗(t)) and
log g3(t − s3∗(t)) in a Poisson regression.

Example 1.1 (continued) In their study of the model (19.31) for SEF neurons,
described on p. 589, Kass and Ventura also used a model that included several spikes
preceding time t, as in (19.34). The implementation again used splines with a small
number of knots to represent each of the additional functions g2(t − s2∗), g3(t − s3∗),
etc. The authors found the extra terms did not improve the fit (the likelihood ratio
test was not significant). �

A detail: In applying (19.34) using regression splines, Kass and Ven-
tura allowed the functions g1(t − s∗), g2(t − s2∗), g3(t − s3∗), to be
distinct. A plausible alternative is to assume they have the same func-
tional form, which would mean that they have the same knots and the

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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same coefficients. This would say that the way a spike at time s prior
to time t alters the probability of neural firing at time t depends only
on t − s and not on how many spikes occur between time s and time
t. In this case (19.34) is replaced by

λ(t|Ht) = g0(t)g1(t − s∗(t))g1(t − s2∗(t))g1(t − s3∗(t)).

This simplification reduces the number of parameters in the model.
Models of this type were used by Pillow et al (2008). �

Another way model (19.31) may be extended is to include terms corresponding
to coupling between neurons, as indicated by (19.5). To illustrate, we may consider
the effect of neuron B on a given neuron A by letting u∗(t) be the time of the
neuron B spike that precedes time t and, similarly, letting u2∗(t) and be the time of
the spike preceding u∗(t) and u3∗(t) the time of the spike preceding u2∗(t). Then
we may append to (19.34) a series of factors that represent the coupling effects. In
logarithmic form, considering 3 spikes back in time, this becomes

log λ(t|Ht) = log g0(t) + log g1(t − s∗(t))
+ log g2(t − s2∗(t)) + log g3(t − s3∗(t))
+ log h1(t − u∗(t)) + log h2(t − u2∗(t))
+ log h3(t − u3∗(t)). (19.35)

Once again (19.35) takes the form of (19.5), and some version of Poisson regression
may be applied.

Example 19.3 (continued) In introducing this example on p. 569 we said that the
authors used a model having the form of (19.5). Let us be somewhat more specific.
In terms of (19.35), Pillow et al. took the receptive-field stimulus effects (g0(t), here
spatio-temporal as in Example 16.6) to be linear, i.e., a linear combination of 5 × 5
stimulus pixel intensities across 30 time bins. For the history effects and the coupling
effects they did not use splines but rather used an alternative set of basis functions
such that log λ(t|Ht) remained linear, as it does with regression splines in (19.35).
They then applied Poisson regression. However, because their model involved a
large number of free parameters they had to use a modified fitting criterion (a form
of penalized fitting similar to that used with smoothing splines) which is beyond the
scope our presentation here. �

19.3.5 Graphical checks for departures from a point process model
may be obtained by time rescaling.

As described in Section 3.3.1, Q–Q and P–P plots may be used to check the fit of
a probability distribution to data. These plots indicate the discrepancy between the

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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empirical cdf F̂(x) and the theoretical cdf F(x), the idea being that when F̂(x) is based
on i.i.d. random variables we have F̂(x) → F(x) for all x (if the distribution is contin-
uous) as the sample size grows indefinitely large. In the case of point processes we
may examine the inter-event waiting times X1, . . . , Xn. For a homogeneous Poisson
process these are i.i.d. Exp(λ). Thus, to assess the fit of a homogeneous Poisson
process to a sequence of event times we may simply compute the inter-event waiting
times and examine a Q–Q or P–P plot under the assumption that the true waiting-
time distribution is exponential. For an inhomogeneous Poisson process, or a more
general point process, the waiting times are no longer i.i.d. Thus, this method can
not be applied in the same form. However, a a version of the probability integral
transform (p. 122) may be used to create a homogeneous Poisson process from any
point process. We begin with a conditional intensity function in the general form of
Eq. (19.32).

