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Neural spike trains, which are sequences of very brief jumps in voltage
across the cell membrane, were one of the motivating applications for the de-
velopment of point process methodology. Early work required the assumption
of stationarity, but contemporary experiments often use time-varying stimuli
and produce time-varying neural responses. More recently, many statistical
methods have been developed for nonstationary neural point process data.
There has also been much interest in identifying synchrony, meaning events
across two or more neurons that are nearly simultaneous at the time scale
of the recordings. A natural statistical approach is to discretize time, using
short time bins, and to introduce loglinear models for dependency among
neurons, but previous use of loglinear modeling technology has assumed sta-
tionarity. We introduce a succinct yet powerful class of time-varying loglinear
models by (a) allowing individual-neuron effects (main effects) to involve
time-varying intensities; (b) also allowing the individual-neuron effects to
involve autocovariation effects (history effects) due to past spiking, (c) as-
suming excess synchrony effects (interaction effects) do not depend on his-
tory, and (d) assuming all effects vary smoothly across time. Using data from
the primary visual cortex of an anesthetized monkey, we give two examples
in which the rate of synchronous spiking cannot be explained by stimulus-
related changes in individual-neuron effects. In one example, the excess syn-
chrony disappears when slow-wave “up” states are taken into account as his-
tory effects, while in the second example it does not. Standard point pro-
cess theory explicitly rules out synchronous events. To justify our use of
continuous-time methodology, we introduce a framework that incorporates
synchronous events and provides continuous-time loglinear point process ap-
proximations to discrete-time loglinear models.

1. Introduction. One of the most important techniques in learning about the
functioning of the brain has involved examining neuronal activity in laboratory
animals under varying experimental conditions. Neural information is represented
and communicated through series of action potentials, or spike trains, and the cen-
tral scientific issue in many studies concerns the physiological significance that
should be attached to a particular neuron firing pattern in a particular part of the
brain. In addition, a major relatively new effort in neurophysiology involves the
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use of multielectrode recording, in which responses from dozens of neurons are
recorded simultaneously. Much current research focuses on the information that
may be contained in the interactions among neurons. Of particular interest are
spiking events that occur across neurons in close temporal proximity, within or
near the typical one millisecond accuracy of the recording devices. In this pa-
per we provide a point process framework for analyzing such nearly synchronous
events.

The use of point processes to describe and analyze spike train data has been
one of the major contributions of statistics to neuroscience. On the one hand, the
observation that individual point processes may be considered, approximately, to
be binary time series allows methods associated with generalized linear models
to be applied [cf. Brillinger (1988, 1992)]. On the other hand, basic point pro-
cess methodology coming from the continuous-time representation is important
both conceptually and in deriving data-analytic techniques [e.g., the time-rescaling
theorem may be used for goodness of fit and efficient spike train simulation; see
Brown et al. (2001)]. The ability to go back and forth between continuous time,
where neuroscience and statistical theory reside, and discrete time, where mea-
surements are made and data are analyzed, is central to statistical analysis of spike
trains. From the discrete-time perspective, when multiple spike trains are consid-
ered simultaneously it becomes natural to introduce loglinear models [cf. Mar-
tignon et al. (2000)] and a widely read and hotly debated report by Schneidman
et al. (2006) examined the extent to which pairwise dependence among neurons
can capture stimulus-related information. A fundamental limitation of much of
the work in this direction, however, is its reliance on stationarity. The main pur-
pose of the framework described below is to handle the nonstationarity inherent in
stimulus-response experiments by introducing appropriate loglinear models while
also allowing passage to a continuous-time limit. The methods laid out here are
in the spirit of Ventura, Cai and Kass (2005), who proposed a bootstrap test of
time-varying synchrony, but our methods are different in detail and our framework
is much more general.

Statistical modeling of point process data focuses on intensity functions, which
represent the rate at which the events occur, and often involve covariates [cf. Brown
et al. (2004), Kass, Ventura and Brown (2005), Paninski et al. (2009) and refer-
ences therein]. A basic distinction is that of conditional versus marginal inten-
sities: the conditional intensity determines the event rate for a given realization
of the process, while the marginal intensity is the expectation of the conditional
intensity across realizations. In neurophysiological experiments stimuli are often
presented repeatedly across many trials, resulting in many replications of the mul-
tiple sequences of spike trains. This is the situation we concern ourselves with
here, and it is illustrated in Figure 1, part A, where the responses of a single neu-
ron for 120 trials are displayed: each line of the raster plot shows a single spike
train, which is the neural response on a single trial. The experiment that gener-
ated these data is described in Section 1.1. The bottom panel in part A of Figure 1
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FIG. 1. Neural spike train raster plots for repeated presentations of a drifting sine wave grating
stimulus. (A) Single cell responses to 120 repeats of a 10 second movie. At the top is a raster corre-
sponding to the spike times, and below is a peri-stimulus time histogram (PSTH) for the same data.
Portions of the stimulus eliciting firing are apparent. (B) The same plots as in (A), for a different cell.
(C) Population responses to the same stimulus, for 5 repeats. Each block, corresponding to a single
trial, is the population raster for ν = 128 units. On each trial there are several dark bands, which
constitute bursts of network activity sometimes called “up states.” Up state epochs vary across trials,
indicating they are not locked to the stimulus.

displays a smoothed peristimulus time histogram (PSTH), which summarizes the
trial-averaged response by pooling across trials. As we explain in greater detail in
Section 1.2, scientific questions and statistical analyses may concern either within-
trial responses (conditional intensities) or trial-averaged responses (marginal inten-
sities).

A point process evolves in continuous time but, as we have noted, it is conve-
nient for many statistical purposes to consider a discretized version. Decomposing
time into bins of width δ, we may define a binary time series to be 1 for every
time bin in which an event occurs, and 0 for every bin in which an event does not
occur. It is not hard to show that, under the usual regularity condition that events
occur discretely (i.e., no two events occur at the same time), the likelihood func-
tion of the binary time series approximates the likelihood of the point process as
δ → 0. For a pair of point processes, the discretized process is a time series of
2 × 2 polytomous variables indicating, in each time bin, whether an event of the
first process occurred, an event of the second process occurred, or both, or neither.
This suggests analyzing nearly synchronous events based on a loglinear model
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with cell probabilities that vary across time. Intuitive as such procedures may be,
their point process justification is subtle: the standard regularity condition forbids
two processes having synchronous events, so it is not obvious how we might ob-
tain convergence to a point process (as δ → 0) for discrete-process likelihoods that
incorporate synchrony.

One way out of this impasse is to introduce a marked point process framework
in which each event/mark could be of three distinct types: first process, second
process, or both. The standard marked point process requires modification, how-
ever, because it fails to accommodate independence as a special case. Under in-
dependence, the discretized events for each process occur with probability of or-
der O(δ), while the synchronous events occur with probability of order O(δ2) as
δ → 0. We refer to this as a sparsity condition, and the generalization to multiple
processes involves a hierarchical sparsity condition. Once we introduce a family
of marked point processes indexed by δ, we can guarantee hierarchical sparsity.
Not only does this allow, as it must, the special case of independence models,
but it also makes the conditional intensity for neuron i depend only on the his-
tory for neuron i, asymptotically (as δ → 0). This in turn avoids confounding the
dependence described by the loglinear model and greatly reduces the dimension-
ality of the problem. We require two very natural regularity conditions based on
well-known neurophysiology: the existence of a refractory period, during which
the neuron cannot spike again, and smoothness of the conditional intensity across
time. It would be possible, and sometimes advantageous, instead to model depen-
dence through the individual-neuron conditional intensity functions. The loglinear
modeling approach used here avoids this step.

1.1. A motivating example. In a series of experiments performed by one of us
(Kelly, together with Dr. Matthew Smith), visual images were displayed at resolu-
tion 1024 × 768 pixels on a computer monitor, while the neural responses in the
primary visual cortex of an anesthetized monkey were recorded. Each of 98 dis-
tinct images consisted of a sinusoidal grating that drifted in a particular direction
for 300 milliseconds, and each was repeated 120 times. Each repetition of the com-
plete sequence of stimuli lasted approximately 30 seconds. This kind of stimulus
has been known to drive cells in the primary visual cortex since the Nobel prize-
winning work of Hubel and Wiesel in the 1960s. With improved technology and
advanced analytical strategies, much more precise descriptions of neural response
are now possible. A small portion of the data from 5 repetitions of many stimuli is
shown in part C of Figure 1.

The details of the experiment and recording technique are reported in Kelly
et al. (2007). A total of 125 neural “units” were obtained, which included about
60 well-isolated individual neurons; the remainder were of undetermined origin
(some mix of 1 or more neurons). The goal was to discover the interactions among
these units in response to the stimuli. Each neuron will have its own consistent
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pattern of responses to stimuli, as illustrated in parts A and B of Figure 1. Syn-
chronous spiking across neurons is relatively rare. However, in each of the 5 blocks
within part C of Figure 1 (each block corresponding to a single trial) several dark
bands of activity across most neurons may be seen during the trial. These bands
correspond to what are often called network “up” states, and are often seen under
anesthesia. For discussion and references see Kelly et al. (2010). It would be of
interest to separate the effects of such network activity from other synchronous
activity, especially stimulus-related synchronous activity. The framework in this
paper provides a foundation for statistical methods that can solve such problems.

