Stochastic Epidemic Modeling

Priscilla E. Greenwood and Luis F. Gordillo

Abstract We review the topic of stochastic epidemic modeling with emphasis on
compartmental stochastic models. A main theme is the usefulness of the correspon-
dence between these and their large population deterministic limits, which describe
dynamical systems. The dynamics of an ODE system informs us of the deterministic
skeleton upon which the behavior of corresponding stochastic systems are built. In
this chapter we present a number of examples, mostly in the context of susceptible-
infected-recovered (SIR) models, and point out how this way of thinking may be
useful in understanding other stochastic models. In particular we discuss the distri-
bution of final epidemic size, the effect of different patterns of infectiousness, and
the quantification of stochastically sustained oscillations.

1 Introduction

The topic of stochastic epidemic modeling is huge. There are many possible types
of stochastic epidemic model. The decision of which type of model to choose, or
to invent a new one, depends on the specific question to be explored and the data
which is at hand or can be obtained. This chapter is a brief guide for newcomers,
to the literature and to the construction of compartmental stochastic models. We
will indicate some of the history of the subject in the next section. The one class of
stochastic models which we will describe in some detail, compartmental models, is
introduced in Section 3. Their natural form is multivariate Markov jump processes.
When populations are large, they correspond, in the sense of non-limit approxima-
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tion, to systems of stochastic differential equations. Their large population limits are
systems of ordinary differential equations.

Following the section on stochastic compartmental models we will describe three
stochastic phenomena that illustrate some of the questions to which these models
can yield answers. They happen to be questions to which we have recently con-
tributed. The first, in Section 4, concerns the form of the distribution of the final size
of an epidemic. In the context of a susceptible-infected-removed (SIR) epidemic, the
final size distribution is bimodal, quite strikingly if the reproduction number is just
slightly larger than one. Hence a prediction of epidemic size based on deterministic
modeling may be meaningless.

Section 5 concerns stochastically sustained oscillations, which occur if the cor-
responding dynamical system has damped oscillations. Such sustained oscillations
may help to explain the semi-regular recurrence of infectious disease outbreaks.
Multiscale analysis has allowed the phenomenon to be interpreted in terms of
stochastic process behavior, so that the role it plays in oscillatory disease phenom-
ena can be quantified.

Another interesting stochastic effect, in Section 6, concerns a class of stochastic
models in which nearly all homogeneity is abandoned. Still it is possible to say
something about the distribution of epidemic size. It depends on the infectiousness
of infected participants only through their total, or integrated, infectiousness.

A concluding section contains general observations about the essential role of
dynamical systems analysis in the understanding of stochastic dynamic effects in
epidemic models and additional examples.

2 History

An early stochastic epidemic model was proposed by A.G. McKendrick in 1926,
[38], which precedes his work with Kermack on deterministic models, [28]. An ac-
count of McKendrick’s paper can be found in [25]. In 1928 and 1931, Reed and
Frost, and Greenwood proposed discrete time stochastic models, which proceeded
by generations of infectives, [18]. The Reed-Frost model was not published at the
time, but was presented in lectures in 1928. Bartlett, [14], studied a continuous time
stochastic SIR model, and this began a large literature of which we mention only
a few highlights. The book of Bailey [6] (first printed in 1957) is about both deter-
ministic and stochastic epidemic models and the estimation of their parameters. In
1993 the Isaac Newton Institute in Cambridge held a semester-long workshop on
stochastic epidemic modeling. Three collections of papers edited by Mollison [40],
by Isham and Medley [26], and by Grenfell and Dobson [21] resulted. The mono-
graph of Daley and Gani [18] is probably the best general source on this subject. In
particular their Chapter 1 is a fine account of the early history of epidemic modeling
in general. In fact Daley and Gani are two of the outstanding figures on this area.
Another authoritative survey, including maximum likelihood estimation and Monte
Carlo Markov Chain (MCMC) methods is by Anderson and Britton, [3]. A revised
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edition is currently under preparation. Among further prominent contributors to the
area are Frank Ball [7, 8, 9, 11] Andrew Barbour [12, 13], Niels Becker [15, 16],
David Kendall [27], Donald Ludwig [36], Anders Martin-Lof [39], Ingemar Nasell
[41, 42], Gian Paulo Scalia-Tomba [46, 47, 11] , Tom Sellke [48].

3 Stochastic Compartmental Models

Before looking at particular epidemic models, let us become familiar with some
notation and ideas about stochastic compartmental models. Later the compartments
will become disease states and their members, which we refer to here as particles,
will be individuals. We will represent compartments, or classes of individuals by
boxes, for example three of them as in Figure 1, and define a vector-valued process
which describes the movement of particles into, and out of each box. Time is contin-
uous. For each time, 7 > 0, (X;(7),X»(¢),X3(¢)) is the number of particles in boxes
1, 2, and 3 respectively, where these three numbers sum up to N(¢), the total number
of particles at that time.

Fig. 1 A schematic compart-
mental representation. Parti-

cles "move” betwen different
categories.

