
Example: the Ornstein-Uhlenbeck process

dXt = −β(Xt − α)dt + σdWt

where β > 0, α ∈ IR, σ > 0 and X0 = x0.

Solution:

Xt = α + (x0 − α)e−βt + σ

∫ t

0

e−β(t−s)dWs

Note that this is a sum of deterministic terms and an integral of a
deterministic function with respect to a Wiener process with
normally distributed increments. The distribution is thus normal.
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The conditional expectation is

E[Xt|X0 = x0] = E

[
α + (x0 − α)e−βt + σ

∫ t

0

e−β(t−s)dWs

]
= α + (x0 − α)e−βt

The conditional variance is

Var[Xt|X0 = x0] = E

[
(σ

∫ t

0

e−β(t−s)dWs)2
]

Use Ito’s isometry to obtain

Var[Xt|X0 = x0] = σ2E

[∫ t

0

e−2β(t−s)ds

]
=

σ2

2β

(
1− e−2βt

)
Thus (Xt|X0 = x0) ∼ N(α + (x0 − α)e−βt, σ2

2β

(
1− e−2βt

)
).

Asymptotically Xt ∼ N(α, σ2

2β ) (or always if X0 ∼ N(α, σ2

2β )).
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Parameter interpretation in the OU-process
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β = 0.01, σ = 1 β = 0.1, σ = 1 β = 0.01, σ = 0.5

β : how ”strongly” the system reacts to perturbations

(the ”decay-rate” or ”growth-rate”)

σ2 : the variation or the size of the noise.

α : the asymptotic mean
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Example: population growth model

Also called the geometric Brownian motion

dNt = aNtdt + σNtdWt

The Itô solution:

Nt = N0 exp
{

(a− 1
2
σ2)t + σWt

}
The Stratonovich solution:

Nt = N0 exp {at + σWt}
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Qualitative behavior of the Itô solution

Nt = N0 exp
{

(a− 1
2
σ2)t + σWt

}

• If a > 1
2σ2 then Nt →∞ when t →∞, a.s.

• If a < 1
2σ2 then Nt → 0 when t →∞, a.s.

• If a = 1
2σ2 then Nt will fluctuate between arbitrary large

and arbitrary small values as t →∞, a.s.
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Whereas for the Stratonovich solution we have

Nt = N0 exp {at + σWt}

• If a > 0 then Nt →∞ when t →∞, a.s.

• If a < 0 then Nt → 0 when t →∞, a.s.

... just like in the deterministic case.

Apparently it makes a huge difference which interpretation we choose.
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Note though:

If Wt is independent of Nt we would expect that

E[Nt] = E[N0]eat

i.e. the same as when there is no noise in at. Let us check:

Let

Yt = eσWt

and apply Ito’s formula

dYt =
1
2
σ2eσWtdt + σeσWtdWt

i.e.

Yt = Y0 +
1
2
σ2

∫ t

0

eσWsds + σ

∫ t

0

eσWsdWs
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Thus

E[Yt] = E[Y0]︸ ︷︷ ︸
=1

+
1
2
σ2

∫ t

0

E[eσWs ]︸ ︷︷ ︸
=E[Ys]

ds + σ E

[∫ t

0

eσWsdWs

]
︸ ︷︷ ︸

=0

We obtain the differential equation for E[Yt]:

d

dt
E[Yt] =

1
2
σ2E[Yt] ; E[Y0] = 1

so that

E[Yt] = E[eσWt ] = eσ2t/2
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Finally

E[Nt] = E

[
N0 exp

{
(a− 1

2
σ2)t + σWt

}]
= E[N0] exp

{
(a− 1

2
σ2)t

}
E [exp {σWt}]

= E[N0] exp
{

(a− 1
2
σ2)t

}
exp

{
1
2
σ2t

}
= E[N0]eat

exactly as we expected! However, for the Stratonovich solution, the
same calculations give

E[Nt] = E[N0]e(ã+σ2/2)t

where ã is seen to be a different parameter from a.
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An existence and uniqueness result

Linear growth and local Lipschitz conditions:

For each N ∈ IN there exists a constant KN such that

|b(x, t)|+ |σ(x, t)| ≤ KN (1 + |x|)

and

|b(x, t)− b(y, t)|+ |σ(x, t)− σ(y, t)| ≤ KN (x− y)

for all t ∈ [0, IN] and for all x, where |σ|2 = tr σσT .