1.2. Overview of approach. We begin with some notation. Suppose we ob-
serve the activity of an ensemble of ν neurons labeled 1 to ν over a time inter-
val [0, T ), where T > 0 is a constant. Let Ni

T denote the total number of spikes
produced by neuron i on [0, T ) where i = 1, . . . , ν. The resulting (stochastic) se-
quence of spike times is written as 0 ≤ si

1 < · · · < si

Ni
T

< T . For the moment we

focus on the case ν = 3, but other values of ν are of interest and with contem-
porary recording technology ν ≈ 100 is not uncommon, as in the experiment in
Section 1.1. Let δ > 0 be a constant such that T is a multiple of δ (for simplicity).
We divide the time interval into bins of width δ. Define Xi(t) = 1 if neuron i has
a spike in the time bin [t, t + δ) and 0 otherwise. Because of the existence of a re-
fractory period for each neuron, there can be at most 1 spike in [t, t + δ) from the
same neuron if δ is sufficiently small. Then writing

P
1,2,3
a,b,c (t) = P

(
X1(t) = a,X2(t) = b,X3(t) = c

) ∀a, b, c ∈ {0,1},
the data would involve spike counts across trials [e.g., the number of trials on
which (X1(t), X2(t),X3(t)) = (1,1,1)]. The obvious statistical tool for analyzing
spiking dependence is loglinear modeling and associated methodology.

Three complications make the problem challenging, at least in principle. First,
there is nonstationarity: the probabilities vary across time. The data thus form a se-
quence of 2ν contingency tables. Second, absent from the above notation is a pos-
sible dependence on spiking history. Such dependence is the rule rather than the
exception. Let H̄i

t denote the set of values of Xi(s), where s < t , and s, t are mul-
tiples of δ. Thus, H̄t = (H̄1

t , . . . , H̄ν
t ) is the history of the binned spike train up to

time t . We may wish to consider conditional probabilities such as

P
1,2,3
a,b,c (t |H̄t ) = P

(
X1(t) = a,X2(t) = b,X3(t) = c|H̄t

)
for a, b, c ∈ {0,1}. Third, there is the possibility of precisely timed lagged de-
pendence (or time-delayed synchrony): for example, we may want to consider the
probability

P
1,2,3
1,1,1 (s, t, u) = P

(
X1(s) = 1,X2(t) = 1,X3(u) = 1

)
,(1)
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where s, t, u may be distinct. Similarly, we might consider the conditional proba-
bility

P
1,2,3
1,1,1 (s, t, u|H̄1

s , H̄2
t , H̄3

u) = P
(
X1(s) = 1,X2(t) = 1,X3(u) = 1|H̄1

s , H̄2
t , H̄3

u

)
.

In principle, we would want to consider all possible combinations of lags. Even for
ν = 3 neurons, but especially as we contemplate ν � 3, strong restrictions must
be imposed in order to have any hope of estimating all these probabilities from
relatively sparse data in a small number of repeated trials. To reduce model di-
mensionality, we suggest four seemingly reasonable tactics: (i) considering mod-
els with only low-order interactions, (ii) assuming the probabilities P

1,2,3
a,b,c (t) or

P
1,2,3
a,b,c (t |H̄t ) vary smoothly across time t , (iii) restricting history effects to those

that modify a neuron’s spiking behavior based on its own past spiking, and then
(iv) applying analogues to standard loglinear model methodology. Combining
these, we obtain tractable models for multiple binary time series to which stan-
dard methodology, such as maximum likelihood and smoothing, may be applied.
In modeling synchronous spiking events as loglinear time series, however, it would
be highly desirable to have a continuous-time representation, where binning be-
comes an acknowledged approximation. We therefore also provide a theoretical
point process foundation for the discrete multivariate methods proposed here.

It is important to distinguish the probabilities P
1,2,3
a,b,c (t) and P

1,2,3
a,b,c (t |H̄t ). The

former are trial-averaged or marginal probabilities, while the latter are within-trial
or conditional probabilities. Both might be of interest but they quantify differ-
ent things. As an extreme example suppose, as sometimes is observed, each of
two neurons has highly rhythmic spiking at an approximately constant phase re-
lationship with an oscillatory potential produced by some large network of cells.
Marginally these neurons will show strongly dependent spiking. On the other hand,
after taking account of the oscillatory rhythm by conditioning on each neuron’s
spiking history and/or a suitable within-trial time-varying covariate, that depen-
dence may vanish. Such a finding would be informative, as it would clearly indi-
cate the nature of the dependence between the neurons. In Section 3 we give a less
dramatic but similar example taken from the data described in Section 1.1.

We treat marginal and conditional analyses separately. Our use of two distinct
frameworks is a consequence of the way time resolution will affect continuous-
time approximations. We might begin by imagining the situation in which event
times could be determined with infinite precision. In this case it is natural to as-
sume, as is common in the point process literature, that no two processes have
simultaneous events. As we indicate, this conception may be applied to marginal
analysis. However, the event times are necessarily recorded to fixed accuracy,
which becomes the minimal value of δ, and δ may be sufficiently large that simulta-
neous events become a practical possibility. Many recording devices, for example,
store neural spike event times with an accuracy of 1 millisecond. Furthermore, the
time scale of physiological synchrony—the proximity of spike events thought to be
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physiologically meaningful—is often considered to be on the order of δ = 5 mil-
liseconds [cf. Grün, Diesmann and Aertsen (2002a, 2002b) and Grün (2009)]. For
within-trial analyses of synchrony, the theoretical conception of simultaneous (or
synchronous) spikes across multiple trials therefore becomes important and leads
us to the formalism detailed below. The framework we consider here provides one
way of capturing the notion that events within δ milliseconds of each other are
essentially synchronous.

The rest of this article is organized as follows. Section 2 presents the methodol-
ogy in three subsections: Sections 2.1 and 2.2 introduce marginal and conditional
methods in the simplest case, while Section 2.3 discusses the use of loglinear mod-
els and associated methodology for analyzing spiking dependence. In Section 3 we
illustrate the methodology by returning to the example of Section 1.1. The main
purpose of our approach is to allow covariates to take account of such things as
the irregular network rhythm displayed in Figure 1, so that synchrony can be un-
derstood as either related to the network effects or unrelated. Figure 2 displays
synchronous spiking events for two different pairs of neurons, together with ac-
companying fits from continuous-time loglinear models. For both pairs the inde-
pendence model fails to account for synchronous spiking. However, for one pair
the apparent excess synchrony disappears when history effects are included in the
loglinear model, while in the other pair they do not, leading to the conclusion that
in the second case the excess synchrony must have some other source. Theory is
presented in Sections 4–6. We add some discussion in Section 7. All proofs in this
article are deferred to the Appendix.

2. Methodology. In this section we present our continuous-time loglinear
modeling methodology. We begin with the simplest case of ν = 2 neurons, pre-
senting the main ideas in Sections 2.1 and 2.2 for the marginal and conditional
cases, respectively, in terms of the probabilities P 1

a (t) = P(X1(t) = a), P
1,2
a,b (t) =

P(X1(t) = a,X2(t) = b), etc., for all a, b ∈ {0,1}. We show how we wish to pass
to the continuous-time limit, thereby introducing point process technology and
making sense of continuous-time smoothing, which is an essential feature of our
approach. In Section 2.3 we reformulate using loglinear models, and then give
continuous-time loglinear models for ν = 3. Our analyses in Section 3 are confined
to ν = 2 and ν = 3 because of the paucity of higher-order synchronous spikes in
our data. Our explicit models for ν = 3 should make clear how higher-order mod-
els are created. We give general recursive formulas in Sections 5 and 6.

2.1. Marginal methods for ν = 2. The null hypothesis

H0 :P 1,2
1,1 (t) = P 1

1 (t)P 2
1 (t) ∀t ∈ T = {0, δ,2δ, . . . , T − δ}(2)

is a statement that both neurons spike in the interval [t, t + δ), on the average, at
the rate determined by independence. Defining ζ(t) by

P
1,2
1,1 (t) = P 1

1 (t)P 2
1 (t)ζ(t) ∀t ∈ T ,(3)
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we may rewrite (2) as

H0 : ζ(t) = 1 ∀t ∈ T .(4)

As in Ventura, Cai and Kass (2005), to assess H0, the general strategy we follow is
to (i) smooth the observed-frequency estimates of P 1

1 (t), P 2
1 (t) and P

1,2
1,1 (t) across

time t , and then (ii) form a suitable test statistic and compute a p-value using
a bootstrap procedure. We may deal with time-lagged hypotheses similarly, for
example, for a lag h > 0, we write

P
1,2
1,1 (t, t + δh) = P

(
X1(t) = 1,X2(t + δh) = 1

)
(5)

= P 1
1 (t)P 2

1 (t + δh)ζ(t, t + δh),

then smooth the observed-frequency estimates for P
1,2
1,1 (t, t + δh) as a function

of t , form an analogous test statistic and find a p-value.
To formalize this approach, we consider counting processes Ni

t corresponding
to the point processes si

1, s
i
2, . . . , s

i

Ni
t
, i = 1,2 (as in Section 1.2 with ν = 2). Under

regularity conditions, the following limits exist:

λi(t) = lim
δ→0

δ−1P
(
Ni

t+δ − Ni
t = 1

)
,

λ1,2(t) = lim
δ→0

δ−2P
(
(N1

t+δ − N1
t )(N2

t+δ − N2
t ) = 1

)
,(6)

ξ(t) = lim
δ→0

ζ(t).