An underlying structure, basic to the class of stochastic compartmental models,
and indeed to all Markov jump processes, is the Poisson process. Suppose there
is just one compartment, and just one process, X (¢), representing the number of
particles in the box at time z. Particles enter the box at random times. The initial
value, X (0), is fixed and for some A > 0,

P(X(t+At)—X(t) =1) = LAt +0(At), (1)
P(X(t+At)—X(t) =0) =1—AAt +o0(A1). (2)

The increments of X (¢) in disjoint time intervals are independent. Then X (¢), 7 > 0 is
called a Poisson process. The number A is called the intensity or the stochastic rate
of the process. The times between successive jumps of the process are exponentially
distributed with parameter 4. Instead of being constant, A = A(¢) may depend on ¢
and may also depend on the value of the process at time ¢. For example, if

P(X(t+Ar)—X(t) =1)=aX(t)At +o(At), 3)

then we say aX (¢) is the conditional instantaneous stochastic rate of the process at
time 7, where the conditioning is on the value of X (7), or, once this is understood, we
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shorten this to : aX(¢) is the stochastic rate, or simply the rate. The rate per particle
is a. This process is a pure birth process. If our model has several compartments, so
that our stochastic process of counts has several components, then the conditional
instantaneous stochastic rates of particles entering or leaving each compartment at
time ¢ may depend on the sizes of any of the components.

A Markov jump process necessarily has exponentially distributed times between
the jumps. We saw this above in the description of the pure birth process, which
involves just one component process and one type of jump. A compartmental epi-
demic model is a vector-valued process with a vector component for each compart-
ment. There are several types of jumps, one type of jump for each arrow in the
diagram. If the resulting multi-component process is Markov, each type of jump
will occur according to a locally Poisson probability as in (1) above, and the times
between jumps of any one type, given that nothing occurs in the interim to alter the
rate, will be exponentially distributed with parameter given in terms of the states of
the component processes at the beginning of the interval. Each component of the
Markov jump process can be regarded as a birth and death process, with instanta-
neous stochastic rates depending on all the components.

The requirement that the inter-jump times be exponentially distributed is not es-
sentially restrictive. There are ways to generalize without losing the advantages of
Markov modeling. For example, additional stages can be introduced so that, for in-
stance, one infective step occurs in a sum of independent exponential times, and the
result will be a gamma-distributed time. What is important to the resulting stochas-
tic process is how the conditional mean of each increment, each change between ¢
and 7 + At, relates to the conditional variance of the increment. In the case of con-
ditionally Poisson increments, which are often used in this type of modeling, and
yield a Markov structure, the mean and variance are equal. The paper of Lloyd in
this volume discusses this point further.

Example 1. A simple stochastic epidemic. In this example we will consider two
compartments corresponding to susceptible and infective individuals. We will use
the letters S and 7 respectively to refer to the compartments and also, without con-
fusion we hope, to the number of individuals in each class. We will assume that
the total number of individuals is constant and equal to N, that is, S+7 = N. An
individual who belongs to the class S may be contacted by an individual in /, who
can transfer the infection. If that is the case, the susceptible individual changes his
classification and belongs now to the class I, where he will remain indefinitely. As-
sume that individuals in each compartment are interchangeable, that the classes are
homogeneously mixed, and that contacts between susceptible and infective individ-
uals, or equivalently the movement of individuals from the class S to the class I,
occur at random times. If 3 is the average number of contacts made by an average
infective per unit of time that leads to an infection, the probability of a suscepti-
ble individual moving from class S to class [ in the time interval [¢,z 4 At], that is,
S—S—1landl—I+1,is B3LAt+o(At).

This stochastic infection rate has come to be widely used, with various possible
interpretations of the N in the denominator. One can think of each susceptible con-
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tacting everyone in the population with a rate f and encountering a proportion /N
of infectives. Or one may think of each infective contacting everyone in the popu-
lation with a rate 8 and encountering a proportion S/N of susceptibles. Or one may
think of the N in the denominator as a reduction of the infection rate due to incom-
plete mixing in population. From this last point of view, the denominator might be
a different power of N or some other function of N. This point is discussed in [49].

The process (S;,1;), will represent the number of susceptible and infective indi-
viduals at time ¢. The probability of an infection during the time interval [r,f + At]
is

S/
P((Star rar) = (S1,1) = (=1,1) = B=F At +o(41), @)
with the complementary probability
Sily
P((Sivarsdivar) — (Si,4) = (0,0)) = 1 — ﬁWAt +o(At). )

Example 2. The stochastic SIR model. Consider three classes of individuals: sus-
ceptible, infected, and removed (by recovery or death). As in the previous example,
we will use S, I and R to represent the compartments themselves, as well as the
numbers of individuals in each compartment, and assume S+ 7+ R = N, a constant.
Thus, in the time interval [t,7 4+ Af], the probability of an infection, that is, the simul-
taneous transitions S — S — 1 and I — I + 1 occur, is %At +0(At), as in Example
1. If it is assumed that infected individuals recover with rate 7, the probability for a
recovery, — I—1and R — R+ 1, in the interval [¢,7 4 At], is YIAt 4 0(At). Because
R=N—S8-1,itis enough to consider the process (S;,1;). Thus, the probabilities of
an infection and of a recovery during the time interval [¢,7 + A¢] are

Si 1
P((Sivarsdivar) — (S, ) = (—1,1)) = ﬁtWAtJFU(At), (6)
P((SitarDivar) — (Si, 1) = (0,—1)) = vL, At +o(At), (N

with the complementary probability

P(Sicar o) = 510 = (0.0) =1 = (B3 +7) v (a0 ®)

