Example: the Ornstein-Uhlenbeck process

$$dX_t = -\beta(X_t - \alpha)dt + \sigma dW_t$$

where $\beta > 0, \alpha \in \mathbb{R}, \sigma > 0$ and $X_0 = x_0$.

Solution:

$$X_t = \alpha + (x_0 - \alpha)e^{-\beta t} + \sigma \int_0^t e^{-\beta(t-s)} dW_s$$

Note that this is a sum of deterministic terms and an integral of a deterministic function with respect to a Wiener process with normally distributed increments. The distribution is thus normal.

1

Parameter interpretation in the OU-process

 β : how "strongly" the system reacts to perturbations (the "decay-rate" or "growth-rate")

 σ^2 : the variation or the size of the noise.

 α : the asymptotic mean

The conditional expectation is

$$E[X_t|X_0 = x_0] = E\left[\alpha + (x_0 - \alpha)e^{-\beta t} + \sigma \int_0^t e^{-\beta(t-s)}dW_s\right]$$
$$= \alpha + (x_0 - \alpha)e^{-\beta t}$$

The conditional variance is

$$\operatorname{Var}[X_t|X_0 = x_0] = E\left[(\sigma \int_0^t e^{-\beta(t-s)} dW_s)^2 \right]$$

Use Ito's isometry to obtain

$$\operatorname{Var}[X_t | X_0 = x_0] = \sigma^2 E\left[\int_0^t e^{-2\beta(t-s)} ds \right] = \frac{\sigma^2}{2\beta} \left(1 - e^{-2\beta t} \right)$$

Thus
$$(X_t|X_0 = x_0) \sim N(\alpha + (x_0 - \alpha)e^{-\beta t}, \frac{\sigma^2}{2\beta}(1 - e^{-2\beta t})).$$

Asymptotically $X_t \sim N(\alpha, \frac{\sigma^2}{2\beta})$ (or always if $X_0 \sim N(\alpha, \frac{\sigma^2}{2\beta})$).

2

Example: population growth model

Also called the geometric Brownian motion

$$dN_t = aN_t dt + \sigma N_t dW_t$$

The Itô solution:

$$N_t = N_0 \exp\left\{ (a - \frac{1}{2}\sigma^2)t + \sigma W_t \right\}$$

The Stratonovich solution:

$$N_t = N_0 \exp\left\{at + \sigma W_t\right\}$$

Qualitative behavior of the Itô solution

$$N_t = N_0 \exp\left\{ (a - \frac{1}{2}\sigma^2)t + \sigma W_t \right\}$$

- If $a > \frac{1}{2}\sigma^2$ then $N_t \to \infty$ when $t \to \infty$, a.s.
- If $a < \frac{1}{2}\sigma^2$ then $N_t \to 0$ when $t \to \infty$, a.s.
- If $a = \frac{1}{2}\sigma^2$ then N_t will fluctuate between arbitrary large and arbitrary small values as $t \to \infty$, a.s.

5

Note though:

If W_t is independent of N_t we would expect that

$$E[N_t] = E[N_0]e^{at}$$

i.e. the same as when there is no noise in a_t . Let us check:

Let

$$Y_t = e^{\sigma W_t}$$

and apply Ito's formula

$$dY_t = \frac{1}{2}\sigma^2 e^{\sigma W_t} dt + \sigma e^{\sigma W_t} dW_t$$

i.e.

$$Y_t = Y_0 + \frac{1}{2}\sigma^2 \int_0^t e^{\sigma W_s} ds + \sigma \int_0^t e^{\sigma W_s} dW_s$$

Whereas for the Stratonovich solution we have

$$N_t = N_0 \exp\left\{at + \sigma W_t\right\}$$

- If a > 0 then $N_t \to \infty$ when $t \to \infty$, a.s.
- If a < 0 then $N_t \to 0$ when $t \to \infty$, a.s.

... just like in the deterministic case.

Apparently it makes a huge difference which interpretation we choose.

