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[1] We use cointegration procedures that are designed to estimate and test relations among
integrated time series to develop a model of the relation between surface temperature and the
radiative forcing of solar irradiance, greenhouse gases, and tropospheric sulfates. We use this model
to test some basic hypotheses regarding the relation between surface temperature and radiative
forcing. We find that there is a statistically meaningful relation between surface temperature and
changes in the radiative forcing associated with natural variability and human activity. We also find
that hemispheric temperatures cannot be explained by hemispheric forcings alone: Hemispheric
temperatures are linked. Differences in hemispheric temperatures are associated with differences in
the hemispheric temperature effects of greenhouse gases, anthropogenic sulfur emissions, and solar
irradiance. Estimates for the temperature sensitivity (ATs,) are consistent with the middle and lower
range of values estimated by physically based models. INDEX TERMS: 1610 Global Change:
Atmosphere (0315, 0325), 1620 Global Change: Climate dynamics (3309), 1650 Global Change:

Solar variability; KEYWORDS: atmosphere, radiative forcing, greenhouse gases, solar irradiance,

temparature, sulfur emissions

1. Introduction

[2] Evidence is mounting that changes in global surface temper-
ature can be attributed to human activities that increase the
atmospheric concentration of greenhouse gases and tropospheric
sulfates [Santer et al., 1996a, 1996b]. This evidence comes from
two sources: physically based simulation models of the climate
system and statistical analyses of historical data. Evidence for the
effect of human activity is provided by the ability of climate
models to improve their simulation of the spatial/temporal temper-
ature record by including the radiative forcing due to changes in
greenhouse gases and tropospheric sulfates [Cowley, 2000; Tett et
al., 1999; Wigley et al., 1998; Santer et al., 1996a, 1996b; Mitchell
et al., 1995].

[3] The time series for temperature and many radiative forcing
variables exhibit strong trends; therefore classical linear regression
techniques may indicate a relation among these variables whether
or not a relation exists [Granger and Newbold, 1974]. These
techniques cannot therefore be used in isolation [e.g., Tol, 1994;
Tol and de Vos, 1993] to determine whether human activity affects
temperature. The International Panel on Climate Change previ-
ously argued that [Folland et al., 1992, p. 163] “rigorous statistical
tools do not exist to show whether relationships between statisti-
cally nonstationary data of this kind are truly statistically signifi-
cant.” The inability to determine whether relations among
nonstationary variables are statistically significant also presented
considerable problems for macroeconomists. Recently, time series
econometricians have defined the concept of cointegration and
developed techniques to detect and model cointegrating relations
among a class of nonstationary variables: integrated or stochasti-
cally trending variables [e.g., Engle and Granger, 1987; Johansen,
1988; Johansen and Juselius, 1990; Stock and Watson, 1993]. As
the name implies, integrated variables are functions of random
walks and exhibit a stochastic rather than deterministic trend. Thus
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the classic approach to estimating relations among trending vari-
ables, detrending by removing a linear trend, is inappropriate, and
the more sophisticated cointegration methodology, described in
sections 2 and 4, must be used.

[4] In this paper, we estimate a time series model of the relation
between temperature and various components of radiative forcing
vsing the cointegration procedures developed by Seren Johansen
and associates [e.g., Johansen, 1988; Johansen and Juselius, 1994,
1990]. This method allows for statistical testing under appropriate
assumptions about nonstationary behavior. The results add to the
growing body of statistical evidence [Kuo et al., 1990; Kaufinann
and Stern, 1997; Wigley et al., 1998; Stern and Kaufmann, 2000]
for the effect of human activity on surface temperature by finding a
statistically meaningful link between temperature and greenhouse
gases, tropospheric sulfates, and solar activity that is consistent
with the physical mechanism(s) by which radiative forcing is
thought to affect temperature.

[s] The methodology and results are described in the following
six sections. Section 2 examines the time series properties of the
temperature and radiative forcing time series. Section 3 describes
the potential pitfalls associated with statistical analyses of nonsta-
tionary data. Section 4 describes how we use the method developed
by Johansen and Juselius [1994, 1990] and Johansen [1988] to
estimate the model and test hypotheses. The results are described in
section 5. Section 6 describes how these results are consistent with
a relation between surface temperature and the radiative forcing of
greenhouse gases, tropospheric sulfates, and solar irradiance. The
conclusion (section 7) discusses ongoing research that may miti-
gate some of the limitations of the research described in this paper.

2. Time Series Properties of Climate Data

[6] There are various forms of nonstationarity; in this paper we
consider trending series. Because of this trend the variable has no
population mean, and its variance is theoretically infinite. Sample
means are time varying and variances increase with the sample size.
On the other hand, a stationary variable has a constant mean and
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Table 1. Time Series Properties of Climate Variables as Indicated by the Augmented Dickey-Fuller Statistic®

Augmented Dickey-Fuller Statistic

Variable Levels First Difference Classification
NHEM —2.81 (—11.67) (1)
SHEM -3.40 (—9.67) 1(0)
RFGG 1.57 (—3.88) (1)
RFSOXNH -0.91 (—6.61) I(1)
RFSOXSH —0.23 (—8.17) I(1)
SUN —2.57 (-17.72) (D)
RFSSNH (—4.34) 1(0)
RFSSSH (—4.13) 1(0)

*Values that exceed the 0.05 threshold (—3.42) are in parentheses. The 1% critical value is 4.04.

variance. The trend in a time series may be deterministic and/or
stochastic. A deterministic trend is a simple function of time such as
a linear, quadratic, or exponential trend in time. A stochastic trend is
an integrated series of random variables so that its rate of change is
irregular.

[7]1 The simplest example of a stochastic trend is a random walk,
which is a discrete time version of the continuous time Brownian
motion, and is given by

Yt =>\Yt—1 + &, (1)

in which the autoregressive coefficient A = 1 and € is a normally
distributed random error term, the innovations, whose mean may
be nonzero. Stochastic trends are characterized by long-term
memory; the effects of innovations do not fade over time. More
complex stochastically trending variables may have additional
stationary noise components and deterministic or stochastic slopes
and may also be related to other integrated variables.