Consequently, for small δ, we have

P i
1(t) ≈ λi(t)δ, P

1,2
1,1 (t) ≈ λ1,2(t)δ2.

The smoothing of the observed-frequency estimates for P
1,2
1,1 (t) may be understood

as producing an estimate λ̂1,2(t) for λ1,2(t). The null hypothesis in (2) becomes,
in the limit as δ → 0,

H0 :λ1,2(t) = λ1(t)λ2(t) ∀t ∈ [0, T ),

or, equivalently,

H0 : ξ(t) = 1 ∀t ∈ [0, T ).(7)

The lag h case is treated similarly. Under mild conditions, Theorems 1 and 2 of
Section 5 show that the above heuristic arguments hold for a continuous-time reg-
ular marked point process. This in turn gives a rigorous asymptotic justification
(as δ → 0) for estimation and testing procedures such as those in steps (i) and (ii)
mentioned above, following (4), and illustrated in Section 3.
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2.2. Conditional methods for ν = 2. To deal with history effects, equation (3)
is replaced with

P
1,2
1,1 (t |H̄t ) = P 1

1 (t |H̄1
t )P

2
1 (t |H̄2

t )ζ(t) ∀t ∈ T ,(8)

where H̄i
t , i = 1,2, are, as in Section 1, the binned spiking histories of neurons 1

and 2, respectively, on the interval [0, t). Analogous to (4), the null hypothesis is

H0 : ζ(t) = 1 ∀t ∈ T .

We note that there are two substantial simplifications in (8). First, P i
1(t |H̄t ) =

P i
1(t |H̄i

t ), which says that neuron i’s own history H̄i
t is relevant in modifying its

spiking probability (but not the other neuron’s history). Second, ζ(t) does not de-
pend on the spiking history H̄t . This is important for what it claims about the phys-
iology, for the way it simplifies statistical analysis, and for the constraint it places
on the point process framework. Physiologically, it decomposes excess spiking into
history-related effects and stimulus-related effects, which allows the kind of inter-
pretation alluded to in Section 1 and presented in our data analysis in Section 3.
Statistically, it improves power because tests of H0 effectively pool information
across trials, thereby increasing the effective sample size.

Consider counting processes Ni
t , i = 1,2, as in Section 2.1. Under regularity

conditions, the following limits exist for t ∈ [0, T ):

λi(t |Hi
t ) = lim

δ→0
δ−1P(Ni

t+δ − Ni
t = 1|H̄i

t ), i = 1,2,

λ1,2(t |Ht ) = lim
δ→0

δ−2P
(
(N1

t+δ − N1
t )(N2

t+δ − N2
t ) = 1|H̄t

)
,(9)

ξ(t) = lim
δ→0

ζ(t),

where Ht = limδ→0 H̄t and Hi
t = limδ→0 H̄i

t , i = 1,2. For sufficiently small δ, we
have

P i
1(t |H̄i

t ) ≈ λi(t |Hi
t )δ, i = 1,2, and P

1,2
1,1 (t |H̄t ) ≈ λ1,2(t |Ht )δ

2(10)

for all t ∈ T . Again following Ventura, Cai and Kass (2005), we may smooth the
observed-frequency estimates of P

1,2
1,1 (t |H̄t ) to produce an estimate of λ1,2(t |Ht ),

and smooth the observed-frequency estimates of P i
1(t |H̄i

t ) to produce estimates of
λi(t |Hi

t ), i = 1,2. Letting δ → 0 in (8), we obtain

λ1,2(t |Ht ) = ξ(t)λ1(t |H1
t )λ

2(t |H2
t ) ∀t ∈ [0, T ).(11)

Consequently, for sufficiently small δ, a conditional test of H0 : ζ(t) = 1 for all t

becomes a test of the null hypothesis H0 :λ1,2(t |Ht ) = λ1(t |H1
t )λ

2(t |H2
t ) for all t

or, equivalently, in this conditional case we have the same null hypothetical state-
ment as (7).

In attempting to make equation (9) rigorous, a difficulty arises: for a regu-
lar marked point process, the function ξ need not be independent of the spiking
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history. This would create a fundamental mismatch between the discrete data-
analytical method and its continuous-time limit. The key to avoiding this problem
is to enforce the sparsity condition (10). Specifically, the probabilities P i

1(t |H̄i
t ) are

of order O(δ), while the probabilities P
1,2
1,1 (t |H̄t ) are of order O(δ2). This also al-

lows independence models within the marked point process framework. Section 6
proposes a class of marked point process models indexed by δ and provides results
that validate the heuristics above.

2.3. Loglinear models. We now reformulate in terms of loglinear models the
procedures sketched in Sections 2.1 and 2.2 for ν = 2 neurons, and then indicate
the way generalizations proceed when ν ≥ 3.

In the marginal case of Section 2.1, it is convenient to define

P̃
1,2
0,0 (t) = 1,

P̃
1,2
1,0 (t) = P 1

1 (t),

P̃
1,2
0,1 (t) = P 2

1 (t),

P̃
1,2
1,1 (t) = P

1,2
1,1 (t) ∀t ∈ T .

Equation (3) implies that

log[P̃ 1,2
a,b (t)] = a log[P 1

1 (t)] + b log[P 2
1 (t)] + ab log[ζ(t)](12)

for all a, b ∈ {0,1} and t ∈ T and in the continuous-time limit, using (6), we write

logλ1,2(t) = logλ1(t) + logλ2(t) + log[ξ(t)](13)

for t ∈ [0, T ). The null hypothesis may then be written as

H0 : log[ξ(t)] = 0 ∀t ∈ [0, T ).(14)

In the conditional case of Section 2.2, we similarly define

P̃
1,2
0,0 (t |H̄t ) = 1,

P̃
1,2
1,0 (t |H̄t ) = P 1

1 (t |H̄t ),

P̃
1,2
0,1 (t |H̄t ) = P 2

1 (t |H̄t ),

P̃
1,2
1,1 (t |H̄t ) = P

1,2
1,1 (t |H̄t ) ∀t ∈ T ,

we may rewrite (8) as the loglinear model

log[P̃ 1,2
a,b (t |H̄t )] = a log[P 1

1 (t |H̄1
t )] + b log[P 2

1 (t |H̄2
t )] + ab log[ζ(t)](15)

for all a, b ∈ {0,1} and t ∈ T and in the continuous-time limit we rewrite (11) in
the form

logλ1,2(t |Ht ) = logλ1(t |H1
t ) + logλ2(t |H2

t ) + log[ξ(t)](16)
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for t ∈ [0, T ). The null hypothesis may again be written as in (14).
Rewriting the model in loglinear forms (12), (13), (15) and (16) allows us to

generalize to ν ≥ 3 neurons. For example, with the obvious extensions of the
previous definitions, for ν = 3 neurons the two-way interaction model in the
continuous-time marginal case becomes

log[P̃ 1,2,3
a,b,c (t)] = log[P 1

1 (t)] + log[P 2
1 (t)] + log[P 3

1 (t)]
(17)

+ ab log
[
ζ{1,2}(t)

] + ac log
[
ζ{1,3}(t)

] + bc log
[
ζ{2,3}(t)

]
for all a, b, c ∈ {0,1} and t ∈ T , and

log[λ1,2,3(t)] = log[λ1(t)] + log[λ2(t)] + log[λ3(t)]
+ log

[
ξ{1,2}(t)

] + log
[
ξ{1,3}(t)

] + log
[
ξ{2,3}(t)

]
for all t ∈ (0, T ]. The general form of (17) is given by equation (28) in Section 5.
In the conditional case, the two-way interaction model becomes

log[P̃ 1,2,3
a,b,c (t |H̄t )] = a log[P 1

1 (t |H̄t )] + b log[P 2
1 (t |H̄t )] + c log[P 3

1 (t |H̄t )]
(18)

+ ab log
[
ζ{1,2}(t)

] + ac log
[
ζ{1,3}(t)

] + bc log
[
ζ{2,3}(t)

]
for all a, b, c ∈ {0,1} and t ∈ T and in continuous time,

log[λ1,2,3(t |Ht )] = log[λ1(t |Ht )] + log[λ2(t |Ht )] + log[λ3(t |Ht )]
+ log

[
ξ{1,2}(t)

] + log
[
ξ{1,3}(t)

] + log
[
ξ{2,3}(t)

]
for all t ∈ (0, T ]. In either the marginal or conditional case, the null hypothesis of
independence may be written as

H0 : log
[
ξ{i,j}(t)

] = 0 ∀t ∈ (0, T ],1 ≤ i < j ≤ 3.(19)

On the other hand, we could include the additional term abc log[ξ{1,2,3}(t)] and
use the null hypothesis of no three-way interaction

H0 : log
[
ξ{1,2,3}(t)

] = 0 ∀t ∈ (0, T ].(20)