6

Thus

$$E[Y_t] = \underbrace{E[Y_0]}_{=1} + \frac{1}{2}\sigma^2 \int_0^t \underbrace{E[e^{\sigma W_s}]}_{=E[Y_s]} ds + \sigma \underbrace{E\left[\int_0^t e^{\sigma W_s} dW_s\right]}_0$$

We obtain the differential equation for $E[Y_t]$:

$$\frac{d}{dt}E[Y_t] = \frac{1}{2}\sigma^2 E[Y_t] \quad ; \quad E[Y_0] = 1$$

so that

$$E[Y_t] = E[e^{\sigma W_t}] = e^{\sigma^2 t/2}$$

Finally

$$E[N_t] = E\left[N_0 \exp\left\{(a - \frac{1}{2}\sigma^2)t + \sigma W_t\right\}\right]$$

$$= E[N_0] \exp\left\{(a - \frac{1}{2}\sigma^2)t\right\} E\left[\exp\left\{\sigma W_t\right\}\right]$$

$$= E[N_0] \exp\left\{(a - \frac{1}{2}\sigma^2)t\right\} \exp\left\{\frac{1}{2}\sigma^2 t\right\}$$

$$= E[N_0]e^{at}$$

exactly as we expected! However, for the Stratonovich solution, the same calculations give

$$E[N_t] = E[N_0]e^{(\tilde{a}+\sigma^2/2)t}$$

where \tilde{a} is seen to be a different parameter from a.

9

Examples from ODEs

The equation

$$\frac{dx_t}{dt} = x_t^2 \quad , \quad x_0 = 1$$

does not satisfy the linear growth condition. It has the unique solution

$$x_t = \frac{1}{1-t}$$
 ; $0 \le t < 1$

but no global solution (defined for all t).

The linear growth condition ensures that the solution X_t does not explode, i.e. $|X_t|$ does not tend to ∞ in finite time.

An existence and uniqueness result

Linear growth and local Lipschitz conditions:

For each $N \in \mathbb{N}$ there exists a constant K_N such that

$$|b(x,t)| + |\sigma(x,t)| \le K_N(1+|x|)$$

and

$$|b(x,t)-b(y,t)|+|\sigma(x,t)-\sigma(y,t)| \leq K_N(x-y)$$

for all $t \in [0, \mathbb{N}]$ and for all x, where $|\sigma|^2 = \text{tr } \sigma \sigma^T$.

Then

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, X_0 = U, U \perp \{W_t\}_{t>0}$$

has a unique t-continuous solution X_t .

10

Examples from ODEs

The equation

$$\frac{dx_t}{dt} = 3x_t^{2/3}$$
 , $x_0 = 0$

does not satisfy the Lipschitz condition at x=0. It has more than one solution:

$$x_t = \begin{cases} 0 & \text{for } t \le a \\ (t-a)^3 & \text{for } t > a \end{cases}$$

for any a > 0.

The Lipschitz condition ensures that a solution X_t is unique: If $X_t^{(1)}$ and $X_t^{(2)}$ are two t-continuous processes satisfying the conditions then

$$X_t^{(1)} = X_t^{(2)} \quad \text{for all} \quad t \le T, \text{ a.s.}$$

The solution X_t where drift and diffusion coefficients fulfill the growth and Lipschitz conditions is a *strong* solution:

- the version of W_t is given in advance
- The solution X_t is \mathcal{F}_t^U -adapted

 \mathcal{F}_t^U is the filtration generated by the initial U and $W_s, s \leq t$.

If only $b(\cdot)$ and $\sigma(\cdot)$ are given, and we ask for a pair of processes $(\tilde{X}_t, \tilde{W}_t)$ then the solution is called a *weak* solution.

Strong uniqueness means *pathwise* uniqueness, weak uniqueness means that any two solutions are identical in law, i.e. have the same finite dimensional distributions.

13

A strong solution is also a weak solution.

There are SDEs with no strong solution, but still a unique weak solution.

Remark: Note that the above conditions are *sufficient* conditions, not *necessary* conditions.

Sufficient condition for the existence of a unique weak solution

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, X_0 = U$$

$$a(x) = \sigma(x)\sigma(x)^T$$

- a continuous
- a(x) strictly positive definite for all x
- \bullet There exists a constant K such that

$$|a_{ij}(x)| \le K(1+|x|^2)$$

 $|b_i(x)| \le K(1+|x|)$

for all $i, j = 1, \dots, d$ and x.

The solution is a strong Markov process.

14

Transition densities:

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t.$$
$$y \mapsto p(t, x, y)$$

Conditional density of X_t given $X_0 = x$; also conditional density of X_{t+s} given $X_s = x$.

Data: $X_{t_1}, \dots, X_{t_n}, t_1 < \dots < t_n$.

Likelihood function:

$$L(\theta) = \prod_{i=1}^{n} p(t_i - t_{i-1}, X_{t_{i-1}}, X_{t_i}; \theta)$$

• Chapman-Kolmogorov equation:

$$p(t+s,x,y) = \int p(t,z,y)p(s,x,z)dz$$

• Kolmogorov's backward equation:

$$\frac{1}{2}\sigma^2(x)\frac{\partial^2 p}{\partial x^2} + b(x)\frac{\partial p}{\partial x} = \frac{\partial p}{\partial t}$$

with the initial condition

$$p(t, x, y) \to \delta_x$$
 as $t \to 0$.