[8] While the unforced climate system might be expected to be
stationary, changes in radiative forcing might introduce a stochastic
trend in temperature if the radiative forcing variables have a
stochastic trend. This is likely because the concentrations of trace
gases and sulfate aerosols are driven by anthropogenic emissions,
which are determined by the stochastic trends that characterize
many macroeconomic time series. Furthermore, carbon dioxide has
a very long residence time in the atmosphere of around a century
[Moore and Kaufinann, 1992], and so its autocorrelation coeffi-
cient is close to one. This is true despite the fact that natural flows
of CO; in and out of the atmosphere are approximately equal and
anthropogenic emissions of carbon dioxide are 1-2 orders of
magnitude smaller than these natural flows.

[9] The random walk in (1) is integrated of order 1, symbolized
as I(1). This terminology indicates that differencing the series once
yields a nonintegrated series. A nonintegrated series that either is
stationary or contains a deterministic trend is termed I(0). Integrat-
ing an I(1) variable generates a so-called I(2) series which must be
differenced twice to yield a stationary series.

[10] We use the augmented Dickey-Fuller (ADF) test [Dickey
and Fuller, 1979] to classify the time series for temperature and
radiative forcing as I(0), I(1), or I(2). To carry out the Dickey-
Fuller test, we estimate the following regression for each variable
of interest y:

S
Ay, = o+ Bt + Yy + Z 8 Ay + €, 2
I=1

where A is the first difference operator, ¢ is a linear time trend
(which is used to represent a possible deterministic trend), € is a
random error term, and the coefficient y = X — 1. The null
hypothesis for the ADF test is that the series is at least I(1). The
ADF test evaluates this null, -y =0, i.e., A = 1, by comparing the ¢
statistic for y against a nonstandard distribution. If we reject the
null hypothesis for the undifferenced series, then that series is 1(0).
If we can only reject the null hypothesis for the differenced series,

then that series is I(1), and similarly, a series is I(2) if only the
second difference of the series is found to be 1(0). The number (s)
of augmenting lagged dependent variables Ay, _ ; is selected using
the Akaike information criterion [dkaike, 1973].

[11] We apply the ADF test to each of the time series that we
vse in the cointegration model described in section 4. These
variables are (1) RFGG, an aggregate of the radiative forcing of
all major greenhouse gases: carbon dioxide, methane, CFCl1,
CFC12, and nitrous oxide, (2) RFSOXNH, the radiative forcing
of anthropogenic sulfur emissions in the Northern Hemisphere,
(3) RFSOXSH, the radiative forcing of anthropogenic sulfur
emissions in the Southern Hemisphere, (4) RFSUN, the radiative
forcing of solar irradiance, (5) NHEM, mean land and sea
surface temperature in the Northern Hemisphere, (6) SHEM,
mean land and sea surface temperature in the Southern Hemi-
sphere, (7) RFSSNH, the radiative forcing of stratospheric
sulfates in the Northern Hemisphere, and (8) RFSSSH, the
radiative forcing of stratospheric sulfates in the Southern Hemi-
sphere. The sources for each of these variables and the method
used to calculate radiative forcing are described by Stern and
Kaufmann [2000].

[12] The ADF test indicates that the times series properties of
the temperature and radiative forcing data vary (Table 1). The
forcing variables RFGG, RFSOXNH, RFSOXSH, and RFSUN are
all I(1). The temperature time series for NHEM and SHEM are
I(1), but just barely so. The ambiguity of the ADF test result is
consistent with the results of previous research and alternative test
procedures [Woodward and Gray, 1995; Bloomfield and Nychka,
1992; Stern and Kaufinann, 1999]. The multivariate version of the
ADF that we carry out in section 4 as part of the cointegration
modeling exercise confirms that both temperature series are I(1).
The series for the radiative forcing of stratospheric sulfates,
RFSSNH and RFSSSH, are I(0).

3. Statistical Analysis of Data
With Stochastic Trends

[13] In section 4 we develop a model that specifies surface
temperature in the Northern and Southern Hemispheres as a
function of the radiative forcing of greenhouse gases, anthropo-
genic sulfur emissions, solar irradiance, and stratospheric sulfates.
Because these time series contain stochastic trends, classical
regression techniques may indicate a statistically meaningful
relation between temperature and radiative forcing even if there
is no relation between these variables [Granger and Newbold,
1974]. The potential for misinterpreting regression results is
caused by the presence of a stochastic trend, which affects the
distribution of test statistics [Phillips, 1986]. Typically, linear
combinations of time series that each contain a stochastic trend
also contain a stochastic trend so that the residual from a
regression of integrated variables is also nonstationary. This
violates the classical conditions for a linear regression. Such a
regression is known as a spurious regression [Granger and
Newbold, 1974]. When evaluated against standard distributions,
the correlation coefficients and ¢ statistics for a spurious regres-
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sion are likely to show that there is a significant relation between
the variables when in fact none exists.

[14] To avoid spurious regressions, time series econometricians
use the notion of cointegration. If two or more series that contain
~ stochastic trends have a functionally dependent relation, the
stochastic trends present in some of the series also will be present
in the others. A common stochastic trend can be represented by

V=4, +¢, (3)
Zy = QAt + Cta (4)
A1 =4, +B+T]n (5)

where €,, ), and (, are stationary (but possibly autocorrelated)
processes with mean zero. 4, (with deterministic slope () is a
random walk, which is the stochastic trend that is present in both y
and z. Both time series y, and z, share the trend A4, and differ only
by the scaling coefficient 6 and the stationary noise components €,
and (. Their nonstationary component is identical up to the scaling
factor 0. Therefore it is highly likely that either of these variables, y,
or z, drives the other, that there is a mutual causation, or that a
third factor drives them both.