This model, widely known as the general stochastic epidemic, was introduced by
Barlett in 1949, [14]. An extensive study can be found, for instance, in [3, 18]. The
stochastic equations describing this process, which are going to be used in Sec-
tion 4, are obtained by adding and subtracting, to each increment of S; and I;, the
conditional expectations, given the value of the process at the beginning of the cor-
responding time increment, say, of length A¢, [6]. Each increment of the process can
be expressed as the expected value of the increment plus a sum of centered incre-
ments. In our example, the expected values of the increments AS = S; 4, — S; and
Al =1 A, — I are (fﬁ%)At and (ﬁ% — vI;) At respectively, so the increments
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can be written as

S,

AS = (—ﬁlfv’) At+AZ, 9)
S,

Al = BW—yI, At —AZ|+AZ, (10)

where AZ; and AZ, are conditionally centered Poisson increments with mean zero
and conditional variances f3(S;I;/N)At and Yy, At.

Now let us consider what happens if we drop the terms AZ; from equations (9)
and (10), and let At go to zero. The resulting ordinary differential equations,

as _ s
dr N’
dl A\
B2 gy
dt BN i

define a deterministic model. If 3,1, is used instead of BS;1; /N, with f = B /N, we
have, after dropping the hats, the so called Kermack and McKendrick ODE model,
(19],

das
E = *BStIt’ (11)
dl
— = BS L, — 1. (12)
dt

In these first two examples, many aspects of a real contagion process have been put
aside, for instance latent periods, varying infection and recovery rates, partial im-
munity, behavioral changes. The inclusion of such features would make the model
more realistic, but would complicate the analysis. The strategy in modeling a partic-
ular system is first to consider the simplest model, even though some of the aspects
one might eventually wish to include are absent. One looks at the analysis and then
one may add, one step at a time, additional features. Adding compartments rapidly
complicates the analysis. It may be necessary to evaluate the effect of an additional
feature by numerical methods or simulation. In the next example, to which we re-
turn in Section 5, the effect of births and deaths is taken into account.

Example 3. Stochastic SIR with demography. The stochastic SIR presented in Ex-
ample 2 might be appropriate when the rates of movement between compartments,
and hence the evolution of the disease, are fast enough so that the life span of an
individual does not need to be taken into account. This is often acceptable as an
idealization when one is interested in looking at functionals of a particular epidemic
outbreak such as epidemic size, which we discuss in the next section. However, we
may be interested in the longer term recurrent or endemic aspects of a disease, such
as the childhood diseases mumps, measles, smallpox, chickenpox, polio or rubella.
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In this case, demography, meaning births and deaths of individuals, is often included
in the model. A scheme including demography is shown in Figure 2, where births
occur only in the susceptible class and deaths occur, at the same rate per individual,
in the three compartments. The transition rates for this model are shown in Table 1
below.

S 7 R
Fig. 2 Schematic compart- H H H

mental representation of SIR
including "demography”.

Table 1

Transition Rate
S§—8+1 UN
S—S—1 BSLAt+uN
[—1+1 B3 At

I —I1—1 (y+w)i
R—R+1 Yl
R—R-1 ul

The stochastic rates of birth and death of individuals are assumed constant and
equal to u. This makes the expected value of the total population constant and equal
to N. The corresponding probabilities of the events are

P((Si+arsdivar) = (St 1r) = (1,0)) = P((S+ars lrvar) — (St, 1) = (—1,0))

= UNAt + o(At), (13)

S:1,
P((St+AtaIt+At) - (Shlt) = (—la 1)) = ﬁ%At‘f’O(At)) (14)
P((Si+arsdi+a) = (Si,1) = (0,—1)) = (y+u)LAt +o(At). (15)

As in Example 2, it is enough to consider the process (S;,1;), even though the to-
tal population at time t has become a stochastic process. The equations for (S;,1;)
form a closed system if we take N to be the constant EN, the expected value of
N;. The stochastic equations describing this process, which will be used in Sec-
tion 5, are obtained similarly, by adding and subtracting to each increment of S;
and I, the conditional expectations, given the value of the process at the begin-
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ning of the corresponding time increment. For this example, the expected values of
the increments AS = S, 4, — S; and AT = I, 5, — I are (U(N —S;) — ﬁ%)At and
(B % — (y+ u)I) At respectively, so the increments can be written as

1
AS = <u(N—S,)—BSI’v[> At+AZ| +AZ,, (16)
S[If
A= (B~ — v+ ) At —AZ + AZ, (a7

where AZ; is the difference of the centered Poisson increments corresponding to
births and deaths in the susceptible class with mean zero and variance (N + S;)Az.
Similarly the centered Poisson increments corresponding to the infections and re-
movals are AZ, and AZ3 respectively, both with conditional mean zero and with
conditional variances (S,I;/N)At and (y+ u)At. If we drop the terms AZ; from
equations (16) and (17), and let Ar go to zero. The resulting ordinary differential
equations,

s Sil;
i U(N-5)-p N
dl o Stlt

7 57 (Y+ ),

define a deterministic model, namely the deterministic SIR with demography, which
has deterministic rates the same as the stochastic rates which yield the stochastic
model defined by equations (16) and (17).