Then

dXt = b(Xt)dt + σ(Xt)dWt, X0 = U, U⊥{Wt}t≥0

has a unique t-continuous solution Xt.
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Examples from ODEs

The equation

dxt

dt
= x2

t , x0 = 1

does not satisfy the linear growth condition. It has the unique
solution

xt =
1

1− t
; 0 ≤ t < 1

but no global solution (defined for all t).

The linear growth condition ensures that the solution Xt does not
explode, i.e. |Xt| does not tend to ∞ in finite time.
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Examples from ODEs

The equation

dxt

dt
= 3x

2/3
t , x0 = 0

does not satisfy the Lipschitz condition at x = 0. It has more than
one solution:

xt =

 0 for t ≤ a

(t− a)3 for t > a

for any a > 0.

The Lipschitz condition ensures that a solution Xt is unique: If X
(1)
t

and X
(2)
t are two t-continuous processes satisfying the conditions then

X
(1)
t = X

(2)
t for all t ≤ T, a.s.
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The solution Xt where drift and diffusion coefficients fulfill the
growth and Lipschitz conditions is a strong solution:

• the version of Wt is given in advance

• The solution Xt is FU
t -adapted

FU
t is the filtration generated by the initial U and Ws, s ≤ t.

If only b(·) and σ(·) are given, and we ask for a pair of processes
(X̃t, W̃t) then the solution is called a weak solution.

Strong uniqueness means pathwise uniqueness, weak uniqueness
means that any two solutions are identical in law, i.e. have the same
finite dimensional distributions.
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Sufficient condition for the

existence of a unique weak solution

dXt = b(Xt)dt + σ(Xt)dWt, X0 = U

a(x) = σ(x)σ(x)T

• a continuous

• a(x) strictly positive definite for all x

• There exists a constant K such that

|aij(x)| ≤ K(1 + |x|2)
|bi(x)| ≤ K(1 + |x|)

for all i, j = 1, · · · , d and x.

The solution is a strong Markov process.
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A strong solution is also a weak solution.

There are SDEs with no strong solution, but still a unique weak
solution.

Remark: Note that the above conditions are sufficient conditions, not
necessary conditions.
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Transition densities:

dXt = b(Xt)dt + σ(Xt)dWt.

y 7→ p(t, x, y)

Conditional density of Xt given X0 = x;
also conditional density of Xt+s given Xs = x.

Data: Xt1 , · · · , Xtn , t1 < · · · < tn.

Likelihood function:

L(θ) =
n∏

i=1

p(ti − ti−1, Xti−1 , Xti ; θ)
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• Chapman-Kolmogorov equation:

p(t + s, x, y) =
∫

p(t, z, y)p(s, x, z)dz

• Kolmogorov’s backward equation:

1
2
σ2(x)

∂2p

∂x2
+ b(x)

∂p

∂x
=

∂p

∂t

with the initial condition

p(t, x, y) → δx as t → 0.

δx is the Dirac measure at x.

• Kolmogorov’s forward equation:

1
2

∂2

∂y2
[σ(y)2p]− ∂

∂y
[b(y)p] =

∂p

∂t

(Fokker-Planck equation)
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Examples:

• Ornstein-Uhlenbeck

dXt = −β(Xt − α)dt + σdWt

Remember that
(Xt|X0 = x0) ∼ N(α + (x− α)e−βt, σ2(1− e−2βt)/2β).

p(t, x, y) =
1√

πσ2(1− e−2βt)/β
exp

[
− (y − α− (x− α)e−βt)2

σ2(1− e−2βt)/β

]
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• Cox-Ingersoll-Ross

dXt = −θ(Xt − α)dt + σ
√

XtdWt

θ > 0, α > 0, σ > 0.

p(t, x, y) =
β(y/x)

1
2 ν exp( 1

2
θνt− βy)

Γ(βα)(1− exp(−θt))

× exp
[
−β(x + y)
exp(θt)− 1

]
Iν

(
β
√

xy

sinh( 1
2
θt)

)
,

where β = 2θσ−2 and ν = βα− 1.

Iν is a modified Bessel function with index ν.