[15] This shared trend implies that there will be at least one
linear combination of the series that is stationary so that there is no
stochastic trend in the residual. This phenomenon is known as
cointegration [Engle and Granger, 1987]. In (3)—(5) the linear
coefficients that eliminate the stochastic trend are —6 and 1.
Multiplying (3) by —0 and adding (3) to (4) yields

2z — Oy =(, — O, (6)

Because (, — O, is stationary, the long-run equilibrium is z, = 8y,.
In the short run the two variables can drift apart, but over time they
will return to the long-run equilibrium. The vector [0 1]’ is called
the cointegrating vector.

[16] Equations (3)—(5) illustrate the pitfalls associated with
conventional techniques for estimating relations among trending
variables. Detrending the variables by removing a linear time trend
from y and z is inappropriate because the resulting series still are
integrated. Similarly, differencing the time series is inappropriate
because it removes the common long-run driving trends. As a
result, a regression of the first differences of the variables estimates
the short-run relation only. A lack of cointegration indicates that a
regression is spurious. Spurious regressions occur when the series
in question have no relation, when a number of series may be
related but an additional series (or series) that contains a stochastic
trend also is required to fully explain the dependent variable(s), or
when the relation among the variables is highly nonlinear. Regard-
less of the cause for noncointegration, there will be a stochastic
trend in the dependent variable that is not shared with the
explanatory variables. Irrelevant integrated series can be eliminated
by setting their coefficients in the cointegrating matrix to zero.

4. Cointegration Methodology

[17] To determine whether surface temperature is related to
radiative forcing in a statistically meaningful manner, we determine
whether these data cointegrate. Analysts have developed several
methods to test for cointegration and to estimate cointegrating
models [Stock and Watson, 1993; Johansen, 1988; Johansen and
Juselius, 1990; Engle and Granger, 1987]. We use the full
information maximum likelihood method developed by Saren
Johansen and his associates [Johansen, 1988; Johansen and
Juselius, 1990] and coded by Hansen and Juselius, [1995]. We
chose this method because it can be used to estimate multiple
cointegrating relations that may exist among surface temperature
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and the various components of radiative forcing and it can identify
how disequilibrium in the long-run relations between temperature
and radiative forcing affects annual changes in temperature and
how short-run changes in stratospheric sulfates affect surface
temperature.

[18] The model assumes that the data can be represented by a
vector autoregression (VAR) in levels; that is, each variable is
regressed on lags of itself and of all other variables in the model,
which can be represented as

Ye=Biy, 4. .+ By, +p+ 8+ Pd +e, Q)

in which § is a vector of I(1) variables whose behavior is being
modeled (in our model this vector includes NHEM and SHEM), y
is the vector of all I(1) variables (in our model this vector includes
NHEM, SHEM, RFGG, RFSOXNH, RFSOXSH, and RFSUN), k£
is the number of lags, B and & are matrices of coefficients to be
estimated, b and d are vectors of coefficients to be estimated, d are
I(0) variables (in our model this vector includes RFSSNH and
RFSSSH), and € is a vector of error terms with a multivariate
normal distribution with no serial correlation and constant variance
over time [Hansen and Juselius, 1995].

[19] Cointegration imposes restrictions on the coefficients of the
VAR. To test these restrictions and to estimate the coefficients of
the cointegrating vectors and the loading matrix, the VAR is
reformulated (by rearranging variables, not by differencing: (7)
and (8) are identical but have different parameterizations) as a
vector error correction model (VECM):

Ay, =AY, + ... + Tk Ay g + ofd'[1,1, Yt—l’]'
+§d¢ +p+E . (8)

For our model, (8) specifies the first differences of the hemispheric
temperature data (we do not estimate the equations for the other
variables), which are stationary, as a linear function of lagged
values of the first differences of the temperature data and the four
radiative forcing variables, which also are stationary, and stationary
linear combinations of the temperature and radiative forcing
variables, which constitute the cointegrating relations. The matrix
of cointegrating vectors (explained in section 3) is given by 8. A
loading matrix that indicates how each cointegrating relation
affects annual changes in Northern or Southern Hemisphere
temperature is given by o.

[20] If the stochastic trends in the data for the radiative forcing
of greenhouse gases, anthropogenic sulfur emissions, and solar
irradiance are solely responsible for the stochastic trend(s) in
temperature over the last 130 years, there should exist a linear
combination of hemispheric temperatures and the relevant radiative
forcing variables that is stationary. This cointegrating relation
represents the long-run equilibrium relation between temperature
and radiative forcing. When this cointegrating relation is equal to
zero, temperature and radiative forcing are said to be in long-run
equilibrium.

[21] If there are no cointegrating relations, the matrix o’ will
have rank zero. If all the variables in y already are stationary, then

‘this matrix will be full rank. Intermediate ranks indicate the number

of independent cointegrating vectors (3. After estimating an unre-
stricted version of (8) the Johansen procedure tests the rank of o3’
using an eigenvalue procedure to determine the number of cointe-
grating vectors. Once the number of vectors is selected, further
hypotheses are tested by restricting the parameters in o and (3.
These tests are described in detail and applied in section 5.