When N is large, there is often a diffusion approximation to a stochastic com-
partmental model. We illustrate this in the case of Example 3. Let us normalize by
dividing each of the stochastic processes in our model by N so that the state variables
are the proportions of the total expected population in the susceptible and infective
classes at each time, 7 and their jumps are of size 1/N. Suppose we replace the con-
ditionally centered Poisson increments, AZ; /N, by increments of Brownian motion,
appropriate multiples of AW;, with the same standard deviations as the Poisson in-
crements they replace. We obtain a diffusion approximation to our Markov jump
process model which can be written as

ds = (u(1 —s) — Bsi) di + G1dW, (1) — GodWi (1),
di= (Bsi— (y+p)i) dt + GodWs(t) — G3dWs(t), (18)

G =vp(1+s), Gr=+/Bsi, Gy=+/(yv+p)i

where s = S/N and i = I/N. Kurtz, [29, 30], showed that the normalized Markov
jump process and the approximating diffusion (18) can be constructed on the same
probability space in such a way that the maximum pointwise distance between their
sample paths on a fixed finite interval of time is of order log N/N. It is important to
note that the diffusion approximation is good for N large but becomes less useful
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if N is too large. The limit of the solution of the stochastic system, as N goes to
infinity, is in fact the solution of the deterministic model, where the states are the
fractions of the total population in each class (18).

For epidemic models, a main concern is to find conditions under which a dis-
ease introduced into a community will develop into a large outbreak, and if it does,
conditions under which the disease may become endemic. For stochastic models,
all such questions are in terms of probabilities. A useful parameter in this regard,
called the basic reproductive number, Ry, is defined as the expected number of sec-
ondary infective cases per primary case in a completely susceptible population, [19].
In Examples 2 and 3 above, the basic reproductive number is §/v and B/(y+ ),
respectively. If the basic reproductive number is smaller than or equal to one, with a
high probability the disease outbreak is relatively small. For this reason most stud-
ies of these examples concentrate on the complementary case. Arguably, the most
important and interesting case is where Ry is near one, as we shall see.

If the basic reproductive number is greater than one, the stochastic behavior of
Examples 2 and 3 are very different. In Example 2, with no demography, the number
of infected individuals generally increases, reaches a maximum and then generally
decreases to zero. In Example 3, with demography, the solutions of the correspond-
ing deterministic equations (see Section 5 below), will approach a nontrivial equi-
librium as ¢ increases, called the endemic equilibrium. Simulations of the stochastic
model show almost periodic oscillations of the process around this equilibrium. We
return to this striking phenomenon in Section 5.

Other stochastic epidemic models can be defined along lines similar to these three
examples. Compartments may be added corresponding to latent, asymptomatic,
quarantined, or other disease-associated states. In this chapter we will confine our-
selves mostly to questions pertaining to Examples 2 and 3. It will be clear that
these and similar questions about other compartmental stochastic models might be
pursued using, in part, similar methods. The relation of stochastic compartmental
models to limiting deterministic models, and their approximations by diffusions,
are illustrated for the SIR model in this section. Essentially all stochastic compart-
mental models have deterministic limits and diffusion approximations which can
be obtained by the arguments analogous to those indicated here and given in detail
and in great generality by Kurtz [30]. Often it is useful, and justified, to work with
the diffusion approximation to the jump Markov chain model. The deterministic
large-N limit is also often of value for understanding the behavior of the stochastic
dynamical system defined by the Markov chain model. One example is the infor-
mation contained in the basic reproductive number, Ry, which can be regarded as a
property of the deterministic limit. We see another example in Section 5 and discuss
this point more generally in Section 7.
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4 Distribution of the Final Epidemic Size

Public health policy may be influenced by predictions of how large an epidemic
might be, that is, how many individuals ultimately become infected during the en-
tire time an epidemic lasts. This involves the assumption that the disease in question
does not become endemic and persist at a positive level indefinitely. In view of the
nature of the dynamics of Examples 2 and 3 in Section 3, the assumption that there
is a finite epidemic size pushes us in the direction of assuming that the population
is fixed and finite, with no demography. In this case, the number of infectives will
eventually reach zero, with probability one, so that the total number of individu-
als that are infected during the infectious process is almost surely finite, and the
distribution of the final size of the epidemic can, in principle, be computed.

It was first observed by Bailey in 1953, [5], that the final size distribution for
the stochastic SIR is bimodal, that is, there are two maxima. He provided formuli
that allow the computation of the distribution of the final size if the population is
rather small. Since then, the final size distribution has been investigated for various
models, by Lefevre and Picard [34, 35, 44], Ball [8, 9], Ball and Nasell [10], Scalia-
Tomba [46, 47] , Martin-Lof [39], Ludwig [36] among others. For large populations,
the computer storage needed for computation of the final size distribution, together
with numerical precision, have been important issues.

For the SIR, if the basic reproductive number is greater than one, the general
shape of the epidemic size distribution can be deduced intuitively as follows. With
a large enough population, during the first stages of an epidemic, the number of
infectives evolves approximately like a branching process. If the probability of zero
offspring in any family is positive, then the branching process goes extinct with
positive probability. The event of zero offspring corresponds to the event that an
infective infects no-one else, and this has positive probability. If extinction does
occur, it is likely to occur early. Correspondingly there are several sample paths of
the process of infectives, I;, which reach zero relatively soon. On the other hand, if
early extinction does not happen then the finite number of susceptible individuals
begins to be depleted, so that the process no longer behaves as a branching process.
In this case the size of the epidemic may be approximately normally distributed.