Time Rescaling Theorem. Suppose we have a point process with conditional inten-
sity function λ(t|xt) on (0, T ] and with occurrence times 0 < S1 < S2, . . . , <

SN(T) ≤ T . Suppose further that the waiting time distributions are continuous with
fXj |Sj−1(x) > 0 on (sj−1, T ], for all j ≥ 1. If we define

Z1 =
∫ S1

0
λ(t|xt)dt (19.36)

and

Zj =
∫ Sj

Sj−1

λ(t|xt)dt (19.37)

for j = 2, . . . , N(T), then Z1, . . . , ZN(T) are i.i.d. Exp(1) random variables.11

Proof: See Section 19.4. �
This result is called the time rescaling theorem because we can think of the

transformation as stretching and shrinking the time axis based on the value of the
conditional intensity function. If λ(t|xt) were constant and equal to one everywhere,
then the process would be a homogeneous Poisson process with independent, expo-
nential ISIs, and time does not need to be rescaled. When λ(t|xt) is less than one, the
transformed event times zj accumulate slowly and represent a shrinking of time, so
that distant event times are brought closer together. Likewise, when λ(t|xt) is greater
than one, the event times zj accumulate more rapidly and represent a stretching of
time, so that neighboring event times are drawn further apart.

With time rescaling in hand, we may now apply Q–Q or P–P plots to detect
departures from a point process model: using the conditional intensity function we
transform the time axis and judge the extent to which the resulting waiting times
deviate from those predicted by an Exp(1) distribution. Furthermore, in conjunction
with a P–P plot, the Kolmogorov-Smirnov test (Section 10.3.7) may be applied to test

11 Extending the argument slightly to include the interval (sN , T) it may also be shown that
Z1, . . . , ZN(T) follow a homogeneous Poisson process with intensity λ = 1.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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Fig. 19.10 Left Histogram of ISIs for the retinal ganglion cell spike train. Right Histogram of
time-rescaled ISIs. Dashed red line is the Exp(1) pdf.

the null hypothesis that the transformed waiting times follow an Exp(1) distribution,
which becomes an assessment of fit of the conditional intensity function. If the P–P
plot consists of pairs (xr, yr), for r = 1, . . . , n, the usual approach is to use the points
(xr, yr +1.36/

√
n) and (xr, yr −1.36/

√
n) to define upper and lower bands for visual

indication of fit, as illustrated in Fig. 19.11. Specifically, to make a P–P plot for a
conditional intensity function λ(t|xt) used to model spike times s1, s2, . . . , sn we do
the following:

1. From (19.36) and (19.37) find transformed spike times z1, . . . , zn;
2. for j = 1, . . . , n define uj = 1 − exp(−zj);
3. put the values u1, . . . , un in ascending order to get u(1), . . . , u(n);

4. for r = 1, . . . , n (see p. 67) plot the (x, y) pair
(

r−.5
n , u(r)

)
;

5. produce upper and lower bands: for r = 1, . . . , n plot the (x, y) pair(
r−.5

n , u(r) + 1.36/
√

n
)

and
(

r−.5
n , u(r) − 1.36/

√
n
)

.

Example 19.1 (continued from p. 586) Using the conditional intensity of Eq. (19.28)
we may apply time rescaling. Figure 19.10 displays a histogram of the original ISIs
for this data. The smallest bin (0–2 ms) is empty due to the refractory period of the
neuron. We can also observe two distinct peaks at around 10 and 100 ms respec-
tively. It is clear that this pattern of ISIs is not described well by an exponential
distribution, and therefore the original process cannot be accurately modeled as
a simple Poisson process. However the histogram in the right panel of the figure
shows the result of transforming the observed ISIs according to the conditional
intensity model. Figure 19.11 displays a P–P plot for the intervals in the right panel
of Fig. 19.10. Together, these figures show that the model in Eq. (19.28) does a good
job of describing the variability in the retinal neuron spike train. �
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Fig. 19.11 P–P plot for the distribution of rescaled intervals shown in Fig. 19.10.