[22] While the coefficients of 3 represent the long-run equili-
brium relations among variables, elements of o indicate how
disequilibrium in the cointegrating relations affects the annual rate
of temperature change. Suppose that Northern Hemisphere temper-
ature (this is just an example, and the same argument applies for
Southern Hemisphere temperature) is below its long-run equili-
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Table 2. Tests for Lag Length on the Unrestricted Vector Error Correction Model®

Lag Schwartz Hannon-Quinn Serial Correlation Normality

1 —8.33 —8.68 v4) =543 xX4)=555
2 —~7.84 —8.41 Y4 =0.31 x4(4) =448
3 —7.34 —8.12 v4(4) =1.54 1 2(4)=3.13
4 —6.97 ~7.96 vA(4) = 6.20 x4 =225
5 —6.57 ~7.77 v(4) = 7.24 1 %(4) =198

#The best fit is indicated by the minimum value of the criterion.

brium value implied by the level of radiative forcing and/or
perhaps Southern Hemisphere temperature. If the resultant dis-
equilibrium causes Northern Hemisphere temperature to rise
toward the long-run value implied by the cointegrating relation,
o will be less than zero. For example, a value of —0.2 implies that
20% of the disequilibrium is eliminated annually by a change in
temperature. If the relevant coefficient of o is zero, then disequi-
librium in the cointegrating relation does not affect Northern
Hemisphere temperature, and therefore equilibrium must be
restored by a change in the other variables. A positive value for
o indicates that the long-run relation between Northern Hemi-
sphere temperature and the relevant variables is unstable.

[23] Information about causal relations among variables in the
cointegrating relation can be inferred from both .o and @3. The
presence of any two variables in one cointegrating relation indi-
cates that they share a common stochastic trend. In the terminology
of Kaufmann and Stern [1997], at least one of the variables
“Granger causes” the other. Causes is modified by “Granger”
(the econometrician who devised this notion) because if another
variable drives the changes in both variables, but this variable is
omitted from the model, there will appear to be a causal relation
among the variables in the model. The direction of this causal
relation is indicated by the coefficients of o, which identify the
variable(s) in y that is affected by disequilibrium in the long-run
relations among the variables. If a variable in y, y;, is not Granger
caused by any of the other variables in any of the long-run
relations, the relevant coefficients in o will be zero. Under these
conditions, y; is said to be exogenous. Thus the dynamics in this
model, like the dynamics in the model we used previously
[Kaufinann and Stern, 1997], help identify causal direction in a
way that a static regression cannot.

[24] Stratospheric sulfates are not included in the cointegrating
relation because they are 1(0) and by definition, cannot be respon-
sible for stochastic trends in the temperature data. These variables
are included in d. Our specification for d may omit other stationary
determinants of temperature such as El Nifio or the North Atlantic
Oscillation, but the omission of these stationary variables should
not bias our estimates of o and (3.

5. Results for the Cointegration Model

[25]1 The first stage of modeling is defining the lag length of the
VECM. We chose the number of lagged first differences to include
in (8), which is given by £ — 1, by comparing results generated by
VECMs (equation (8)) that have 1—5 lags and are estimated over
the same period, 1865—-1990. (A referee requested that we also

Table 3. Lambda Statistics for Choosing Rank of o3’

estimate the model for the post-1950 period only. We believe that
such a short time series will not give reliable results. An alternative
approach is to progressively extend the sample to include addi-
tional years after 1950. Kaufinann and Stern [1997] show that
adding recent data strengthens the anthropogenic climate change
signal.) The VECM’s goodness of fit is evaluated using the
Schwartz and Hannon-Quinn information criteria [Hansen and
Juselius, 1995]. These statistics are based on the determinant of
the VECM’s residual covariance matrix with an adjustment for the
pumber of degrees of freedom. Both statistics indicate that the
shortest lag length, a single lag, is optimal (Table 2). At this lag
length (and all other lag lengths), diagnostic statistics indicate that
we cannot reject the null hypothesis that the unrestricted model’s
residuals are distributed normally and are not serially correlated
(Table 2). Sections 5.1—5.8 describe a series of hypothesis tests
that apply various restrictions to this model that are used to answer
some fundamental questions about the role of human activity and
natural variability in the instrumental temperature record.

5.1. Is There a Relation Between Temperature
and Radiative Forcing?

[26] If there is a statistically meaningful relation between
temperature and the radiative forcing of greenhouse gases, anthro-
pogenic sulfur emissions, and/or solar irradiance, there will be one
or more cointegrating vectors. We test for the presence and number
of cointegrating vectors, which is equivalent to testing the rank of
off, using the \yace and Ay Statistics [Johansen, 1988; Johansen
and Juselius, 1990]. The Ay, statistic tests the null hypothesis that
the number of cointegrating vectors is r against the specific
alternative of 7 + 1 cointegrating vectors. The Nyace statistic tests
the null hypothesis that there are r cointegrating vectors against the
alternative that » = 2, which is the maximum number of cointegrat-
ing vectors possible in our model. We test two null hypotheses: that
there are zero cointegrating relations (» = 0) and that there is one
cointegrating relation ( = 1). Both of these null hypotheses are
rejected strongly, and so we accept the hypothesis that there are
two cointegrating vectors (Table 3).

[27] The presence of two cointegrating vectors indicates that
there is a statistically meaningful relation between temperature and
radiative forcing. This result implies that no significant integrated
variable(s) has been omitted from the model. If we were unable to
reject the null hypothesis of zero cointegrating vectors, we would
conclude that either (1) temperature is not related to radiative
forcing, (2) temperature is related to radiative forcing and other I(1)
variables that are not included in the model, or (3) the relation
between temperature and radiative forcing is highly nonlinear.

Test Statistics® Critical Values®
r © p'rd )‘max >\lrace )\max >\tmce
2 (60.80) (108.05) 14.07 15.41
1 1 (47.25) (47.25) 3.71 3.76

*Values that exceed the 0.05 threshold are in parentheses.
®Critical values are from Osterwald-Lennum [1992].

°This shows the number of cointegrating vectors under the null hypothesis.