There have been attempts to produce a rigorous argument for bimodality of the
epidemic size distribution along these lines, but apparently without success. On the
other hand, careful observation of simulations shows that some degree of bimodality
of this distribution is present for any combination of parameters. The most striking
biomodality occurs when the basic reproductive number is just slightly larger than
one, as in Figure 3.

Martin Lof, [39], found a normalization and relative rates, under which the pro-
cess of infectives has a diffusion limit when, simultaneously, the total population,
N, and the basic reproductive number approach infinity and one, respectively. Also,
the distribution of the time until the epidemic stops converges to the time it takes a
Brownian motion to hit a parabolic boundary. Martin Lof used an elegant approx-
imation, using Airy functions, to produce the shape of the limiting epidemic size
distribution by computation. Marion and Greenwood [37] found a way of comput-
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ing the final size distribution for very large N, from which one can see the degree
of agreement between Martin-L6f’s limiting distributions and the pre-limit for large
N. In this section we describe these results and others found in [22]. We look at the
questions:

How does the epidemic size distribution depend on the parameters of the model?
Is there a way to incorporate a process of vaccination in the stochastic SIR that
depends on the activity of the disease?

e How does the final epidemic size distribution change in the presence of vaccina-
tion?

In order to simplify notation we will re-scale the time to yr, and define A = /7,
which is the basic reproductive number. Then, in the notation of Example 2, § = 4,
and Y = 1. We observe how the shape of the final size distribution depends on the
parameters of the model by accurately computing the distribution in a memory-
efficient fashion, which we indicate here. For this we need to look only at the times
at which transitions occur, that is, points in time where an event, contagion or re-
moval, happens. Ignoring the waiting times between events, we obtain a discrete-
time Markovian structure from the continuous time SIR that has the same epidemic
size as the SIR process. This is called the discrete time embedded Markov chain of
Jjumps. Let us number the consecutive jumps of the continuous time Markov chain
by j, so that j becomes the time parameter of the discrete time embedded Markov
chain. The transition probabilities of this discrete time chain are given by

. oo ASI/N AS;
-1,1 with probability —h—F = =7,
(AS]',AI]') _ ( ) AS]IJ/N+I/ AS;\;rN (19)

0,—1)  with probability 7-rdv = 75y
We introduce the possibility of immunization through an additional type of jump,
of the form (-1,0). An individual is removed from the susceptible class through
immunization, which may occur at each time step of the embedded chain. We denote
by O the average ratio of the number of vaccinations to the number of jumps. Thus,
for instance, if 6 = 0.5, there is one vaccination every two steps, on the average;
if 8 = 2, there are two vaccinations per step, on the average. This entry into the
model of the vaccination procedure can be modified in various ways. For example,
immunization can be considered only at the times when someone is infected, or
only when a recovery occurs. The parameter 6 can also depend on time or it may
even be random with its distribution being time-dependent, and/or dependent on the
current state of the process. Partial effectiveness can be modeled by multiplying 6
by the probability of successful vaccination. Note that in this model the number of
vaccinated persons is not directly related to the number of susceptibles, but is tied
to the intensity of the epidemic as it evolves.

Let U; count the total number of infections which occur up to, and including,
time j, disregarding the initial number of infected individuals. The probability that
an individual gets infected in the time step from j—1 to j, given the value U;_q,
and if there were initially n and m susceptible and infected individuals, is
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An—k—6(j—1)

prj=PUj=k+1|Uj1 = k) = Ai—k—8(— 1)+ nEm)’ (20)
with the complementary probability
qr,j =PU; =klUj—1 =k) =1—py ;. 21

Although it does not appear in the notation, this probability is conditional on S;
being positive.

Let T denote the time at which the epidemic stops. Then Uz is the number of
individuals ultimately infected, in addition to the original m infectives. At each time
step an infection or a recovery happens. The process U; is a random walk starting
at 0, with a positive step when there is an infection and a zero step when there is a
recovery. The epidemic stops when

U; + m — (number of recoveries) = 0,

and
T = Uy + (number of recoveries).

Therefore, Ur = (T —m) /2. To obtain the distribution of Uy, it is enough to compute
the distribution of the hitting time 7. To compute this distribution we will use the
following recursion. First define W;(k) = P(U; =k, T > j) for non-negative integers,
Jj- Notice that Wo(k) = 80, P(T =0) =0 and, if j —m is even,

. j—m
== (55 e o)

If j —mis odd, then P(T = j) = 0. The defective distribution W;(-) is computed as
Wit (k= 1) pi1j + W1 (k)qr,  if k> 52
W](k) — J 1( )pk L,j + J 1( )dea 1 > _2m (23)

0, if k < 557

This recursion allows us to compute the distribution P(T = j), j = 1,2,..., and the
defective distributions W;(k), k=1,...,n, j=1,2,..., while storing only the values
of W;(-) at stage j. As j increases, W;(-) loses mass.