 δ_x is the Dirac measure at x.

• Kolmogorov's forward equation:

$$\frac{1}{2}\frac{\partial^2}{\partial y^2}[\sigma(y)^2 p] - \frac{\partial}{\partial y}[b(y)p] = \frac{\partial p}{\partial t}$$

(Fokker-Planck equation)

17

• Cox-Ingersoll-Ross

$$dX_t = -\theta(X_t - \alpha)dt + \sigma\sqrt{X_t}dW_t$$

 $\theta > 0$, $\alpha > 0$, $\sigma > 0$.

$$p(t, x, y) = \frac{\beta(y/x)^{\frac{1}{2}\nu} \exp(\frac{1}{2}\theta\nu t - \beta y)}{\Gamma(\beta\alpha)(1 - \exp(-\theta t))} \times \exp\left[\frac{-\beta(x+y)}{\exp(\theta t) - 1}\right] I_{\nu}\left(\frac{\beta\sqrt{xy}}{\sinh(\frac{1}{\alpha}\theta t)}\right),$$

where $\beta = 2\theta\sigma^{-2}$ and $\nu = \beta\alpha - 1$.

 I_{ν} is a modified Bessel function with index $\nu.$

The transition density is a non-central χ^2 -distribution.

Examples:

• Ornstein-Uhlenbeck

$$dX_t = -\beta(X_t - \alpha)dt + \sigma dW_t$$

Remember that

$$(X_t|X_0 = x_0) \sim N(\alpha + (x - \alpha)e^{-\beta t}, \sigma^2(1 - e^{-2\beta t})/2\beta)$$

$$p(t, x, y) = \frac{1}{\sqrt{\pi \sigma^2 (1 - e^{-2\beta t})/\beta}} \exp \left[-\frac{(y - \alpha - (x - \alpha)e^{-\beta t})^2}{\sigma^2 (1 - e^{-2\beta t})/\beta} \right]$$

18

• Radial Ornstein-Uhlenbeck

$$dX_t = (\theta X_t^{-1} - X_t)dt + dW_t,$$

 $\theta > 0$.

$$p(t, x, y) = \frac{(y/x)^{\theta} \sqrt{xy} \exp(-y^2 + (\theta + \frac{1}{2})t)}{\sinh(t)}$$
$$\times \exp\left[\frac{-(x^2 + y^2)}{\exp(2t) - 1}\right] I_{\theta - \frac{1}{2}}\left(\frac{xy}{\sinh(t)}\right)$$

 I_{ν} is a modified Bessel function with index ν .

Taylor expansions

Review of deterministic expansions:

Consider

$$\frac{d}{dt}x_t = a(x_t)$$

with initial value x_{t_0} for $t \in [t_0, T]$, and $a(\cdot)$ is sufficiently smooth. We can write

$$x_t = x_{t_0} + \int_{t_0}^T a(x_s) ds$$

21

If f(x) = a(x) then La = aa' and

$$a(x_s) = a(x_{t_0}) + \int_{t_0}^s La(x_z)dz$$

Apply this to the equation for x_t

$$x_{t} = x_{t_{0}} + \int_{t_{0}}^{t} \left(a(x_{t_{0}}) + \int_{t_{0}}^{s} La(x_{z})dz \right) ds$$

$$= x_{t_{0}} + a(x_{t_{0}}) \int_{t_{0}}^{t} ds + \int_{t_{0}}^{t} \int_{t_{0}}^{s} La(x_{z})dz ds$$

$$= x_{t_{0}} + a(x_{t_{0}})(t - t_{0}) + R_{1}$$

which is the simplest non-trivial expansion for x_t .

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. By the chain rule

$$\frac{d}{dt}f(x_t) = a(x_t)f'(x_t)$$

Define the operator

$$Lf = af'$$

where 'denotes differentiation with respect to x. Express the above equation for f(x) in integral form

$$f(x_t) = f(x_{t_0}) + \int_{t_0}^t Lf(x_s)ds$$

Note that if f(x) = x then $Lf = a, L^2f = La$ and

$$x_t = x_{t_0} + \int_{t_0}^t a(x_s) ds$$

22

Apply again to the function f = La to obtain

$$x_{t} = x_{t_{0}} + a(x_{t_{0}}) \int_{t_{0}}^{t} ds + \int_{t_{0}}^{t} \int_{t_{0}}^{s} La(x_{z}) dz ds$$