9This shows the number of stochastic trends.
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Table 4. Tests on Over-Identifying Restrictions®
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Cointegrating Relation 1

Cointegrating Relation 2 Likelihood

Model NHEM SHEM RFGG RFSUN RFSOXNH RFSOXSH NHEM SHEM RFGG RFSUN RFSOXSH RFSOXNH Ratio Statistic

0 X X X X X 0 X X X X X 0

1 X X 0 X 0 0 X X 0 X 0 0 %361 = (20.70)
2 X X 0 X X X X X 0 X X X v 2] = <6.21>
3 X X X X 0 X X X X X X 0 2] = (12.11)
4 X X X X X 0 X X X X 0 X 121 = 2.67

5 X X X 0 X X X X X 0 X X 12]1=(16.16)
6 0 X X X X X 0 X X X X X %%[6]=(58.59)
7 X 0 X X X X X 0 X X X X %2[6] = (46.57)
8 X 0 X X X 0 X X X X X 0 1] =149

9 X X X X X 0 0 X X X X 0 1] = (5.84)
10 X 0 X X X 0 0 X X X X 0 1 21=6.15
11 X 0 X X X 0 X X 0 0 0 0 141 = (10.87)
12 X 0 X X X 0 X X 0 X 0 0 %3] = (9.66)
13 X 0 X X X 0 X X X 0 0 0 131 =2.68
14 X 0 X X X 0 X X 0 0 X 0 %3] = 1.79
15 X 0 ) X° X° 0 X X X X X 0 1 2[4] = 8.29
16 X 0 X X X 0 X X X° x° x° 0 1 3] = 3.05
17 X 0 X© X© X 0 X X x° X° X© 0 1 4]= 5.46
18 X 0 X b'& Xe 0 X X x° X© xX° 0 % *[4] = 6.60
19 X 0 X° X xP 0 X X X° X° x° 0 1 2[4] =3.15

*Variables present in the cointegrating relation are indicated by “X* (model 0). Excluded variables are indicated by “0”. Values that exceed the 0.01
threshold are in parentheses. Values that exceed the 0.05 threshold are in angle brackets.

b Elements of 3 associated with RFGG and RFSOXNH are restricted to be equal.

°Restrictions on the coefficients associated with these variables have been imposed such that the coefficients of adjacent superscripted values are equal.

[28] The parameterization of the unrestricted cointegrating vec-
tors is not unique. Therefore it is not possible to .calculate the
standard errors for the coefficients of 8. To obtain the standard
errors, a minimum of one restriction is needed on each of the two
cointegrating vectors, at which point the system is said to be
exactly identified. Starting from the assumption that hemispheric
temperature is related to radiative forcing in that hemisphere and
that surface temperature is linked across hemispheres, we specify
the following exactly identified system:

CR1 B,;NHEM + B,,SHEM + B,;RFGG
+B14RFSUN + B,;sRFSOXNH

CR.2 621NI‘IEM + BzstEM + BZ:’.RFGG
+BRFSUN + 3,;RFSOXSH .

These restrictions are associated with a zero coefficient for
RFSOXSH in CR1 and a zero coefficient for RFSOXNH in CR2
in Table 4; variables present in the cointegrating relation are
indicated by a cross (model 0). To test a series of hypotheses about
the relation between temperature and radiative forcing, we impose
additional restrictions, which are termed over-identifying restric-
tions. These over-identifying restrictions are evaluated with a
likelihood ratio test that is distributed as a chi-square with degrees
of freedom equal to the number of over-identifying restrictions.
Values of the likelihood test statistic that exceed the critical value at
P < 0.05 indicate that the relation between temperature and
radiative forcing imposed by the over-identifying restriction(s) is
rejected because it is inconsistent with observations.

5.2. Is Temperature Determined by Natural
Variability Alone?

[29] If natural variability is solely responsible for the stochastic
trends in temperature, the radiative forcing of greenhousé gases
and anthropogenic sulfur emissions will not be part of the cointe-
grating relation with temperature. To evaluate whether RFGG
and/or RFSOXNH and RFSOXSH belong in the cointegrating
relations, we test restrictions that eliminate these components of
radiative forcing from both cointegrating relations. These restric-

tions are represented by zero coefficients associated with RFGG
and/or RFSOXNH and/or RFSOXSH in models 1-4 in Table 4.
Restrictions which eliminate the radiative forcing of greenhouse
gases and anthropogenic sulfur emissions generate over-identified
model 1, which is rejected strongly (Table 4). Tests on models 2
and 3 indicate that we cannot eliminate RFGG or RFSOXNH.
However, we cannot reject a restriction that eliminates RFSOXSH
(model 4). These results indicate that the radiative forcing of
greenhouse gases and Northern Hemisphere anthropogenic sulfur
emissions are related to temperature. This result provides direct
statistical evidence for the effect of human activity on surface
temperature.

5.3. Is Temperature Determined by Human Activity Alone?

[30] We can evaluate the hypothesis that temperature is related
to human activity alone by testing an over-identifying restriction
that eliminates RFSUN from both cointegrating relations (model
5). This model is rejected strongly (Table 4). This result indicates
that hemispheric surface temperature also is related to changes in
solar activity.

[31] Results for the temperature effect of the other component of
natural variability, the radiative forcing of stratospheric sulfates
associated with volcanic activity, are mixed. The elements of d
associated with the radiative forcing of stratospheric sulfates in the
Northern Hemisphere have a statistically significant effect on
temperature in the Northern Hemisphere at P < 0.1. Conversely,
the radiative forcing of stratospheric sulfates in the Southern
Hemisphere does not have a statistically measurable (p > 0.30)
effect on temperature in either hemisphere, regardless of the
restrictions placed on the cointegrating relations.

[32] Together with results from section 5.2, the statistical results
indicate that surface temperature is related to both human activity
and natural variability. This result is confirmed by testing restric-
tions that eliminate NHEM or SHEM from both cointegrating
relations. The likelihood ratio statistic indicates that we can reject
strongly restrictions that eliminate either NHEM (model 6) or
SHEM (model 7) from both cointegrating relations (Table 4). This
result indicates that the two cointegrating relations represent
cointegration among temperature and radiative forcing; the com-
ponents of radiative forcing do not cointegrate among themselves.
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5.4. Is Hemispheric Temperature Determined by
Hemispheric Forcing Alone?