Example 19.5 Spike trains from a locust olfactory bulb. Substantial insight about
sensory coding has been gained by studying olfaction among insects. An insect
may come across thousands of alternative odors in its environment, among millions
of potential possibilities, but only particular odors are important for the animal’s
behavior. A challenge has been to describe the mechanisms by which salient odors
are learned. A series of experiments carried out by Dr. Mark Stopfer and colleagues
(e.g., Stopfer et al. 2003) has examined the way neural responses to odors may evolve
over repeated exposure. To capture subtle changes it is desirable to have good point
process models for olfactory spike trains. Figure 19.12 displays P–P plots for the fit
of an inhomogeneous Poisson model and a multiplicative IMI model to a set of spike
trains from a locust olfactory bulb. The spike trains clearly deviate from the Poisson
model; the fit of the multiplicative IMI model to the data is much better. �

19.3.6 There are efficient methods for generating
point process pseudo-data.

It is easy to devise a computer algorithm to generate observations from a homoge-
neous Poisson processes, or some other renewal process: we simply generate a ran-
dom sample from the appropriate waiting-time distribution; the ith event time will
then be the sum of the first i waiting times. In particular, to generate a homogeneous
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Fig. 19.12 P–P plots of inhomogeneous Poisson and multiplicative IMI models for spike train data
from a locust olfactory bulb. For a perfect fit the curve would fall on the diagonal line y = x. The
data-based (empirical) probabilities deviate substantially from the Poisson model but much less
so from the IMI model. When the curve ranges outside the diagonal bands above and below the
y = x line, some lack of fit is indicated according to the Kolmogorov-Smirnov test (discussed in
Section 10.3.7).

Poisson process with rate λ, we can draw a random sample from an Exp(λ) distrib-
ution and take the ith event time to be si = ∑i

j=1 xj.
Generating event times from a general point process is more complicated. One

simple approach, based on the Bernoulli approximation, involves partitioning the
total time interval into small bins of size �t: in the kth interval, centered at tk , we
generate an event with probability pk = λ(tk|xtk )�t, where xtk depends on the history
of previously generated events. This works well for small simulation intervals. How-
ever, as the total time interval becomes large and as �t becomes small, the number of
Bernoulli samples that needs to be generated becomes very large, and most of those
samples will be zero, since λ(t|xt)�t is small. In such cases the method becomes
very inefficient and thus may take excessive computing time. Alternative approaches
generate a relatively small number of i.i.d. observations, and then manipulate them
so that the resulting distributions match those of the desired point process.

Thinning To apply this algorithm, the conditional intensity function λ(t|xt) must be
bounded by some constant, λmax. The algorithm follows a two-stage process. In the
first stage, a set of candidate event times is generated as a simple Poisson process
with a rate λmax. Because λmax ≥ λ(t|xt), these candidate event times occur more
frequently than they would for the point process we want to simulate. In the second
stage they are “thinned” by removing some of them according to a stochastic scheme.
We omit the details. In practice, thinning is typically only used when simulating
inhomogeneous Poisson processes with bounded intensity functions.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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Time rescaling Another approach to simulating general point processes is based
on the time-rescaling theorem. According to the statement of the theorem in
Section 19.3.5, the transformed Zi random variables follow an Exp(1) distribution,
with the transformation being based on the integral of the conditional intensity func-
tion. This suggests generating a sequence of Exp(1) random variables and then back-
transforming to get the desired point process. That idea turns out to work rather well
in practice. Here is the algorithm for generating a process on the interval (0, T ] with
conditional intensity λ(t|xt):

1. Initialize s0 = 0 and i = 1.
2. Sample zi from an Exp(1) distribution.
3. Find si as the solution to

zi =
∫ si

si−1

λ(t|xt)dt.

4. If si > T stop.
5. Set i = i + 1 and go to 2.

19.3.7 Spectral analysis of point processes requires care.

Because point processes may be considered, approximately, to be binary time series
(see Section 19.1.2) it is tempting to treat them as a time series and use spectral
methods to find frequency-based components, as in Section 18.3. This is possible,
but requires attention to the nature of point processes.