This algorithm can be used for any finite number N of individuals in the popu-
lation. If N approaches infinity and simultaneously A approaches one, with suitable
related rates, the distribution can be found using a diffusion approximation. For this,
we define new random variables XV and Y by

&_1_ﬁ
N No
I, =Y NP,

and let Ay = 1+ a/N?. Martin Lof [39] found exponents a, 8 and 7y such that
XtN and Y,N converge weakly to a limiting diffusion, see [39] or [22] for details.
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Appropriate values for these exponents are @ = § = ¥ = 1/3. After re-scaling time
as s = tN—2/3 and letting N — o0, XV and YN converge weakly to diffusions X and
Y;, which satisfy the stochastic differential equations

dX, = (1+280)ds,
dY, = (a—X,)ds+V/2dW,
where a = limy . N'/3(Ay — 1).
The process X; is deterministic linear drift, X; = (1420)s, so that ¥; is defined

by
dY; = (a— (1+26)s)ds+\/2dW;.

After integration,

Yy =b+as—(1+20)s*/2+V2W,, (24)

a diffusion with parabolic drift starting at
b= lim m/N'/3. (25)

N,m—oo

The limiting epidemic stops when the right hand side of (24) is equal to zero, or
in other words, when the Brownian motion /2 W hits the parabola b+ as — (1 +
20)s% /2 for the first time.

Epidemic size defines a continuous functional with respect to the topology of
weak convergence of stochastic processes. Hence the weak convergence of the pre-
limit processes to Y implies convergence of the distribution of epidemic size for
finite N to a distribution associated with the time Brownian motion hits a parabola.

Pre-limit and limiting distribution curves are shown in Figure 3. In the figure we
can observe the convergence of epidemic size distributions and get an idea of the
size of N necessary for the pre-limit to approximate the limit to a certain degree of
accuracy. We compare the distributions obtained using the algorithm (22) and (23)
for the pre-limit and the limiting diffusion obtained in [39] for different values of
parameters a and b, with 8 = 0. For the pre-limit, A and m are chosen according
toA =1+a/N'3, b=m/N'/3 We see that the shape of the distribution is highly
sensitive to the values of the parameters a and b when the model is slightly super-
critical, that is, when A > 1 is very close to 1. The degree of agreement between the
limit distribution and the pre-limit for N = 50,000 and for N = 500,000 is not as
precise as one might have expected.

The effect of vaccination in our model can be observed in Figure 4. Vaccination
pushes the mass of the distribution in the direction of smaller epidemic size, but the
bimodality of the distribution persists. Increasing 6 pushes the distribution towards
zero, as one would expect.

A scaling parameter less than 1/3 can also be used and leads to the limit one
would obtain from a branching process model. The limiting epidemic size distribu-
tion using this scaling is not bimodal, [20].

The embedded chain in the algorithmic scheme for computing the distribution
of the final size, as presented in this section, ignores the amount of time between
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Final epidemic size (a)
T T

number of individuals (scaled)

Final epidemic size (b)
0.4 T T T T

number of individuals (scaled)

Final epidemic size (c)
1.6 T T T

5
number of individuals (scaled)

Fig. 3 Distribution of the final epidemic size for the pre-limit (red): population N = 50,000 (dash-
dots) and N = 500,000 (solid). The limit distribution (black) is in dash-dots. The parameters are
(@a=1,b=1,(b)a=3,b=1(c)a=3,b=0.5. For all the figures 6 = 0. Notice that the three
figures have different scales. Epidemic size is about N2/3 times the scaled value.
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events. This suggests that latency periods in infected individuals might not affect
the distribution of the final size. In Section 6 we see that this is true in a very general
setting, where homogeneity of the susceptible and infectious classes is abandoned.

Final epidemic size
0.8 T T T T

o7t /) ]

0.6
| \‘\;’ \

05F \ ““‘ il
) \

\
0.4H N A 1

0.3 Vo \ E
0.2 Vo \ 1

0.1 \ o \ |

0 0.5 1 1.5 2 25 3 35 4 45 5
number of individuals (scaled)

Fig. 4 Distribution of the final epidemic size for N = 30,000. The vaccination levels are 8 = 0
(dots), 8 = 0.5 (dash-dot), 6 = 1 (dashes) and 6 = 1.5 (solid). The other parameters are a = 1
and b = 1. Vaccination pushes the mass of the distribution to the region of short outbreaks. Similar
behavior can be observed for other values of the parameters a and b, [22].

5 Stochastic Sustained Oscillations

In this section we will consider the model defined in Section 3, Example 3. As
mentioned before, when the basic reproductive number is greater than one, the de-
terministic system has two equilibrium points, one unstable with no infectives, and
a stable endemic point with a positive number of infectives. It can be observed, and
shown analytically, that the solutions of the deterministic model oscillate around
the endemic point and rapidly damp to the endemic equilibrium as time increases.
However time-course data of diseases like measles or chickenpox show periodic
oscillations that do not damp as time goes by. It is possible [24, 32] to produce de-
terministic models which have more slowly damped, or even sustained, oscillations
by including, for instance, age structure, quarantine, multiple strains of infectious
agents or delays. Of course seasonal periodic forcing produces seasonal oscillations
in a deterministic epidemic.
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Simulations of a stochastic SIR model follow the damped deterministic trajectory
for a certain time after which the stochastic path remains oscillatory, with a varying
amplitude, as can be seen in Figure 5 below.