[33] The just identified model postulates that temperature in
each hemisphere is determined by radiative forcing in that hemi-
. sphere and temperature in the opposite hemisphere. To test the
hypothesis that hemispheric temperature is determined by forcings
in that hemisphere alone, we test restrictions that eliminate SHEM
in CR1 and/or NHEM in CR2. First, we test whether it is possible
to specify Northern Hemisphere temperature solely as a function
of radiative forcing in the Northern Hemisphere. To do so, we add
one over-identifying restriction to the just identified model: we
eliminate SHEM from CRI1. This restriction generates over-
identified model 8 (Table 4), which has a cointegrating relation
that includes NHEM, RFGG, RFSOXNH, and RFSUN (CR1).
This combination of variables can be interpreted as the long-run
equilibrium relation between surface temperature and radiative
forcing in the Northern Hemisphere. As indicated in Table 4, the
restriction that eliminates SHEM from the just identified model
(model 8) cannot be rejected by the likelihood ratio statistic
(x(1) = 1.49 P > 0.23). This result indicates that Northern Hemi-
sphere temperature is related to radiative forcing in the Northern
Hemisphere alone.

[34] We can use a similar procedure to test whether temper-
ature in the Southern Hemisphere can be represented solely by
the radiative forcings in the Southern Hemisphere. To do so,
we eliminate NHEM from CR2 in the just identified model.
This restriction generates model 9, which has a cointegrating
relation that includes SHEM, RFGG, RFSOXSH, and RFSUN
(CR2). This combination of variables can be interpreted as the
long-run equilibrium relation between surface temperature and
radiative forcing in the Southern Hemisphere. As indicated in
Table 4, the over-identifying restriction on CR2 is rejected
strongly (Xz(l) = 5.84 P < 0.02). This result implies that it is
not possible to represent surface temperature in the Southern
Hemisphere solely as a function of radiative forcing in that
hemisphere.

5.5. Are Hemispheric Temperatures Linked?

[35] The inability to represent Southern Hemisphere temperature
as a function of Southern Hemisphere forcing alone implies that
surface temperature ‘in the two hemispheres is linked. We can
explicitly test the null hypothesis that Northern and Southern
Hemisphere temperatures are independent by eliminating NHEM
from CR2 in model 8. Eliminating this variable generates model
10, which specifies temperature in each of the hemispheres as a
function of forcings in that hemisphere. The restriction that
eliminates NHEM from CR2 in model 8 is rejected (x*(1) = 4.76
P < 0.03). This rejection indicates that there is a long-run relation
between temperature in the Northern and Southern Hemispheres.
This is consistent with the potential for heat transfer to prevent
hemispheric temperatures from drifting apart for long periods
regardless of the differences in radiative forcings between the
hemispheres.

5.6. How Are Hemispheric Temperatures Linked:
Are They Proportional?

[36] The result that hemispheric temperatures are linked begs the
nature of this linkage. The simplest linkage is linear: Temperature
in one hemisphere is linearly proportional to temperature in the
other. To test this hypothesis, we evaluate a set of restrictions that
eliminates all of the forcing variables from CR2 in model 8. These
restrictions generate model 11, which has one cointegrating rela-
tion (CR2) that includes Northern and Southern Hemisphere
temperatures only (NHEM and SHEM). Restrictions that eliminate
the three radiative forcing variables from CR2 in model 11 are
rejected strongly (x%(3) = 9.38, P < 0.02). Rejecting these restric-
tions indicates that Northern and Southern Hemisphere temper-
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Table 5. Causes for Hemispheric Differences in Temperature
Change®

NHEM SHEM Differential Effect
Variable Equation Equation (NHEM—SHEM)
Model 13
RFGG 0.58 0.45 0.13
RFSUN 1.04 0.54 0.50
RFSOXNH 0.55 0.29 0.26
RFSOXSH
Model 14
RFGG 0.58 0.32 0.26
RFSUN 1.04 0.57 047
RFSOXNH 0.55 0.32 0.23
RFSOXSH . —1.67 —1.67

Values represent the hemispheric temperature effect (°C W' m™2) of
an increase in radiative forcing. Values are derived by solving the
cointegrating relations in models 13 and 14 for mean land and sea surface
temperature in the Northern Hemisphere (NHEM) and mean land and sea
surface temperature in the Southern Hemisphere (SHEM).

atures do not cointegrate; that is, temperature in the Southern
Hemisphere is not linearly proportional to temperature in the
Northern Hemisphere.

5.7. What Forcing(s) Cause Differences
in Hemispheric Temperatures?

[37] The cause(s) of hemispheric differences in temperature can
be identified by evaluating models that eliminate two (instead of
three, as in model 11) of the three components of radiative forcing
from CR2 of model 8. Likelihood ratio statistics indicate that
RFSUN does not allow NHEM and SHEM to cointegrate; restric-
tions that eliminate RFGG and RFSOXSH from CR2 (model 12)
are rejected (x%(2) = 8.17, P < 0.02). Conversely, we cannot reject
restrictions that generate a cointegrating relation that eliminates
RFSUN and RFSOXSH from model 8 (model 13; x(2) = 1.19, P
> 0.53). Similarly, we cannot reject restrictions that eliminate
RFGG and RESUN from model 8 (model 14; x*(2) = 0.30, P >
0.83).

[38] At first glance, these results seem to imply that hemispheric
differences in temperature are associated with the radiative forcing
of greenhouse gases or anthropogenic sulfur emissions. But this
interpretation is incorrect: Models 13 and 14 indicate that hemi-
spheric differences in temperature are associated with all compo-
nents of radiative forcings. This conclusion is demonstrated by
solving the cointegrating relations for NHEM and SHEM. To solve
for SHEM, we substitute the cointegrating relation for Northern
Hemisphere temperature (CR1) for NHEM in CR2. Each of the
resulting equations indicates the hemispheric temperature effect of
a 1 W m™? increase in each of the sources of radiative forcing (°C
W1 m™2), These effects are given in the first two columns in
Table 5. The difference between the values in these two columns
identifies the forcing(s) responsible for the different changes in
hemispheric temperature over time (Table 5). That is, if the
Northern Hemisphere temperature effect of RFGG (i.e., 0.58°C
W~ m™2; model 13) is not equal to RFGG’s Southern Hemisphere
temperature effect (i.e., 0.45°C W~ m™2; model 13), 2 1 W m™2
increase in RFGG will generate a 0.13°C long-run increase in
Northern Hemisphere temperature relative to the Southern Hemi-
sphere.