These loglinear models offer a simple and powerful way to study dependence
among neurons when spiking history is taken into account. They have an impor-
tant dimensionality reduction property in that the higher-order terms are asymp-
totically independent of history. In practice, this provides a huge advantage: the
synchronous spikes are relatively rare; in assessing excess synchronous spiking
with this model, the data may be pooled over different histories, leading to a much
larger effective sample size. The general conditional model in equation (34) retains
this structure. An additional feature of these loglinear models is that time-varying
covariates may be included without introducing new complications. In Section 3
we use a covariate to characterize the network up states, which are visible in part C
of Figure 1, simply by including it in calculating each of the individual-neuron
conditional intensities λ1(t |H1

t ) and λ2(t |H2
t ) in (16).
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Sometimes, as in the data we analyze here, the synchronous events are too
sparse to allow estimation of time-varying excess synchrony and we must assume
it to be constant, ζ(t) = ζ for all t . Thus, for ν = 2, the models of (12) or (15)
take simplified forms in which ζ(t) is replaced by the constant ζ and we would
use different test statistics to test the null hypothesis H0 : ζ = 1. To distinguish
the marginal and conditional cases, we replace ζ(t) by ζH in (15) and then also
write H0 : ζH = 1. Moving to continuous time, which is simpler computationally,
we write ξ(t) = ξ , estimate ξ and ξH , and test H0 : ξ = 1 and H0 : ξH = 1. Specifi-
cally, we apply the loglinear models (12), (13), (15) and (16) in two steps. First, we
smooth the respective PSTHs to produce smoothed curves λ̂i(t), as in parts A and
B of Figure 1. Second, ignoring estimation uncertainty and taking λi(t) = λ̂i(t),
we estimate the constant ζ . Using the point process representation of joint spiking
(justified by the results in Sections 5 and 6), we may then write

logL(ξ) = −
∫

λ(t) dt + ∑
logλ(ti),

where the sum is over the joint spike times ti and λ(t) is replaced by the right-
hand side of (13), in the marginal case, or (16), in the conditional case. It is easy
to maximize the likelihood L(ξ) analytically: setting the left-hand side to �(ξ), in
the marginal case we have

�′(ξ) = −
∫

λ1(t)λ2(t) dt + N

ξ
,

where N is the number of joint (synchronous) spikes (the number of terms in the
sum), while in the conditional case we have the analogous formula

�′(ξH ) = −
∫

λ1(t |H1
t )λ

2(t |H2
t ) dt + N

ξH

and setting to 0 and solving gives

ξ̂ = N∫
λ1(t)λ2(t) dt

(21)

and

ξ̂H = N∫
λ1(t |H1

t )λ
2(t |H2

t ) dt
,(22)

which, in both cases, is the ratio of the number of observed joint spikes to the
number expected under independence.

We apply (21) and (22) in Section 3. To test H0 : ξ = 1 and H0 : ξH = 1, we
use a bootstrap procedure in which we generate spike trains under the relevant
null-hypothetical model. This is carried out in discrete time, and requires all 4 cell
probabilities P̃

1,2
a,b (t) or P̃

1,2
a,b (t |H̄t ) at every time t ∈ T . These are easily obtained
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by subtraction using P 1
1 (t) = λ1(t)δ, P 2

1 (t) = λ2(t)δ, and ζ̂ = ξ̂ or, in the con-
ditional case, P 1

1 (t |H̄1
t ) = λ1(t |H1

t )δ, P 2
1 (t |H̄2

t ) = λ2(t |H2
t )δ, and ζ̂H = ξ̂H . As

we said above, λi(t) = λ̂i(t) is obtained from the preliminary step of smoothing
the PSTH. Similarly, the conditional intensities λi(t |Hi

t ) = λ̂i(t |Hi
t ) are obtained

from smooth history-dependent intensity models such as those discussed in Kass,
Ventura and Brown (2005). In the analyses reported here we have used fixed-knot
splines to describe variation across time t .

In the case of 3 or more neurons the analogous estimates and cell probabilities
must, in general, be obtained by a version of iterative proportional fitting. For
ν = 3, to test the null hypothesis (20), we follow the steps leading to (21) and (22).
Under the assumption of constant ζ123, we obtain

ξ̂123 = N∫
λ1(t)λ2(t)λ3(t)ξ12(t)ξ13(t)ξ23(t) dt

(23)

and

ξ̂123,H = N∫
λ1(t |H1

t )λ
2(t |H2

t )λ
3(t |H3

t )ξ12,H (t)ξ13,H (t)ξ23,H (t) dt
.(24)

In Section 3 we fit (17) and report a bootstrap test of the hypothesis (20) using the
test statistic ξ̂123 in (23).

3. Data analysis. We applied the methods of Section 2.3 to a subset of the
data described in Section 1.1 and present the results here. We plan to report a more
comprehensive analysis elsewhere.

We took δ = 5 milliseconds (ms), which is a commonly-used window width in
studies of synchronous spiking. Raster plots of spike trains across repeated trials
from a pair of neurons are shown in Parts A and B of Figure 2, with synchronous
events indicated by circles. Below each raster plot is a smoothed PSTH, that is, the
two plots show smoothed estimates λ̂1(t) and λ̂2(t) of λ1(t) and λ2(t) in (6), the
units being spikes per second. Smoothing was performed by fitting a generalized
additive model using cubic splines with knots spaced 100 ms apart. Specifically,
we applied Poisson regression to the count data resulting from pooling the binary
spike indicators across trials: for each time bin the count was the number of trials
on which a spike occurred. To test H0 under the model in (13), we applied (21)
to find log ξ̂ . We then computed a parametric bootstrap standard error of log ξ̂ by
generating pseudo-data from model (13) assuming H0 : log ξ = 0. We generated
1000 such trials, giving 1000 pseudo-data values of log ξ̂ , and computed the stan-
dard deviation of those values as a standard error, to obtain an observed z-ratio test
statistic of 3.03 (p = 0.0012 according to asymptotic normality).

The highly significant z ratio shows that there is excess sychronous spiking be-
yond what would be expected from the varying firing rates of the two neurons
under independence. However, it does not address the source of the excess syn-
chronous spiking. The excess synchronous spiking could depend on the stimulus
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FIG. 2. Synchronous spike analysis for two pairs of neurons. Results for one pair shown on left,
in parts (A)–(D) and for the other pair on the right in parts (E)–(H). Part (A) Response of a cell to
repetitions of a 1 second drifting grating stimulus. The raster plot is shown above and the smoothed
PSTH below. Part (B) Response from a second cell, as in (A). In both (A) and (B), spikes that are
synchronous between the pair are circled. Part (C) Correct joint spike predictions from model, shown
as circles [as in parts (A) and (B)], when false positive rate is set at 10%. In top plot the joint spikes
are from the history-independent model, as in (13), while in the bottom plot they are as in (16),
including the network covariate in the history term. Part (D) ROC curves for the models in part (C).
Parts (E), (F), (G) and (H) are similar to Parts (A), (B), (C) and (D) but for the second pair of
neurons.

or, alternatively, it might be due to the slow waves of population activity evident in
part (C) of Figure 1, the time of which vary from trial to trial and therefore do not
depend on the stimulus. To examine the latter possibility, we applied a within-trial
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loglinear model as in (16) except that we incorporated into the history effect not
only the history of each neuron but also a covariate representing the population
effect. Specifically, for neuron i (i = 1,2) we used the same generalized additive
model as before, but with two additional variables. The first was a variable that, for
each time bin, was equal to the number of neuron i spikes that had occurred in the
previous 100 ms. The second was a variable that, for each time bin, was equal to
the number of spikes that occurred in the previous 100 ms across the whole popu-
lation of neurons, other than neurons 1 and 2. We thereby obtained fitted estimates
λ̂1(t |H1

t ) and λ̂2(t |H2
t ) of λ1(t |H1

t ) and λ2(t |H2
t ). Note that the fits for the inde-

pendence model, defined by applying (7) to (11), now vary from trial to trial due
to the history effects. Applying (22), we found log ξ̂H , and then again computed
a bootstrap standard error of log ξ̂H by creating 1000 trials of pseudo-data, giving
log ξ̂H = 0.06 ± 0.15, for a z-ratio of 0.39, which is clearly not significant.

Raster plots for a different pair of neurons are shown in parts (E) and (F) of
Figure 2. The same procedures were applied to this pair. Here, the z-ratio for test-
ing H0 under the marginal model was 3.77 (p < 0.0001), while that for testing H0
under the conditional model remained highly significant at 3.57 (p = 0.0002) with
log ξ̂H = 0.82 ± 0.23. In other words, using the loglinear model methodology, we
have discovered two pairs of V1 neurons with quite different behavior. For the first
pair, synchrony can be explained entirely by network effects, while for the second
pair it can not; this suggests that, instead, for the second pair, some of the excess
synchrony may be stimulus-related.

We also compared the marginal and conditional models (13) and (16) using
ROC curves. Specifically, for the binary joint spiking data we used each model
to predict a spike whenever the intensity was larger than a given constant: for the
marginal case whenever logλ1,2(t) > cmarginal, and for the conditional case when-
ever logλ1,2(t |Ht ) > cconditional. The choice of constants cmarginal and cconditional
reflect trade-offs between false positive and true positive rates (analogous to type
I error and power) and as we vary the constants, the plot of true vs. false posi-
tive rates forms the ROC curve. To determine the true and false positive rates, we
performed ten-fold cross-validation, repeatedly fitting from 90% of the trials and
predicting from the remaining 10% of the trials. The two resulting ROC curves
are shown in part D of Figure 2, labeled as “no history” and “history,” respec-
tively. To be clear, in the two cases we included the terms corresponding, respec-
tively, to ξ and ξH , and in the history case we included both the auto-history and
the network history variables specified above. The ROC curve for the conditional
model strongly dominates that for the marginal model, indicating far better pre-
dictive power. In part C of Figure 2 we display the true positive joint spike pre-
dictions when the false-positive rate was held at 10%. These correctly-predicted
joint spikes may be compared to the complete set displayed in parts A and B of
the figure. The top display in part C, labeled “no history,” shows that only a few
joint spikes were correctly predicted by the marginal model, while the large major-
ity were correctly predicted by the conditional model. Furthermore, the correctly
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predicted joint spikes are spread fairly evenly across time. In contrast, the ROC
curves for the second pair of neurons, shown in part (G) of Figure 2, are close to
each other: inclusion of the history effects (which were statistically significant) did
not greatly improve predictive power. In (G), the correctly predicted synchronous
spikes are clustered in time, with the main cluster occurring near a peak in the
individual-neuron firing-rate functions shown in the two smoothed PSTHs in parts
(E) and (F).