$$= x_{t_{0}} + a(x_{t_{0}}) \int_{t_{0}}^{t} ds + La(x_{t_{0}}) \int_{t_{0}}^{t} \int_{t_{0}}^{s} dz ds + R_{2}$$

$$= x_{t_{0}} + a(x_{t_{0}})(t - t_{0}) + La(x_{t_{0}}) \frac{1}{2} (t - t_{0})^{2} + R_{2}$$

where

$$R_2 = \int_{t_0}^t \int_{t_0}^s \int_{t_0}^z L^2 a(x_u) du \, dz \, ds$$

For a general r+1 times continuously differentiable function f we obtain the classical Taylor formula in integral form

$$f(x_t) = f(x_{t_0}) + \sum_{l=1}^r \frac{(t-t_0)^l}{l!} L^l f(x_{t_0}) + \int_{t_0}^t \cdots \int_{t_0}^{s_r} L^{r+1} f(x_{s_1}) ds_1 \dots ds_{r+1}$$

25

For f twice continuously differentiable, Ito's formula yields

$$f(X_t) = f(X_{t_0}) + \int_{t_0}^t \left(b(X_s)f'(X_s) + \frac{1}{2}\sigma^2(X_s)f''(X_s) \right) ds$$
$$+ \int_{t_0}^t \sigma(X_s)f'(X_s)dWs$$
$$= f(X_{t_0}) + \int_{t_0}^t L^0f(X_s)ds + \int_{t_0}^t L^1f'(X_s)dWs$$

Note that for f(x) = x we have $L^0 f = b$ and $L^1 f = \sigma$, and the original equation for X_t is obtained

$$X_t = X_{t_0} + \int_{t_0}^t b(X_s)ds + \int_{t_0}^t \sigma(X_s)dWs$$

The Ito-Taylor expansion

Iterated application of Ito's formula!

Consider

$$X_t = X_{t_0} + \int_{t_0}^t b(X_s)ds + \int_{t_0}^t \sigma(X_s)dWs$$

We introduce the operators

$$L^{0}f = bf' + \frac{1}{2}\sigma^{2}f''$$

$$L^{1}f = \sigma f'$$

 26

Like in the deterministic expansions, we apply Ito's formula to the functions f = b and $f = \sigma$ and obtain

$$X_{t} = X_{t_{0}} + \int_{t_{0}}^{t} \left(b(X_{t_{0}}) + \int_{t_{0}}^{s} L^{0}b(X_{z})dz + \int_{t_{0}}^{s} L^{1}b'(X_{z})dWz \right) ds$$

$$+ \int_{t_{0}}^{t} \left(\sigma(X_{t_{0}}) + \int_{t_{0}}^{s} L^{0}\sigma(X_{z})dz + \int_{t_{0}}^{s} L^{1}\sigma'(X_{z})dWz \right) dWs$$

$$= X_{t_{0}} + b(X_{t_{0}}) \int_{t_{0}}^{t} ds + \sigma(X_{t_{0}}) \int_{t_{0}}^{t} dWs + R$$

$$= X_{t_{0}} + b(X_{t_{0}})(t - t_{0}) + \sigma(X_{t_{0}})(W_{t} - W_{t_{0}}) + R$$

This is the simplest non-trivial Ito-Taylor expansion of X_t involving single integrals with respect to both time and the Wiener process. The remainder contains multiple integrals with respect to both.

In the previous expansion we had

$$R = \int_{t_0}^{t} \int_{t_0}^{s} L^0 b(X_z) dz \, ds + \int_{t_0}^{t} \int_{t_0}^{s} L^1 b(X_z) dW_z \, ds$$
$$+ \int_{t_0}^{t} \int_{t_0}^{s} L^0 \sigma(X_z) dz \, dW_s + \int_{t_0}^{t} \int_{t_0}^{s} L^1 \sigma(X_z) dW_z \, dW_s$$

Note that dz ds, $dW_z ds$ and $dz dW_s$ "scales like 0", whereas $dW_z dW_s$ scales like dt, comparable to the terms in the simplest expansion with two single integrals.

We therefore continue the expansion by applying the Ito formula to $f = L^1 \sigma$.

29

Numeric solutions

When no explicit solution is available we can approximate different characteristics of the process by simulation. (Realizations, moments, qualitative behavior etc). We use the approximations from the Ito-Taylor expansions.