In the first place, spectral analysis applies to stationary time series. To define
stationarity (see on p. 515) for a point process we require that the counts �N(t1,t2],
�N(t2,t3], . . . ,�N(tk−1,tk ] have the same joint distribution as �N(t1+h,t2+h],
�N(t2+h,t3+h], . . . ,�N(tk−1+h,tk+h] for all h and all t1 < t2 < · · · < tk . However, we
previously defined point processes only on the positive real line (0,∞) and for sta-
tionarity to make sense the process must be defined on the whole real line (−∞,∞).
One way to extend a point process to the negative half of the real line is to define the
counts to be negative when t < 0. For example, suppose we have a homogeneous
Poisson process on (0,∞) with rate λ. Let its counting process representation be
M1(t). Now take another homogeneous Poisson process with rate λ and counting
process M2(t) and define N(t) = M1(t) for t > 0 and N(t) = −M2(−t) for t < 0,
and set N(0) = 0. Then N(t) becomes the counting process representation of a
stationary Poisson process with rate λ.

We now assume that we have counts �N(t1,t2] defined for all t and that the resulting
point process is stationary. In Section 18.3 the spectral density was defined as the
Fourier transform of the autocovariance function. The expectation of a count was
given in terms of the marginal intensity in (19.24). In the stationary case the marginal
intensity must be time-invariant and therefore equal to a constant λ. We may define
a covariance intensity function analogously as

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Fig. 19.13 Estimated spectral density from a simulated spike train. The simulated spike train had
an average firing rate of roughly 28 Hz, a 5 ms refractory period, and an increased probability of
spiking after a previous spike roughly 8 ms in the past. The estimated spectral density does not
appear to reflect these properties and is easily misinterpreted.

κ(s, t) = lim
�t→0

E(�Ns,s+�t]�Nt,t+�t]) − E(�Ns,s+�t])E(�Nt,t+�t])
(�t)2

= lim
�t→0

E(�Ns,s+�t]�Nt,t+�t])
(�t)2 − λ2. (19.38)

This holds for s �= t. In the stationary case κ(s, t) is a function only of the difference
h = t − s so we write κ(h) and use (19.38) for h �= 0. For s = t we have, for small
�t (because �Nt,t+�t] is binary),

E(�Nt,t+�t]�Nt,t+�t]) = E(�Nt,t+�t])

which implies that the limit in (19.38) vanishes. Instead, we define

κ(0) = lim
�t→0

V(�Nt,t+�t])
�t

= λ. (19.39)

We therefore must analyze separately12 the cases κ(0) and κ(h) when h �= 0. Keeping
this in mind, we may now state that the point process spectrum is the Fourier transform
of the covariance function. We omit details (see Brillinger 1972).

These technicalities are an indication that point process spectra are likely to behave
somewhat differently than continuous spectra. It is possible to apply the discrete
Fourier transform to spike train data and then try to interpret the result. Figure 19.13
displays an example of the estimated spectrum of a simulated spike train. Visual
inspection of the estimated spectrum shows a dip at low frequencies, a large peak
around 120 Hz, and maintained power out to 500 Hz. A näive interpretation from

12 These may be combined by writing the covariance function, often called the complete covariance
function as κ(0)δ(h) + κ(h) where δ(h) is the Dirac delta function, which is infinite at 0 and 0 for
all other values of h.
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this spectrum might presume that this spiking process has no very low frequency
firing, tends to fire around 120 Hz, but also has considerable high frequency activity,
suggesting no refractoriness. However, this interpretation is incorrect. The point
process generating this spike train actually has an average firing rate around 28 Hz and
reflects realistic spiking features including a 5 ms refractory period and an increased
probability of firing 8 ms after a previous spike. The error here does not come from
the computation of the estimated spectrum, but rather from the näive interpretation.

We do not pursue further the estimation of point process spectra. Our discussion of
Fig. 19.13 is intended to show that point process spectra must be interpreted carefully.

19.4 Additional Derivations

Derivation of Equation (19.9) We start with a lemma.