Taking all of the results together, our analysis suggests that the first pair of
neurons produced excess synchronous spikes solely in conjunction with network
effects, which are unrelated to the stimulus, while for the second pair of neurons
some of the excess synchronous spikes occurred separately from the network ac-
tivity and were, instead, stimulus-related.

We also tried to assess whether 2-way interactions were sufficient to explain
observed 3-way events by fitting the no-3-way interaction model given by (17),
and then testing the null hypothesis in (20). We did this for a particular set of 3
neurons, whose joint spikes are displayed in Figure 3. The method is analogous to
that carried out above for pairs of neurons, in the sense that the test statistic was
ξ̂123 given by (23) and a parametric bootstrap procedure, based on the fit of (17),
was used to compute an approximate p-value. Fitting of (17) required an iterative
proportional fitting procedure, which we will describe in detail elsewhere. We ob-
tained p = 0.16, indicating no significant 3-way interaction. In other words, for
these three neurons, 2-way excess joint spiking appears able to explain the occur-
rence of the 3-way joint spikes. However, as may be seen in Figure 3, there are
very few 3-way spikes in the data. We mention this issue again in our discussion.

FIG. 3. Plots of synchronous spiking events for 3 neurons. Each of the three plots displays all joint
spikes (as circles) for a particular pair of neurons. The dark circles in each plot indicate the 3-way
joint spikes.



1278 R. E. KASS, R. C. KELLY AND W.-L. LOH

4. A marked point process framework. In this section a class of marked
point processes for modeling neural spike trains is briefly surveyed. These models
take into account the possibility of two or more neurons firing in synchrony (i.e.,
at the same time). Consider an ensemble of ν neurons labeled 1 to ν. For T > 0,
let NT denote the total number of spikes produced by this ensemble on the time
interval [0, T ) and let 0 ≤ s1 < · · · < sNT

< T denote the specific spike times.
For each j = 1, . . . ,NT , we write (sj , (i1, . . . , ik)) to denote the event that a spike
was fired (synchronously) at time sj by (and only by) the i1, . . ., ik neurons. We
observe that

HT = {(s1, κ1), . . . , (sNT
, κNT

) :κj ∈ K, j = 1, . . . ,NT }(25)

forms a marked point process on the interval [0, T ) with K as the mark space
satisfying

K ⊆ {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ ν, k = 1, . . . , ν}.
We follow Daley and Vere-Jones (2002), page 249, and define the conditional in-
tensity function of HT as

λ(t, κ|Ht )

= λ(t, κ|{(s1, κ1), . . . , (sNt , κNt )})

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1(t)f1(κ|t) ∀0 ≤ t ≤ s1,

hi(t |(s1, κ1), . . . , (si−1, κi−1))fi(κ|t; (s1, κ1), . . . , (si−1, κi−1))

∀si−1 < t ≤ si, i = 2, . . . ,NT ,

hNT +1(t |(s1, κ1), . . . , (sNt , κNT
))fNT +1(κ|t; (s1, κ1), . . . , (sNT

, κNT
))

∀sNT
< t < T,

where h1(·) is the hazard function for the location of the first spike s1, h2(·|(s1, κ1))

the hazard function for the location of the second spike s2 conditioned by (s1, κ1),
and so on, while f1(·|t) is the conditional probability mass function of κ1 given
s1 = t , and so on. It is also convenient to write λ(t, κ|∅) = λ(t, κ|Ht ) for all
t < s1. The following proposition and its proof can be found in Daley and Vere-
Jones (2002), page 251.

PROPOSITION 1. Let HT be as in (25). Then the density of HT is given by

pλ(HT ) = pλ({(s1, κ1), . . . , (sNT
, κNT

)})

=
[

NT∏
i=1

λ(si, κi |Hsi )

]
exp

[
− ∑

κ∈K

∫ T

0
λ(t, κ|Ht ) dt

]
.

5. Theoretical results: Marginal methods. In this section we (i) provide
a justification of the limiting statements in (6) and (ii) generalize to higher-order
models. We also note that lagged dependence can be accommodated within our
framework, treating the case ν = 2.
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5.1. Regular marked point process and loglinear modeling. In this subsection
we prove that the heuristic arguments of Section 2 for marginal methods hold
under mild conditions. Consider ν ≥ 1 neurons labeled 1 to ν. For T > 0, let NT

denote the total number of spikes produced by these ν neurons on the time interval
[0, T ) and let 0 ≤ s1 < · · · < sNT

< T denote the specific spike times. For each
j = 1, . . . ,NT , we write (sj , (ij )) to represent the event that a spike was fired at
time sj by neuron ij where ij ∈ {1, . . . , ν}. We observe from Section 4 that

HT = {(s1, (i1)), . . . , (sNT
, (iNT

))}
forms a marked point process on the interval [0, T ) with mark space K =
{(1), . . . , (ν)}. Following the notation of Section 4, let λ(t, (i)|Ht ) denote the con-
ditional intensity function of the point process HT . We assume that the following
two conditions hold:

Condition (I). There exists a strictly positive refractory period for each neuron
in that there exists a constant θ > 0 such that λ(t, (i)|Ht ) = 0 if there exists some
(s,(i)) ∈ Ht such that t − s ≤ θ, i ∈ {1, . . . , ν}.

Condition (II). For each k ∈ {0, . . . ,2�T/θ� − 1} and i, i1, . . . , ik ∈ {1, . . . , ν},
the conditional intensity function λ(t, (i)|{(s1, (i1)), . . . , (sk, (ik))}) is a continu-
ously differentiable function in (s1, . . . , sk, t) over the simplex 0 ≤ s1 ≤ · · · ≤ sk ≤
t ≤ T .

If δ < θ , then condition (I) implies that there is at most 1 spike from each neuron
in a bin of width δ. Conditions (I) and (II) also imply that the marked point pro-
cess is regular in that (exactly) synchronous spikes occur only with probability 0.
Theorem 1 below gives the limiting relationship between the bin probabilities of
the induced discrete-time process and the conditional intensities of the underlying
continuous-time marked point process.

THEOREM 1. Suppose that conditions (I) and (II) hold, 1 ≤ i1 < · · · < ik ≤ ν

and 1 ≤ k ≤ ν. Then

lim
δ→0

δ−kP
i1,...,ik
1,...,1 (tm)

= 1

k!
∑

j1,...,jk :{j1,...,jk}={i1,...,ik}
E

k∏
l=1

[
λ
(
t, (jk)|{(t, (j1))}

∪ · · · ∪ {(t, (jk−1))} ∪ Ht

)]
,

where tm = mδ → t as δ → 0 and λ(t, (i2)|{(t, (i1))} ∪ Ht ) = limt∗→t− λ(t,

(i2)|{(t∗, (i1))} ∪ Ht ), etc. Here the expectation is taken with respect to Ht .

Theorem 1 validates the heuristics stated in (6) where ν = 2,

λi(t) = E
[
λ
(
t, (i)|Ht

)]
,

λ1,2(t) = 1

2

∑
1≤i1 �=i2≤2

E
[
λ
(
t, (i2)|{(t, (i1))} ∪ Ht

)
λ(t, (i1)|Ht )

]
.
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Next we construct the discrete-time loglinear model induced by the above
marked point process. First define recursively for tm = mδ,

ζ{i1}(tm) = δ−1P
i1
1 (tm) ∀i1 = 1, . . . , ν,

ζ{i1,i2}(tm) = δ−2P
i1,i2
1,1 (tm)

ζ{i1}(tm)ζ{i2}(tm)
∀1 ≤ i1 < i2 ≤ ν,

(26)
...

ζ{i1,...,ik}(tm) = δ−kP
i1,...,ik
1,...,1 (tm)∏


�{i1,...,ik} ζ
(tm)

∀1 ≤ i1 < · · · < ik ≤ ν,2 ≤ k ≤ ν.

We further define

ξ{i1,...,ik}(t) = lim
δ→0

ζ{i1,...,ik}(tm) ∀1 ≤ i1 < · · · < ik ≤ ν,1 ≤ k ≤ ν,(27)

where limδ→0 tm → t , whenever the expression on the right-hand side of (27) is
well defined. The following is an immediate corollary of Theorem 1.

COROLLARY 1. Let ξ{i1}(t) and ξ{i1,...,ik}(t) be as in (27). Then with the nota-
tion and assumptions of Theorem 1, we have

ξ{i1}(t) = E[λ(t, (i1)|Ht )],

ξ{i1,...,ik}(t) =
[
k! ∏


�{i1,...,ik}
ζ
(t)

]−1

× ∑
{j1,...,jk}={i1,...,ik}

E

k∏
l=1

[
λ
(
t, (jk)|{(t, (j1))}

∪ · · · ∪ {(t, (jk−1))} ∪ Ht

)]
,

whenever the right-hand sides are well defined.