The transition density is a non-central χ2-distribution.
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• Radial Ornstein-Uhlenbeck

dXt = (θX−1
t −Xt)dt + dWt,

θ > 0.

p(t, x, y) =
(y/x)θ√xy exp(−y2 + (θ + 1

2
)t)

sinh(t)

× exp
[
−(x2 + y2)
exp(2t)− 1

]
Iθ− 1

2

(
xy

sinh(t)

)
Iν is a modified Bessel function with index ν.
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Taylor expansions

Review of deterministic expansions:

Consider

d

dt
xt = a(xt)

with initial value xt0 for t ∈ [t0, T ], and a(·) is sufficiently smooth.
We can write

xt = xt0 +
∫ T

t0

a(xs)ds
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Let f : IR → IR be a continuously differentiable function. By the
chain rule

d

dt
f(xt) = a(xt)f ′(xt)

Define the operator

Lf = af ′

where ’ denotes differentiation with respect to x. Express the above
equation for f(x) in integral form

f(xt) = f(xt0) +
∫ t

t0

Lf(xs)ds

Note that if f(x) = x then Lf = a, L2f = La and

xt = xt0 +
∫ t

t0

a(xs)ds
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If f(x) = a(x) then La = aa′ and

a(xs) = a(xt0) +
∫ s

t0

La(xz)dz

Apply this to the equation for xt

xt = xt0 +
∫ t

t0

(
a(xt0) +

∫ s

t0

La(xz)dz

)
ds

= xt0 + a(xt0)
∫ t

t0

ds +
∫ t

t0

∫ s

t0

La(xz)dz ds

= xt0 + a(xt0)(t− t0) + R1

which is the simplest non-trivial expansion for xt.
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Apply again to the function f = La to obtain

xt = xt0 + a(xt0)
∫ t

t0

ds +
∫ t

t0

∫ s

t0

La(xz)dzds

= xt0 + a(xt0)
∫ t

t0

ds + La(xt0)
∫ t

t0

∫ s

t0

dz ds + R2

= xt0 + a(xt0)(t− t0) + La(xt0)
1
2
(t− t0)2 + R2

where

R2 =
∫ t

t0

∫ s

t0

∫ z

t0

L2a(xu)du dz ds
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For a general r + 1 times continuously differentiable function f we
obtain the classical Taylor formula in integral form

f(xt) = f(xt0) +
r∑

l=1

(t− t0)l

l!
Llf(xt0) +

∫ t

t0

· · ·
∫ sr

t0

Lr+1f(xs1)ds1 . . . dsr+1

25

The Ito-Taylor expansion

Iterated application of Ito’s formula!

Consider

Xt = Xt0 +
∫ t

t0

b(Xs)ds +
∫ t

t0

σ(Xs)dWs

We introduce the operators

L0f = bf ′ +
1
2
σ2f ′′

L1f = σf ′
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For f twice continuously differentiable, Ito’s formula yields

f(Xt) = f(Xt0) +
∫ t

t0

(
b(Xs)f ′(Xs) +

1
2
σ2(Xs)f ′′(Xs)

)
ds

+
∫ t

t0

σ(Xs)f ′(Xs)dWs

= f(Xt0) +
∫ t

t0

L0f(Xs)ds +
∫ t

t0

L1f ′(Xs)dWs

Note that for f(x) = x we have L0f = b and L1f = σ, and the
original equation for Xt is obtained

Xt = Xt0 +
∫ t

t0

b(Xs)ds +
∫ t

t0

σ(Xs)dWs
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Like in the deterministic expansions, we apply Ito’s formula to the
functions f = b and f = σ and obtain

Xt = Xt0 +
∫ t

t0

(
b(Xt0) +

∫ s

t0

L0b(Xz)dz +
∫ s

t0

L1b′(Xz)dWz

)
ds

+
∫ t

t0

(
σ(Xt0) +

∫ s

t0

L0σ(Xz)dz +
∫ s

t0

L1σ′(Xz)dWz

)
dWs

= Xt0 + b(Xt0)
∫ t

t0

ds + σ(Xt0)
∫ t

t0

dWs + R

= Xt0 + b(Xt0)(t− t0) + σ(Xt0)(Wt −Wt0) + R

This is the simplest non-trivial Ito-Taylor expansion of Xt involving
single integrals with respect to both time and the Wiener process.
The remainder contains multiple integrals with respect to both.
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In the previous expansion we had

R =
∫ t

t0

∫ s

t0

L0b(Xz)dz ds +
∫ t

t0

∫ s

t0

L1b(Xz)dWz ds

+
∫ t

t0

∫ s

t0

L0σ(Xz)dz dWs +
∫ t

t0

∫ s

t0

L1σ(Xz)dWz dWs

Note that dz ds, dWz ds and dz dWs “scales like 0”, whereas dWz dWs

scales like dt, comparable to the terms in the simplest expansion with
two single integrals.