1800

1600

1400

1200

number of infectives

1000

&S00

Go0

400 1 1 1 1

tima n years

Fig. 5 A sample path of the infective process of stochastic SIR with demography contrasted to
the damped oscillations of the corresponding deterministic system with the same initial point.
The parameters are N = 2,000,000, average life span 1/u = 80 years, Ry = 15, average time of
infectiousness 1/y = 15 days. Notice that the stochastic path initially follows the deterministic
trajectory.

The oscillations of stochatic SIR paths have a frequency distribution, evidenced
by the power spectral density of the process of infectives, and a stochastically vary-
ing amplitude. This phenomenon, in which random fluctuations sustain nearly pe-
riodic oscillations in a system which has a stable constant equilibrium in the de-
terministic limit, has been called coherence resonance or autonomous stochastic
resonance. Coherence resonance has been observed in a number of experimental
studies of electrical, chemical and physiological phenomena, [43].

Although coherence resonance has been recognized as a possible occurrence in
the presence of noise when a dynamical system has a small or hidden inherent pe-
riodicity, the phenomenon is only beginning to be understood quantitatively, from
the stochastic process viewpoint. In [4], Aparicio and Solari give a convincing ex-
planation of the non-damping of stochastic SIR in terms of the average change in
a Liapunov function as the process moves inside and outside a parabola in phase
space. In [31] we use multi-scale analysis to show that a stationary version of the
system (16) and (17) can be rather closely approximated, in a neighborhood of the
endemic equilibrium, for a suitable range of the parameters 3, ¥ and p, by a linear



Stochastic Epidemic Modeling 17

combination of sinusoids, where the coefficient processes in this approximation are
Ornstein-Uhlenbeck processes running on a slower time scale.

The accuracy of the multiscale approximation to (16), (17) for a particular choice
of parameters can be evaluated by comparing the power spectral densities of the two
processes as in Figure 6.

(.5
(L5

Power a4
Fig. 6 The power spectral
density of the process of B
infectives in the stochastic
SIR model (dot-dash) and
the multi-scale approximation
(solid). The values used are
Ro =15, N = 500,000, 1/u = Cycles per year
55 years and 1/y = 25 days.

6 Effects of Varying Infectiousness

If an individual becomes infected at time 7, he may not become infectious imme-
diately. There may be a latent period during which he is asymptomatic and/or re-
mains uninfectious to others. More generally, infectiousness may vary in a variety
of patterns following the event of disease transmission. In [23] we defined for each
individual, a function which quantifies how infectious he is at time ¢ following the
event of his infection. This function may depend on many factors, including a la-
tent period, the response of the individual’s immune system, the effects of medical
treatments, etc. In epidemic modeling, it is natural to question how the pattern of
infectiousness affects disease dynamics. In particular we are interested to see how
the final size of an epidemic may be affected by how infectiousness varies.

In fact, a latency period does not influence the distribution of the final size of the
stochastic SIR. This result has been shown in various contexts, see for example [8],
[3], [1]. In [23] we proposed a more general formulation and showed that the final
size depends only on the integrated infectiousness. Here are the main points of the
argument.

The individuals in a population of constant size are labelled with the values
1,...,N, for identification. We think of individuals as distributed in space and related
by a network of social or other connections, or as moving in space and encountering
one another with pair independent frequencies. The numbers ¢;; > 0 measure the
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rates of contact from individual i to individual j for all pairs (i, j) with 1 <i,j <N.
Notice that ¢j; # ¢;; in general. Our model assumption is that the time T;; of first
infectious contact from i to j happens in the time interval [t,7 + A¢] with probability

P(Tjj € [t,t + At]|T;j > t,.%;) = ¢ Xi(t)At + o(At). (26)

Time in (26) runs according to a clock which starts at the first infectious contact
made to individual i. The infectiousness process of individual i, X;(¢), measures, at
each time ¢, the probability that a contact made by i at time ¢ is effective in trans-
mitting the disease. The collection of sets .%; represents the information generated
by the entire history of the random infectiousness process X;, not including its start
time. The infectiousness clock of individual i may start at time 0, but it may be that
X;(0) = 0, so that i is not actually infectious at time 0. Nevertheless we refer to such
individuals as initial infectives. The product in (26) should be read as the probabil-
ity of contact from i to j in the time increment [t,7 + At], c;jAt 4 0(At), times the
conditional probability of transmission of disease, given that contact is made, X;(¢).
The random function ¢;;X;(r) is a random hazard function, which satisfies

P(Ty; > 1].F) = e~ focukilhds, @7)

for every ¢t > 0. Notice that conditioning on .%; allows us to write a specific sample
path, X;(s). If we let

D= /0 "X, (s)ds < oo, (28)

the probability that an individual j has no infectious contact from individual i, given
a sample path of the process X;, is
P(no infection from i to j |.%;) = e iiPi.