- Different schemes (Euler, Milstein, higher order schemes...)
- Rate of convergence (Weak and strong)

The next Ito-Taylor expansion becomes

$$X_{t} = X_{t_{0}} + b(X_{t_{0}}) \int_{t_{0}}^{t} ds + \sigma(X_{t_{0}}) \int_{t_{0}}^{t} dW s + L^{1} \sigma(X_{t_{0}}) \int_{t_{0}}^{t} \int_{t_{0}}^{s} dW_{z} dW_{s} + \bar{R}$$

$$= X_{t_{0}} + b(X_{t_{0}}) \Delta t + \sigma(X_{t_{0}}) \Delta W_{t} + \sigma(X_{t_{0}}) \sigma'(X_{t_{0}}) \frac{1}{2} (\Delta W_{t}^{2} - \Delta t) + \bar{R}$$

with remainder

$$\bar{R} = \int_{t_0}^{t} \int_{t_0}^{s} L^0 b(X_z) dz \, ds + \int_{t_0}^{t} \int_{t_0}^{s} L^1 b(X_z) dW_z \, ds$$

$$+ \int_{t_0}^{t} \int_{t_0}^{s} L^0 \sigma(X_z) dz \, dW_s + \int_{t_0}^{t} \int_{t_0}^{s} \int_{t_0}^{z} L^0 L^1 \sigma(X_u) du \, dW_z \, dW_s$$

$$+ \int_{t_0}^{t} \int_{t_0}^{s} \int_{t_0}^{z} L^1 L^1 \sigma(X_u) dW_u \, dW_z \, dW_s$$

30

Consider the Itô stochastic differential equation

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t$$

and a time discretization

$$0 = t_0 < t_1 < \dots < t_j < \dots < t_N = T$$

Put

$$\Delta_j = t_{j+1} - t_j$$

$$\Delta W_j = W_{t_{j+1}} - W_{t_j}$$

Then

$$\Delta W_j \sim N(0, \Delta_j)$$

The Euler-Maruyama scheme

We approximate the process X_t given by

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t ; X(0) = x_0$$

at the discrete time-points $t_i, 1 \leq j \leq N$ by

$$Y_{t_{j+1}} = Y_{t_j} + b(Y_{t_j})\Delta_j + \sigma(Y_{t_j})\Delta W_j \; ; \; Y_{t_0} = x_0$$

where $\Delta W_j = \sqrt{\Delta_j} \cdot Z_j$, with $Z_j \sim N(0,1)$ for all j.

33

The Euler-Maruyama scheme

Sometimes we do not need a close *pathwise* approximation, but only some function of the value at a given final time T (e.g. $E(X_T)$, $E(X_T^2)$ or generally $E(g(X_T))$):

There exist constants K > 0 and $\delta_0 > 0$ such that for any polynomial g

$$|E(g(X_T) - E(g(Y_{t_N}))| \le K\delta$$

for any time discretization with maximum step size $\delta \in (0, \delta_0)$.

We say that the approximating process Y converges in the weak sense with order 1.

The Euler-Maruyama scheme

Let us consider the expectation of the absolute error at the final time instant T:

There exist constants K > 0 and $\delta_0 > 0$ such that

$$E(|X_T - Y_{t_N}|) \le K\delta^{0.5}$$

for any time discretization with maximum step size $\delta \in (0, \delta_0)$.

We say that the approximating process Y converges in the strong sense with order 0.5.

(Compare with the Euler scheme for an ODE which has order 1).

34

The Milstein scheme

We can even do better!

We approximate X_t by

$$\begin{array}{rcl} Y_{t_{j+1}} & = & Y_{t_j} + b(Y_{t_j})\Delta_j + \sigma(Y_{t_j})\Delta W_j \\ & & + \frac{1}{2}\sigma(Y_{t_j})\sigma'(Y_{t_j})\{(\Delta W_j)^2 - \Delta_j\} \quad \text{(now Milstein...)} \end{array}$$

where the prime ' denotes the derivative.

The Milstein scheme

The Milstein scheme converges in the strong sense with order 1:

$$E(|X_T - Y_{t_N}|) \le K\delta$$

We could regard the Milstein scheme as the proper generalization of the deterministic Euler-scheme.

If $b(X_t)$ does not depend on X_t the Euler-Maruyama and the Milstein scheme coincide.

Multi-dimensional diffusions:

Euler scheme: Similar.

Milstein scheme: Involves multiple Wiener integrals.

$$\int_{n\delta}^{(n+1)\delta} \int_{n\delta}^{s} dW_u^{(1)} dW_s^{(2)}$$

Simulation schemes are based on stochastic Ito-Taylor expansions that are formally obtained by iterated use of Ito's formula.

Kloeden and Platen (1992)

37

38