We therefore continue the expansion by applying the Ito formula to
f = L1σ.
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The next Ito-Taylor expansion becomes

Xt = Xt0 + b(Xt0)
∫ t

t0

ds + σ(Xt0)
∫ t

t0

dWs + L1σ(Xt0)
∫ t

t0

∫ s

t0

dWz dWs + R̄

= Xt0 + b(Xt0)∆t + σ(Xt0)∆Wt + σ(Xt0)σ
′(Xt0)

1
2
(∆W 2

t −∆t) + R̄

with remainder

R̄ =
∫ t

t0

∫ s

t0

L0b(Xz)dz ds +
∫ t

t0

∫ s

t0

L1b(Xz)dWz ds

+
∫ t

t0

∫ s

t0

L0σ(Xz)dz dWs +
∫ t

t0

∫ s

t0

∫ z

t0

L0L1σ(Xu)du dWz dWs

+
∫ t

t0

∫ s

t0

∫ z

t0

L1L1σ(Xu)dWu dWz dWs
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Numeric solutions

When no explicit solution is available we can approximate different
characteristics of the process by simulation. (Realizations, moments,
qualitative behavior etc). We use the approximations from the
Ito-Taylor expansions.

• Different schemes (Euler, Milstein, higher order schemes...)

• Rate of convergence (Weak and strong)
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Consider the Itô stochastic differential equation

dXt = b(Xt) dt + σ(Xt) dWt

and a time discretization

0 = t0 < t1 < · · · < tj < · · · < tN = T

Put

∆j = tj+1 − tj

∆Wj = Wtj+1 −Wtj

Then

∆Wj ∼ N(0,∆j)
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The Euler-Maruyama scheme

We approximate the process Xt given by

dXt = b(Xt) dt + σ(Xt) dWt ; X(0) = x0

at the discrete time-points tj , 1 ≤ j ≤ N by

Ytj+1 = Ytj + b(Ytj )∆j + σ(Ytj )∆Wj ; Yt0 = x0

where ∆Wj =
√

∆j · Zj , with Zj ∼ N(0, 1) for all j.
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The Euler-Maruyama scheme

Let us consider the expectation of the absolute error at the final time
instant T :

There exist constants K > 0 and δ0 > 0 such that

E(|XT − YtN
|) ≤ Kδ0.5

for any time discretization with maximum step size δ ∈ (0, δ0).

We say that the approximating process Y converges in the strong
sense with order 0.5.

(Compare with the Euler scheme for an ODE which has order 1).
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The Euler-Maruyama scheme

Sometimes we do not need a close pathwise approximation, but only
some function of the value at a given final time T (e.g. E(XT ),
E(X2

T ) or generally E(g(XT ))):

There exist constants K > 0 and δ0 > 0 such that for any polynomial
g

|E(g(XT )− E(g(YtN
))| ≤ Kδ

for any time discretization with maximum step size δ ∈ (0, δ0).

We say that the approximating process Y converges in the weak sense
with order 1.
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The Milstein scheme

We can even do better!

We approximate Xt by

Ytj+1 = Ytj
+ b(Ytj

)∆j + σ(Ytj
)∆Wj

+
1
2
σ(Ytj )σ

′(Ytj ){(∆Wj)2 −∆j} (now Milstein...)

where the prime ′ denotes the derivative.
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The Milstein scheme

The Milstein scheme converges in the strong sense with order 1:

E(|XT − YtN
|) ≤ Kδ

We could regard the Milstein scheme as the proper generalization of
the deterministic Euler-scheme.

If b(Xt) does not depend on Xt the Euler-Maruyama and the
Milstein scheme coincide.
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Multi-dimensional diffusions:

Euler scheme: Similar.

Milstein scheme: Involves multiple Wiener integrals.

∫ (n+1)δ

nδ

∫ s

nδ

dW (1)
u dW (2)

s

Simulation schemes are based on stochastic Ito-Taylor expansions
that are formally obtained by iterated use of Ito’s formula.

Kloeden and Platen (1992)
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