[39] As indicated by the third column in Table 5, the differences
associated with each of the forcings are nonzero, which indicates
that hemispheric differences in temperature are associated with all
three forcings (Figure 1). Although greenhouse gases are well
mixed, their greater effect in the Northern Hemisphere may be
associated with hemispheric differences in the land/water ratio.
Increases in solar activity also tend to increase temperature in the
Northern Hemisphere relative to the Southern Hemisphere, but
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Figure 1. Causes for the difference in Northern and Southern Hemisphere surface temperatures. The observed

difference in surface temperature (solid line) is associated with the radiative forcing of greenhouse gases (dash-dotted
line), solar activity (dashed line), and anthropogenic sulfur emissions(dash-dotted line). Together these factors (dotted
line) account for much of the difference in hemispheric temperatures; the residual from an ordinary least squares
regression of the observed difference in temperature and that indicated by all three factors is stationary, as indicated
by an augmented Dickey-Fuller test statistic (ADF = 5.28, P <0.01). The constant from this regression is 0.207°C and
represents the difference in hemispheric temperature absent the changes in human forcing and solar activity. To
highlight the similarity between the observed and predicted changes in hemispheric temperature differences, the
observed difference in hemispheric temperature is reduced by 0.207°C so that the mean values for the two series are

the same.

their effect is smaller than the effect of greenhouse gases. Finally,
anthropogenic emissions of sulfur have the largest effect on hemi-
spheric differences in temperature, reducing Northern Hemisphere
temperature by ~0.53° relative to Southern Hemisphere temper-
ature in 1990 relative to 1865. Together, the effects of greenhouse
gases, solar activity, and anthropogenic sulfur emissions can
account for much of the variation in the difference between
Northern and Southern Hemisphere surface temperatures.

5.8. Is the Temperature Effect of Radiative Forcing Similar
Across Forcing(s)?

[40] In theory, the temperature effect of radiative forcing within
a hemisphere should be equal across forcings. We test this
hypothesis by imposing restrictions that equalize the elements of
(@ associated with radiative forcing within each hemisphere. These
restrictions are ‘identified by footnotes a and b in the columng
associated with radiative forcing in Table 4. The restrictions are
imposed on model 8 because it represents the forcings in each
hemisphere. Consistent with the conclusion that differences in
hemispheric temperatures are associated with all components of
radiative forcing, we do not test whether the temperature effects of
individual forcing are similar across hemispheres.

[41] We reject restrictions that equalize the Northern Hemi-
sphere temperature effect of RFGG, RFSOXNH, and RFSUN in
CR1 (model 15) relative to model 8 (x*(2) = 6.8, P < 0.04).
However, we cannot reject restrictions that equalize the Southern
Hemisphere temperature effect of RFGG, RFSUN, and RFSOXSH
in CR2 (model 16) relative to model 8 (x*(2) = 1.56, P < 0.45). We
can impose further restrictions on model 16 to identify the
components of Northern Hemisphere radiative forcing that are
not equal. Relative to model 16, we just fail to reject restrictions

that equalize the temperature effect of RFGG and RFSUN (model
17; x“(1) = 2.41, P > 0.12). This near rejection is associated with
the radiative forcing of solar activity. A restriction that equalizes
the temperature effect of RFSOXNH with RFSUN (model 18) is
rejected relative to model 16 at the 10% level (x(1) = 3.55, P>
0.06). However, we cannot reject a restriction (x2(1) = 0.10, P >
0.76) that equalizes the temperature effect of RFGG and
RFSOXNH relative to model 16. On the basis of the totality of
results described in Table 4, we chose model 19 as the most
parsimonious model of the relation between hemispheric temper-
ature and radiative forcing.

6. Discussion

[42] The results in Table 6 are consistent with some basic
hypotheses regarding the effect of changes in radiative forcing
on temperature and offer several lines of evidence that human
activity is partially responsible for the increase in temperature over
the last 130 years. In all models the coefficients of B associated
with radiative forcing are statistically significant and are negative.
The negative sign indicates that an increase in radiative forcing is
associated with an increase in temperature.

[43] The elements of 3 quantify the long-run relation between
surface temperature and radiative forcing. When the cointegrat-
ing relations are solved for NHEM and SHEM, the elements of
@ can be nsed to calculate the long-run change in temperature
that is associated with a doubling in radiative forcing (AT,x).
The size of AT,y calculated from the elements of B falls in the
middle of the range of temperature sensitivities implied by
general circulation models [Dickinson, 1985] and statistically
feasible parameterizations of energy balance climate models
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Table 6. Long-Run Parameter Estimates and Diagnostic Statistics®

Model 19

Model 18

Model 17

Model 0

CV2

(~0.437) (5.46)°

1.000

CVl

CV2
(—0.460) (5.75)°

1.000

CVvl

CcV2
(—0.453) (5.66)°

1.000

CV1

Cv2

(—0.606)(11.01)°

1.000

CV1

Variable
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1.00

1.000

1.000

b

(~0.833) (10.5)

1.000

NHEM
SHEM

(=0.151) (4.31)°

(—0.542) (3.59)°
(—0.542) (3.59)°

X (—0.146) (4.17)°

(—0.810) (6.98)°
(—0.709) (5.45)