It is convenient to define P̃
1,...,ν
0,...,0 (tm) = 1. For a1, . . . , aν ∈ {0,1} and not all 0,

define P̃ 1,...,ν
a1,...,aν

(tm) = P
i1,...,ik
1,...,1 (tm) where i ∈ {i1, . . . , ik} if and only if ai = 1. Then

using the notation of (26), the corresponding loglinear model induced by the above
marked point process is

log[P̃ 1,...,ν
a1,...,aν

(tm)]
= log[P i1,...,ik

1,...,1 (tm)](28)

=
ν∑

i=1

ai log[P i
1(tm)] + ∑


⊆{1,...,ν}:|
|≥2

( ∏
j∈


aj

)
log[ζ
(tm)]
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for all a1, . . . , aν ∈ {0,1}. Under conditions (I) and (II), Corollary 1 shows that
ξ
(t) = limδ→0 ζ
(tm) is continuously differentiable. This gives an asymptotic
justification for smoothing the estimates of ζ
, 
 ⊆ {1, . . . , ν}.

5.2. Case of ν = 2 neurons with lag h. This subsection considers the lag h

case for two neurons labeled 1 and 2. Let h,m be integers such that 0 ≤ m ≤
m + h ≤ T δ−1 − 1. As in (1), we write

P
1,2
a,b (tm, tm+h) = P [X2(tm+h) = b,X1(tm) = a] ∀a, b ∈ {0,1},

where tm = mδ and tm+h = (m + h)δ. Analogous to Theorem 1, we have the fol-
lowing results for the lag case.

THEOREM 2. Suppose conditions (I) and (II) hold. Then

lim
δ→0

P
1,2
1,1 (tm, tm+h)

δ2 = E
[
λ
(
t + τ, (2)|{(t, (1))} ∪ Ht+τ

)
λ(t, (1)|Ht )

]
,

where tm+h → t + τ and tm → t as δ → 0 for some constant τ > 0. Here the
expectation is taken with respect to Ht+τ (and hence also Ht ).

COROLLARY 2. Let ζ(tm, tm+h) be defined as in (5). Then with the notation
and assumptions of Theorem 2, we have

lim
δ→0

ζ(tm, tm+h)

(29)

= E[λ(t + τ, (2)|{(t, (1))} ∪ Ht+τ )λ(t, (1)|Ht )]
E[λ(t + τ, (2)|Ht+τ )]E[λ(t, (1)|Ht )] ∀0 ≤ t < T − τ,

whenever the right-hand side is well defined.

We observe from conditions (I) and (II) that the right-hand side of (29) is con-
tinuously differentiable in t . Again this provides an asymptotic justification for
smoothing the estimate of ζ(t, t + τ), with respect to t , when δ is small.

6. Theoretical results: Conditional methods. This section is analogous to
Section 5, but treats the conditional case. We (i) provide a justification of the limit-
ing statements in (9) and (ii) generalize to higher-order models. We again also note
that lagged dependence can be accommodated within our framework, treating the
case ν = 2.

6.1. Synchrony and loglinear modeling. This subsection considers ν ≥ 1 neu-
rons labeled 1 to ν. We model the spike trains generated by these neurons on [0, T )

by a marked point process HT with mark space

K = {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ ν, k = 1, . . . , ν}.
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Here, for example, the mark (i1) denotes the event that neuron i1 (and only this
neuron) spikes, (i1, i2) denotes the event that neuron i1 and neuron i2 (and only
these two neurons) spike in synchrony (i.e., at the same time), and the mark
(1, . . . , ν) denotes the event that all ν neurons spike in synchrony.

Let Nt denote the total number of spikes produced by these neurons on [0, t),
0 < t ≤ T , and let 0 ≤ s1 < · · · < sNT

< T denote the specific spike times. For
each j = 1, . . . ,NT , let κj ∈ K be the mark associated with sj . Then HT can be
expressed as

HT = {(s1, κ1), . . . , (sNT
, κNT

)}.(30)

Given Ht , we write

Hi
t = {s : (s, κ) ∈ Ht for some κ = (i1, . . . , ik) such that i ∈ {i1, . . . , ik}}

∀i = 1, . . . , ν.

Hi
t denotes the spiking history of neuron i on [0, t). The conditional intensity func-

tion λ(t, κ|Ht ), t ∈ [0, T ) and κ ∈ K, of the marked point process HT is defined
to be

λ(t, (i)|Ht ) = λi(t |Hi
t ) ∀t ∈ [0, T ),

(31)

λ(t, (i1, . . . , ik)|Ht ) = δk−1γ{i1,...,ik}(t)
k∏

j=1

λij (t |Hij
t ) ∀t ∈ [0, T ),

where δ > 0 is a constant, γ{i1,...,ik}(t)’s are functions depending only on t and
the λi(t |Hi

t )’s are conditional intensity functions depending only on the spiking
history of neuron i. We take γ{i}(t) to be identically equal to 1.

From (31), we note that the above marked point process model is not a single
marked point process but rather a family of marked point processes indexed by δ.
In the sequel, we let δ → 0. We further assume that the following two conditions
hold:

Condition (III). There exists a strictly positive refractory period for each neuron
in that there is a constant θ > 0 such that, for i = 1, . . . , ν and t ∈ [0, T ),

λi(t |Hi
t ) = 0, if there exists some s ∈ Hi

t such that t − s ≤ θ.

Condition (IV). For each k ∈ {0, . . . , �T/θ� − 1} and i ∈ {1, . . . , ν}, λi(t |{s1,

. . . , sk}) is a continuously differentiable function in (s1, . . . , sk, t) over the simplex
0 ≤ s1 ≤ · · · ≤ sk ≤ t ≤ T .

Following Section 2.2, we divide the time interval [0, T ) into bins of width δ.
For simplicity, we assume that T is a multiple of δ. Let tm = mδ and Xi(tm),
m = 0, . . . , T δ−1 − 1, be as in Section 1. If Xi(tl) = 1 for all l ∈ {l1, . . . , lk}, and
Xi(tl) = 0 otherwise, for some subset 0 ≤ l1 < · · · < lk ≤ m − 1, we write

H̄i
tm

= {tl1, . . . , tlk }, H̄tm = (H̄1
tm

, . . . , H̄ν
tm

).(32)
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It should be observed that although the above definitions of Hi
tm

and H̄tm differ
from those given in Section 1.2, they are equivalent. We note that the conditional
intensity functions λ(t, (i1, . . . , ik)|Ht ) in (31) depend on the bin width δ. This is
necessary in order to preserve the natural hierarchical sparsity conditions given by

sup
m=0,...,T δ−1−1

P [Xi1(tm) = 1, . . . ,Xik (tm) = 1] = O(δk),

as δ → 0 for all 1 ≤ i1 < · · · < ik ≤ ν, 1 ≤ k ≤ ν.

THEOREM 3. Consider the marked point process HT as in (30) with condi-
tional intensity function satisfying (31). Then under conditions (III) and (IV), we
have

P i
1(tm|H̄tm) = δλi(tm|H̄i

tm
) + O(δ2),

P
i1,i2
1,1 (tm|H̄tm) = δ2[

1 + γ{i1,i2}(tm)
] 2∏
j=1

[λij (tm|H̄ij
tm)] + O(δ3),

and in general,

P
i1,...,ik
1,...,1 (tm|H̄tm)

= δk

{
k∑

j=1

∑

1,...,
j :all disjoint and nonempty,∪
j={i1,...,ik}

j∏
l=1

γ
l
(tm)

}

×
k∏

�=1

[λi�(tm|H̄i�
tm)] + O(δk+1)

for sufficiently small δ where H̄tm and H̄i
tm

are defined by (32).

The following is an immediate corollary of Theorem 3. It gives an asymptotic
justification for equation (8) in Section 2.2.

COROLLARY 3. With the notation and assumptions of Theorem 3, we have for
ν = 2,

P
1,2
1,1 (tm|H̄tm) = ζ(tm)P 1

1 (tm|H̄1
tm

)P 2
1 (tm|H̄2

tm
) + O(δ3)

for sufficiently small δ > 0 uniformly over H̄i
tm

, m = 0, . . . , T δ−1 − 1 where
ζ(tm) = 1 + γ{1,2}(tm).

We now use Theorem 3 to construct a loglinear model (for the above spike
train data) whose higher-order coefficients are asymptotically independent of past



1284 R. E. KASS, R. C. KELLY AND W.-L. LOH

spiking history. First define recursively

ζ{i1}(tm|H̄tm) = δ−1P
i1
1 (tm|H̄tm) ∀i1 = 1, . . . , ν,

ζ{i1,i2}(tm|H̄tm) = δ−2P
i1,i2
1,1 (tm|H̄tm)

ζ{i1}(tm|H̄tm)ζ{i2}(tm|H̄tm)
∀1 ≤ i1 < i2 ≤ ν,

(33)
...

ζ{i1,...,ik}(tm|H̄tm) = δ−kP
i1,...,ik
1,...,1 (tm|H̄tm)∏


�{i1,...,ik} ζ
(tm|H̄tm)
∀1 ≤ i1 < · · · < ik ≤ ν.

It follows from Theorem 3 and (33) that for sufficiently small δ,

ζ{i1}(tm|H̄tm) = λi1(tm|H̄i1
tm) + O(δ) ∀i1 = 1, . . . , ν,

ζ{i1,i2}(tm|H̄tm) = 1 + γ{i1,i2}(tm) + O(δ) ∀1 ≤ i1 < i2 ≤ ν,

...