Lemma The pdf of the ith waiting-time distribution is

fSi (si|Si−1 = si−1) = λ(si) exp

{

−
∫ si

si−1

λ(t)dt

}

. (19.40)

Proof of the lemma: Note that {Si > si|Si−1 = si−1}, is equivalent to there being
no events in the interval (si−1, si]. Therefore, from the definition of a Poisson process
on p. 574 together with the Poisson pdf in Eq. (5.3), we have P (Si > si|Si−1 = si−1)

= P
(
�N(si−1,si] = 0

) = exp
{
− ∫ si

si−1
λ(t)dt

}
, and the ith waiting time CDF is there-

fore P (Si ≤ si|Si−1 = si−1) = 1 − exp
{
− ∫ si

si−1
λ(t)dt

}
. The derivative of the CDF

fSi (si|Si−1 = si−1) = d

dsi

(

1 − exp

{

−
∫ si

si−1

λ(t)dt

})

gives the desired pdf. �
Proof of the theorem: We have

fS1,...,SN(T)
(s1, . . . , sn)

= fS1(s1)fS2(s2|S1 = s2) · · · fSN(T)
(sn|Sn−1 = sn−1) · P(�N(sn,T ] = 0).

The factors involving waiting-time densities are given by the lemma. The last factor
is

P(�N(sn,T ] = 0) = exp

(

−
∫ T

sn

λ(t)dt

)

.

Combining these gives the result. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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Derivation of Equation (19.20) We need a lemma, which is analogous to the lemma
used in deriving (19.9).

Lemma For an orderly point process with conditional intensity λ(t|Ht) on [0, T ], the
pdf of the ith waiting-time distribution, conditionally on S1 = s1, . . . , Si−1 = si−1,
for t ∈ (si−1, T ] is

fSi|S1,...,Si−1 (si|S1 = s1, . . . , Si−1 = si−1) = λ(si|Ht) exp

{

−
∫ si

si−1

λ(t|Ht)dt

}

.

(19.41)
Proof of the lemma: Let Xi be the waiting time for the ith event, conditionally on

S1 = s1, . . . , Si−1 = si−1. For t > si−1 we have Xi ∈ (t, t + �t) if and only if
�N(t,t+�t) > 0. Furthermore, if the ith event has not yet occurred at time t we have
Ht = (s1, . . . , si−1). We then have

lim
�t→0

P(Xi ∈ (t, t + �t)|Xi > t, S1 = s1, . . . , Si−1 = si−1)

�t

= lim
�t→0

P(�N(t,t+�t) > 0|Ht))

�t

and, because the point process is regular, the right-hand side is λ(t|Ht). Just as we
argued in the case of hazard functions, in Section 3.2.4, the numerator of the left-hand
side may be written

P(Xi ∈ (t, t + �t)|Xi > t, Ht) = F(t + �t|Ht) − F(t|Ht)

1 − F(t|Ht)

where F is the CDF of the waiting time distribution, conditionally on Ht . Passing to
the limit again gives

lim
�t→0

P(Xi ∈ (t, t + �t)|Xi > t, Ht)

�t
= f (t|Ht)

1 − F(t|Ht)
.

In other words, just as in the case of a hazard function, the conditional intensity
function satisfies

λ(t|Ht) = f (t|Ht)

1 − F(t|Ht)
.

Proceeding as in the case of the hazard function we then get the conditional pdf

f (t|Ht) = λ(t|Ht)e
− ∫ t

si−1
λ(u|xu)du

as required. �
Proof of the theorem: The argument follows from the lemma by the same steps as
the theorem for inhomogeneous Poisson processes. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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Proof of the time rescaling theorem Note that the transformed waiting times are

Zj =
∫ sj

sj−1

λ(u|xu)du

where s0 = 0. Applying the theorem on producing exponential random variables
from the probability integral transform (p. 122) to X1 = S1 with Z1 = G(X1) and
G(t) = G1(t) where

G1(t) =
∫ t

0
λ(u|xu)du,

we get Z1 ∼ Exp(1). Continuing to the next event time and defining X2 = S2 − S1
with Z2 = G(X2) and G(t) = G2(t) where

G2(t) =
∫ t

s1

λ(u|xu)du,

we get Z2 ∼ Exp(1) and, furthermore, this same distribution results regardless of
the value of Z1 = z1. Thus, the conditional density fZ2|Z1(z2|Z1 = z1) does not
depend on z1; therefore Z2 is independent of Z1. Continuing on, we get Zj ∼ Exp(1)

independently of all Zi for i < j, for all j = 1, . . . , n and for all possible values
n = N(T) of the random variable N(T). �
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