(—0.148) (4.23)°

(~0.760) (6.50)°
(—0.662) (4.94)°

—0.035 0.42°

(—0.208) (1.98)
(~0.321) (3.82)°

RFSOXNH

RFGG

(—0.151) (4.31)°
0.151) (4.31)°

(0.238) (2.03)°
0.503) (5.29)°

(__

Model 19

(_.

b

b
0)

(=1.110) (7.33)

(—0.668) (8.6
20313 (5.00)

b
(;1.17)b

(~0.146) (4.17)
0.196 1.66

(—0.146)
(~0.523) 5.50°

b

(—0.709) (5.45)
b

0.648) (8.28)°
~0.323 (5.14)

(__

(3.23)"

(—0.148) (4.23)°
0.198 1.67

(—0.522) (5.50)°

(~0.148)

(~0.760) (6.50):
b

(—0.660) (8.40)
~0.324(5.12)

1.434 1.74°
0.120 0.70°
(—0.873) 4.42°
(—1.254) (7.88)°
Model 0
22(4)=5.55

b

0.862) (6.61)°

(~5.85) (3.16)°
(~1.307) (8.07)

(_

RFSOXSH
o NHEM equation
o SHEM equation

RFSUN

Model 18

Model 17

4)=6.22

2
2,

(@)= 6.50

X
X

2,
x
124 6.60

2= 6.47
22(4)= 6.37

x
%
4

2(4)=5.43

x

Normality
Serial Correlation

(4)= 4.46
¥ (4= 3.15

(4)= 6.60

X

(@)= 5.46

parentheses.

2Values that exceed the 0.05 threshold are in

bThese are ¢ statistics.

Over-Identifying Restriction

[Wigley et al., 1997]. Doubling the preindustrial concentration of
carbon dioxide increases RFGG by 4.3 W m™2 This increase
raises the long-run equilibrium temperature in the Northern
Hemisphere by 3.3°C, 3.5°C, and 2.3°C for models 17, 18,
and 19, respectively. For the same models the corresponding
temperature sensitivities for the Southern Hemisphere are 2.1°C,
2.2°C, and 1.7°C.

[44] We can use the historical changes in radiative forcing, along
with the long- and short-run dynamics estimated by the VECM, to
quantify the changes in historical temperature that are associated
with human activity as opposed to natural variability. If we hold the
radiative forcing of greenhouse gases and anthropogenic sulfur
emissions at their preindustrial level, model 19 implies that changes
in solar irradiance and volcanic activity increase temperature in the
Southern Hemisphere by ~0.29°C between 1865 and 1990, which
is about half of the observed increase (Figure 2).

[45] After 1920, Southern Hemisphere temperature increases
more rapidly than is simulated by natural variability alone. This
difference is associated with the radiative forcing of greenhouse
gases and tropospheric sulfates. If we use model 19 to calculate the
change in temperature when RFGG varies as indicated by histor-
ical data (and eliminate the effects of the other forcings), the
calculated increase in temperature is greater than the observed
increase (Figure 2). Conversely, the temperature effect of anthro-
pogenic sulfur emissions (both in the Northern and Southern
Hemispheres) reduces temperature well below observed values.
On net, the effect of greenhouse gases predominates, and this
increase allows the temperature forecast generated by both human
activity and natural variability to reproduce Southern Hemisphere
temperature accurately (Figure 2).

[46] The combination of human activity and natural variability
also can be used to reproduce Northern Hemisphere temperatures
(Figure 3). However, compared to the Southern Hemisphere, the .
role of human and natural forcings differs. For much of the sample
period the temperature increases associated with natural variability
tend to overstate the observed temperature. This tendency is
alleviated by including the effect of human activity. On net, human
activity tends to cool temperatures in the Northern Hemisphere
because the cooling effect of anthropogenic sulfur emissions tends
to be larger (in an absolute sense) than the warming effect of
greenhouse gases.

[47] The coefficients of o measure the rate at which temperature
adjusts to changes in radiative forcing. The statistically significant
coefficients of 4 imply that 40—50% of the disequilibrium in the
long-run relation between temperature and radiative forcing is
eliminated each year. This rate of adjustment probably is too large
(that is, it implies rates of ocean mixing faster than indicated by
physical models). Our estimated temperature sensitivities are at the
middle and lower end of the range generated by global climate
models. This suggests that the true temperature sensitivities are
higher and that our estimates of o and {3 are biased in opposite
directions. Future research may reduce this bias by using informa-
tion generated by climate models. These models could be used to
simulate the effect of oceanic and atmospheric circulation on the
rate at which surface temperature adjusts to radiative forcing.
These estimates could be used to restrict the elements of o and

‘reestimate the VECM.

7. Conclusion

[48] The results of the cointegration analysis indicate that the
stochastic trends in the radiative forcing of CO,, CHy, CFCl1,
CFC12, N,O, anthropogenic sulfur emissions, and solar activity
also are present in the historical data for hemispheric surface
temperatures. The presence of cointegration indicates that the
temperature data do not contain any significant stochastic trends
that are not also present in the other variables that we have
included in our model. This implies that the increase in global
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account for much of the variation in the Southern Hemisphere temperature.
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temperatures during the past 130 years can be attributed to changes
in radiative forcing associated with natural variability and human
activity. These results provide more support for the conclusion that
[Santer et al., 1996a, 1996b, p. 412] “the observed trend in global

mean temperature over the past 100 years is unlikely to be entirely
" npatural in origin.”

[49] Important caveats are that the Johansen procedure assumes
that the highest order of integration in the data is 1 while the
radiative forcing of greenhouse gases may contain an I(2) trend and
that this simple model ignores potential feedbacks between temper-
ature and the atmospheric concentration of trace gases such as
carbon dioxide and methane. Other research efforts will use
structural time series techniques developed by Harvey [1989] to
identify I(1) and I(2) trends in the historical temperature data and
will use the techniques developed by Stock and Watson [1993] to
estimate statistically meaningful relations among data for temper-
ature, emissions, and concentrations that may contain an I(2) trend.
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