ζ{i1,...,ik}(tm|H̄tm)

=
∑k

j=1
∑


1,...,
j :all disjoint and nonempty,∪
j={i1,...,ik}
∏j

l=1 γ
l
(tm)∏


�{i1,...,ik}:|
|≥2 ζ
(tm|H̄tm)
+ O(δ)

whenever 1 ≤ i1 < · · · < ik ≤ ν and k ≥ 2, assuming that terms on the right-
hand side are well defined. The practical importance of these results lies in
the fact that the coefficients ζ{i1,...,ik}(tm|H̄tm) with k ≥ 2 are asymptotically (as
δ → 0) independent of H̄tm , the spiking history of the neurons. It is conve-
nient to define P̃

1,...,ν
0,...,0 (tm|H̄tm) = 1. For a1, . . . , aν ∈ {0,1} and not all 0, define

P̃ 1,...,ν
a1,...,aν

(tm|H̄tm) = P
i1,...,ik
1,...,1 (tm|H̄tm) where i ∈ {i1, . . . , ik} if and only if ai = 1.

Then the induced loglinear model is

log[P̃ 1,...,ν
a1,...,aν

(tm|H̄tm)]
(34)

=
ν∑

i=1

ai log[P i
1(tm|H̄tm)] + ∑


⊆{1,...,ν}:|
|≥2

( ∏
j∈


aj

)
log[ζ
(tm|H̄tm)]

for all a1, . . . , aν ∈ {0,1} where the second term on the right-hand side of (34) is
asymptotically (as δ → 0) independent of the spiking history H̄tm .

6.2. ν = 2 neurons with time-delayed synchrony. This subsection considers
ν = 2 neurons labeled 1, 2 and let τ > 0 be a constant denoting the spike lag. We
model the spike train generated by the two neurons on [0, T ) by a marked point
process HT as in (25) with mark space K = {(1), (2), (1,2)}. The marks (1), (2)

are interpreted as before as isolated (i.e., nonsynchronous) spikes. However, now
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(1,2) is interpreted to be neuron 1 spiking first and then neuron 2 spiking second
after a delay of τ time units. The mark (1,2) is used to model a precise time-
delayed synchronous spiking of lag τ between the 2 neurons.

Let NT denote the number of times the three marks occur on [0, T ) and s1 <

· · · < sNT
be the specific spike times. For each j = 1, . . . ,NT , let κj ∈ K be the

mark associated with sj . Then Ht can be decomposed into (H1
t , H2

t+τ ), where

H1
t = {

s : (s, κ) ∈ Ht where κ ∈ {(1), (1,2)}},
(35)

H2
t+τ = {

s : (s, κ) ∈ Ht+τ whereκ ∈ {(2), (1,2)}}.
To be definite, (s, κ) = (s, (1,2)) means neuron 1 spikes at time s and neuron 2
spikes at time s + τ . The conditional intensity function λ(t, κ|Ht ), t ∈ [0, T ) and
κ ∈ K, of the marked point process HT is defined to be

λ(t, (i)|Ht ) = λi(t |Hi
t ) ∀i = 1,2, t ∈ [0, T ),

(36)
λ(t, (1,2)|Ht ) = δγ (t, t + τ)λ1(t |H1

t )λ
2(t + τ |H2

t+τ ) ∀t ∈ [0, T ),

where δ > 0 is a constant, γ (t, t + τ) is a continuously differentiable function
in t on the interval 0 ≤ t ≤ T − τ , and λ1(t |H1

t ), λ2(t + τ |H2
t+τ ) are conditional

intensity functions depending only on the spiking history of neuron 1 up to time t

and on the spiking history of neuron 2 up to time t + τ , respectively.
As in Section 1, we divide the time interval [0, T ) into bins of width δ > 0.

Let H̄tm = (H̄1
tm

, H̄2
tm+h

) be as in (32) where, for simplicity, we assume that δ is

chosen such that m,h are integers satisfying 0 ≤ m ≤ m + h ≤ T δ−1 − 1 and
tm+h = tm + τ . Recall that, by definition,

P i
1(tm|H̄i

tm
) = P

(
Xi(tm) = 1|H̄i

tm

)
,

P
1,2
1,1 (tm, tm+h|H̄tm) = P

(
X1(tm) = 1,X2(tm+h) = 1|H̄tm

)
.

THEOREM 4. Consider the marked point process HT as in (35) with condi-
tional intensity function satisfying (36). Let m,h be integers satisfying 0 ≤ m ≤
m + h ≤ T δ−1 − 1 and tm+h = tm + τ . Then under conditions (III) and (IV), we
have

P
1,2
1,1 (tm, tm+h|H̄tm) = δ2[γ (tm, tm+h) + 1]P 1

1 (tm|H̄1
tm

)P 2
1 (tm+h|H̄2

tm+h
) + O(δ3)

for sufficiently small δ.

The practical significance of Theorem 4 is that γ (tm, tm+h) does not depend on
the spiking history of the 2 neurons. This implies that a statistic based on γ can
be constructed to test the null hypothesis H0 that there is no time-delayed spiking
synchrony at lag τ between the 2 neurons.
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7. Discussion. We have described an approach to assessing spike train syn-
chrony using loglinear models for multiple binary time series. We tried to motivate
the application of loglinear modeling technology in Section 1, emphasizing two
features of individual neural response: stimulus-induced nonstationarity that re-
mains time-locked across trials, and within-trial effects that are history-dependent,
with timing that varies across trials. These were incorporated into the models by
including for individual neurons both time-varying marginal effects, which stay
the same across trials, and history-dependent terms; interaction terms were treated
separately. In Section 3 we presented results for two pairs of neurons. For both
pairs there was evidence of excess synchronous spiking beyond that explained
by stimulus-induced changes in individual-neuron firing rates. In one pair, net-
work activity, represented as history dependence, was sufficient to account for ex-
cess synchronous spiking, but the other pair displayed excess synchronous spiking
that remained highly statistically significant even after network effects were incor-
porated, indicating stimulus-related synchrony. Our theoretical results provided
a continuous-time point process foundation for the methods, justifying both our
use of smoothing and our derivation of the excess-synchrony estimators ζ̂ and ζ̂H .

Assessment of synchrony via continuous-time loglinear models is closely re-
lated to the unitary-event analysis of Grün, Diesmann and Aertsen (2002a, 2002b).
Unitary event analysis assumes each neuron follows a locally-stationary Poisson
process, which has been shown to be somewhat conservative in the sense of pro-
viding inflated p-values in the presence of non-Poisson history dependence. Its
main purpose is to identify stimulus-locked excess synchrony. Because the loglin-
ear models could be viewed as generalizations of locally-stationary Poisson mod-
els, they could extend unitary-event analysis to cases in which it seems desirable to
account more explicitly for stimulus and history effects. This is a topic for future
research.

We also provided an example of testing for 3-way interaction. The results we
gave in Section 3 for a particular triple of neurons indicated no evidence of excess
3-way joint spiking above that explained by 2-way joint spiking. A systematic
finding along these lines, examining large numbers of neurons, would be consistent
with findings of Schneidman et al. (2006). However, as may be seen from Figure 3,
3-way joint spikes are very sparse. A careful study of the power to detect 3-way
joint spiking in contexts like the one considered here could be quite helpful. We
plan to carry out such a study and report it elsewhere.

We have restricted history effects to individual neurons by assuming, first, that
each neuron’s history excludes past spiking of the other neurons under considera-
tion and, second, that the interaction effects are independent of history. This greatly
simplifies the modeling and avoids confounding the interaction effects with cross-
neuron effects. While it would be possible, in principle (by modifying the hierar-
chical sparsity condition), to allow history-dependence within interaction effects,
we see no practical benefit of doing so. With the two additional, highly plausible
assumptions used here, we get both tractable discrete-time methods and a sense
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in which the methods may be understood in continuous time. A key element of
our formalism is the requirement of hierarchical sparsity, as in the special case of
equation (10) and more generally in Section 6.1 (preceding Theorem 3). This cor-
responds to the practical reality that two-way synchronous spikes are rare, as in
Figure 2, and three-way spikes are even rarer, as in Figure 3. Some form of spar-
sity seems to us essential. [After our article was accepted we became aware that
Solo (2007) had attempted to develop likelihoods for point processes having syn-
chronous events, but because his approach does not incorporate sparsity we have
been unable to understand how it could be used in the kind of applications we have
described here.] It is somewhat inelegant to have a sequence of marked processes
(indexed by δ), but this appears to be the best that can be achieved by starting with
very natural discrete-time loglinear models. An alternative would be to use more
standard point process models with short time-scale cross-neuron effects. Presum-
ably, similar results could be obtained, but the relationship between these differ-
ent approaches is also a subject for future research. A quite different technology
involves permutation-style assessment via “dithering” or “jittering” of individual
spike times [cf. Geman et al. (2010), Grün (2009)]. Synchrony is one of the deep
topics in computational neuroscience and its statistical identification is subtle for
many reasons, including inaccuracies in reconstruction of spike timing from the
complicated mixture of neural signals picked up by the recording electrodes [e.g.,
Harris et al. (2000), Ventura (2009)]. It is likely that multiple approaches will be
needed to grapple with varying neurophsyiological circumstances.