We say that an individual i is nominally contacted when an infectious contact to i
occurs. This may not be the first infectious contact. Let # = J; #; be the o-algebra
generated by the infectiousness processes of all individuals in the population. .#
contains the information of the patterns of infectiousness of the entire population.
Let &2 denote the set of all individuals in the population and let 2} and %, k =
0,1,2,... be

Zo = {initial infectives},

%% =P — 2o,
Z1={j:j€ %, Ji e % such that j is nominally contacted by i},
% :%_%7

We can see that %) D %] D ... and that the set of all nominally contacted individuals,
Ui—o Zi, where Z;NZ; = 0 if i # j, is equal to the set of all individuals who
become infected. The size of this set is the total epidemic size. Thus, if we let 2~ C
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%), the probability that the random set 27 is exactly 2, given .%, is

P2 =217) =] (1 = | K e Pici,

JjeZ €2y > JEY - ie 2y

The distributions of 2, given Z_1, k = 2,3, ... can be computed similarly. There-
fore, the probability distribution of the number of individuals that have nominal
contacts, given all the patterns of infectiousness, is

P(|Uc Zi|=n|F) =), P(hZi=2Z1|7F),
i

which depends only on the random variables D;, i = 1,...,N and the ¢;;’s.

7 Stochastic and Deterministic Dynamics are Complementary

In this final section of the chapter we point out some useful general relationships be-
tween compartmental stochastic and deterministic epidemic models. The two types
of model are alternate viewpoints on the same phenomenon, offering complemen-
tary insights.

The class of stochastic epidemic models of this chapter is defined by two prop-
erties: first, the dynamics can be described by a compartmental diagram such as
Figure 2, with inputs and outputs, and second, the process is a vector-valued con-
tinuous time Markov process. This class of models is extremely large. For instance,
to Examples 1, 2, and 3 can be added compartments which correspond to the latent,
the asymptomatic, those quarantined, those vaccinated, the presence of multiple dis-
eases, or classes of vectors such as mosquitoes which carry infectious agents.

We have indicated in Section 3, using an SIR example, how each such model cor-
responds to a deterministic model. One can write the stochastic increment equations
as in (16) and (17), and then take the conditional expected value of each increment
given the process at the beginning of that increment to obtain deterministic incre-
ment equations. Or one can divide each state variable by N to obtain equations for
the proportion of individuals in each class at time ¢, and apply the law of large num-
bers to these equations [29].

On the other hand, starting with a family of ordinary differential equations, which
describes a dynamical system, one can arrive at a variety of corresponding stochastic
models by interpreting some or all the the deterministic rates as stochastic rates in
the sense of (1), (2).

Each of these model formulations, the stochastic and the deterministic dynamical
system, augments our understanding of the other. The ODE model can be thought
of as a deterministic skeleton of any corresponding stochastic model. An indispens-
able step in understanding the behavior of a stochastic model is the analysis of the
dynamics of the ODE model. A dramatic example is the one described in Section
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5. In fact, the analysis of stochastically sustained oscillations involves the details of
the damped deterministic oscillations. Here are two additional examples.

In epidemic theory deterministic analysis often starts with the basic reproductive
number, Ry. In Example 3, if Ry is less that one, the unique equilibrium has no infec-
tives. However in certain other models [17, 2], there is a more complex bifurcation
structure in which, for a range of Ry below one, there are two locally stable equilib-
ria, one with no infectives and one with a positive number of infectives, separated by
an unstable equilibrium. This structure is sometimes called a backward bifurcation
because of the shape of the bifurcation diagram, Figure 7. An example is the model
with susceptible, infected, and vaccinated individuals, defined by Brauer [17]. The
dynamics tell us that a deterministic path is attracted to the equilibrium which is on
the same side of the unstable equilibrium as the initial point of the path. However,
a stochastic path started in a neighborhood of the unstable equilibrium will have
probability about one half of being attracted to either equilibrium in the stochastic
version of Brauer’s model [33]. The authors of [33] continue to study the details of
this problem. Of interest, for example, is the function which describes the probabil-
ity of attraction of the process of infectives to each locally stable equilibrium as the
distance of the starting point from the unstable equilibrium increases.

I:k

Fig. 7 A typical backward -

bifurcation diagram. I* is P

the value of the infectives at /

the equilibrium. The solid i
R

lines stand for stability while
dashed lines for unstability.
Taken with permission from
[45].

The deterministic susceptible-infected-susceptible (SIS) models are a bit simpler
than those of Examples 2 and 3. For Ry > 1, there is a stable equilibrium of the ODE,
and the convergence of the path of susceptibles to this equilibrium is monotone
rather than by damped oscillations as in Example 3. In fact this is a logistic model,
whose susceptible class converges to a saturation point. The paths of the stochastic
model lie near the deterministic path and continue to vary randomly around the
deterministic equilibrium for a rather long time with high probability. The existence
of an absorbing state, I; = 0, in the finite state space means, according to general
Markov chain theory, that ultimately the Markov process goes to the absorbing state.

Even in the simple SIS model the deterministic dynamic skeleton shows us a
great deal about the behavior of the stochastic paths, and brings to our attention
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questions which pertain to the stochastic model: What is the nature of the stochastic
path of I; as it varies near the deterministic equilibrium? Starting from the determin-
istic equilibrium, what is the distribution of the time until the stochastic path hits 0?
These questions have been studied by Nasell [41] for the SIS and other processes.

We should point out, in closing, that the stochastic models we have discussed
here are simple ones, involving no more than two linked stochastic equations. The
difficulty of a stochastic model grows closely in step with the difficulty of its com-
panion ODE model. Additional stochastic models related to systems of ODE’s result
from the introduction of stochastic structure to parameters.
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