APPENDIX

PROOF OF THEOREM 1. For simplicity, we shall consider only the case for
ν = 2. The proof for other values of ν is similar though more tedious. We observe
from Proposition 1 that

P
1,2
1,0 (tm)

δ

= 1

δ

2�T/θ�∑
k=0

∑
i1,...,ik∈{1,2}

∫ tm

0
. . .

∫ tm

sk−1

∫ tm+1

tm

λ(sk+1, (1)|{(s1, (i1)), . . . , (sk, (ik))})(37)

×
[

k∏
l=1

λ(sl, (il)|{(s1, (i1)), . . . , (sl−1, (il−1))})
]

× e
−∑2

j=1
∫ tm+1

0 λ(w,(j)|Hw)dw
dsk+1 dsk · · · ds1.
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Condition (I) implies that the summations
∑

k

∑
i1,...,ik∈{1,2} in (37) contain a finite

number of summands. Hence, letting δ → 0, the right-hand side of (37) equals

2�T/θ�∑
k=0

∑
i1,...,ik∈{1,2}

lim
δ→0

1

δ

∫ tm

0
. . .

∫ tm

sk−1

∫ tm+1

tm

λ(sk+1, (1)|{(s1, (i1)), . . . , (sk, (ik))})

×
[

k∏
l=1

λ(sl, (il)|{(s1, (i1)), . . . , (sl−1, (il−1))})
]

(38)

× e
−∑2

j=1
∫ tm+1

0 λ(w,(j)|Hw)dw
dsk+1 dsk · · · ds1.

Using Condition (II) and the Taylor expansion, we have

λ(sk+1, (1)|{(s1, (i1)), . . . , (sk, (ik))})
= λ(tm, (1)|{(s1, (i1)), . . . , (sk, (ik))}) + O(δ),

uniformly over tm ≤ sk+1 ≤ tm+1,0 ≤ s1 ≤ · · · ≤ sk ≤ tm. Consequently, (38)
equals

2�T/θ�∑
k=0

∑
i1,...,ik∈{1,2}

lim
δ→0

{∫ tm

0
. . .

∫ tm

sk−1

λ(tm, (1)|{(s1, (i1)), . . . , (sk, (ik))})

×
[

k∏
l=1

λ(sl, (il)|{(s1, (i1)), . . . , (sl−1, (il−1))})
]

× e
−∑2

j=1
∫ tm

0 λ(w,(j)|Hw)dw
dsk+1 dsk · · · ds1 + O(δ)

}

= E[λ(t, (1)|Ht ],
since tm+1 − tm = δ and limδ→0 tm = t . Using a similar argument, we have

P
1,2
1,1 (tm)

δ2 = ∑
1≤�1 �=�2≤2

1

δ2

2�T/θ�∑
k=0

∑
i1,...,ik∈{1,2}∫ tm

0
. . .

∫ tm

sk−1

∫ tm+1

tm

∫ tm+1

sk+1

λ(sk+2, (2)|{(s1, (i1)), . . . , (sk, (ik)), (sk+1, (1))})
× λ(sk+1, (1)|{(s1, (i1)), . . . , (sk, (ik))})

×
[

k∏
l=1

λ(sl, (il)|{(s1, (i1)), . . . , (sl−1, (il−1))})
]

× e
−∑2

j=1
∫ tm+1

0 λ(w,(j)|Hw)dw
dsk+2 dsk+1 dsk · · · ds1
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→ 1

2

{
E

[
λ
(
t, (2)|{(t, (1))} ∪ Ht

)
λ(t, (1)|Ht )

]
+ E

[
λ
(
t, (1)|{(t, (2))} ∪ Ht

)
λ(t, (2)|Ht )

]}
and δ−1P 1

1 (tm) = δ−1[P 1,2
1,0 (tm) + P

1,2
1,1 (tm)] → E[λ(t, (1)|Ht ] as δ → 0.

�

PROOF OF THEOREM 2. For simplicity, define

P
1,2;1,2
a,b;c,d (tm, tm+h) = P

(
X1(tm) = a,X2(tm) = b,X1(tm+h) = c,X2(tm+h) = d

)
for all a, b, c, d,∈ {0,1}. We observe from Proposition 1 that

δ−2P
1,2;1,2
1,0;0;1 (tm, tm+h)

= 1

δ2

2�T/δ�∑
j=0

2�T/θ�∑
k=0

∑
i1,...,ij ,ij+2,...,ij+k+1∈{1,2}∫ tm

0
. . .

∫ tm

sj−1

∫ tm+1

tm

∫ tm+h

sj+1

· · ·
∫ tm+h

sj+k

∫ tm+h+1

tm+h

λ(sj+k+2, (2)|{(s1, (i1)), . . . , (sj , (ij )), (sj+1, (1)), (sj+2, (ij+2)),

. . . , (sj+k+1, (ij+k+1))})

×
[j+k+1∏

l=j+2

λ(sl, (il)|{(s1, (i1)), . . . , (sj , (ij )),

(sj+1, (1)), (sj+2, (ij+2)), . . . , (sl−1, (il−1))})
]

× λ(sj+1, (1)|{(s1, (i1)), . . . , (sj , (ij ))})

×
[ j∏

l=1

λ(sl, (il)|{(s1, (i1)), . . . , (sl−1, (il−1))})
]

× e−∑2
�=1

∫ tm+1
0 λ(w,(�)|Hw)dw dsj+k+2 dsj+k+1 · · · dsj+2 dsj+1 dsj · · · ds1

→ E
[
λ
(
t + τ, (2)|{(t, (1))} ∪ Ht

)
λ(t, (1)|Ht )

]
as δ → 0. Theorem 2 follows since P

1,2
1,1 (tm, tm+h) ∼ P

1,2;1,2
1,0;0;1 (tm, tm+h) as δ → 0.

�

PROOF OF THEOREM 3. For simplicity, we only consider the case ν = 2. Let
H̄i

tm
= {tli,1, . . . , tli,ki } and

⋃2
i=1{li,1, . . . , li,ki

} = {l1, . . . , lk}, where 0 ≤ l1 < · · · <
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lk ≤ m − 1. We observe from (31) that P 1
1 (tm|H̄tm) = P

1,2
1,0 (tm|H̄tm) + O(δ2), and

P
1,2
1,0 (tm|H̄tm)P (H̄tm)

δ
= 1 + O(δ)

δ

∫ tl1+1

tl1

. . .

∫ tlk+1

tlk

∫ tm+1

tm

λ1(sk+1|{sl1,1, . . . , sl1,k1
}) dsk+1 dF(sl1, . . . , slk )

= λ1(tm|H̄1
tm

)P (H̄tm) + O(δ)P (H̄tm)

for sufficiently small δ where F denotes the distribution function of sl1, . . . , slk .
Here sl1 ∈ [tl1, tl1+1), sl1,1 ∈ [tl1,1, tl1,1+1), etc. This proves the first statement of
Theorem 3. Next we observe that

P
1,2
1,1 (tm|H̄tm)P (H̄tm)

δ2

= 1 + O(δ)

δ2

∫ tl1+1

tl1

. . .

∫ tlk+1

tlk

∫ tm+1

tm

δγ (sk+1)λ
1(sk+1|{sl1,1, . . . , sl1,k1

})

× λ2(sk+1|{sl2,1, . . . , sl2,k2
}) dsk+1 dF(sl1, . . . , slk )

+ 1 + O(δ)

δ2

∫ tl1+1

tl1

. . .

∫ tlk+1

tlk

∫ tm+1

tm

∫ tm+1

tm

λ1(sk+2|{sl1,1, . . . , sl1,k1
})

× λ2(sk+1|{sl2,1, . . . , sl2,k2
}) dsk+2 dsk+1 dF(sl1, . . . , slk )

= [1 + γ (tm)]λ1(tm|H̄1
tm

)λ2(tm|H̄2
tm

)P (H̄tm) + O(δ)P (H̄tm)

for sufficiently small δ. This proves Theorem 3. �

PROOF OF THEOREM 4. We observe that Htm → H̄tm is a many-to-one map-
ping and from (36) that

P
(
X1(tm) = 1,X2(tm+h) = 1|Htm

)
= δ2γ (tm, tm+h)λ

1(tm|H1
tm

)λ2(tm+h|H2
tm+h

)(39)

+ δ2λ1(tm|H1
tm

)λ2(tm+h|H2
tm+h

) + O(δ3)

for sufficiently small δ. We further observe that

P 1
1 (tm|H1

tm
) = P

(
X1(tm) = 1,X2(tm+h) = 0|H1

tm

) + O(δ2)

= δλ1(tm|H1
tm

) + O(δ2)

= δλ1(tm|H̄1
tm

) + O(δ2),
(40)

P 2
1 (tm+h|H2

tm+h
) = P

(
X1(tm) = 0,X2(tm+h) = 1|H2

tm+h

) + O(δ2)

= δλ2(tm+h|H2
tm+h

) + O(δ2)

= δλ2(tm+h|H̄2
tm+h

) + O(δ2).
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Thus, it follows from (39) and (40) that

P
(
X1(tm) = 1,X2(tm+h) = 1|H̄tm

)
= E

[
P

(
X1(tm) = 1,X2(tm+h) = 1|Htm

)|H̄tm

]
= δ2[γ (tm, tm+h) + 1]P 1

1 (tm|H̄1
tm

)P 2
1 (tm+h|H̄2

tm+h
) + O(δ3)

for sufficiently small δ. This proves Theorem 4. �
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