Kapitel 11

One-dimensional homogeneous
diffusions

Suppose given a real-valued process X, which is a solution to an SDE, (B is
BM(1))

dX (1) = (X (1)) dt + o(X () dB(t), Xo = 0. (11.1)

Suppose also that it is known that

P (X(t)€ll,r]) =1,

t>0

where ]I, 7[C R is an open interval that could be a genuine subinterval. In parti-
cular I < zg < 7.

Our first aim is to discuss conditions on the functions b and o, that ensure
that X in fact stays away from the boundary points [ and r, also in the case
where [ = —oo or 7 = 400.

Assume from now on that b, o are continuous functions on ]I, r[, with o > 0
(but do not assume Lipschitz conditions as in Seetning 9.1). At the moment we
are just given a ]I, r[-valued solution to (11.1)).

We start by looking for a twice differentiable function S : ]I, 7[— R, such that
S(X) € coc. By 1to’s formula

AS(X (1)) = AS(X(t)) dt + S (X ())o (X () dB(t) (11.2)

where A is the second order differential operator

Af(@) = ba) f (@) + 50> ()" (2).

Thus S(X) € c#o. if AS = 0. This gives that S satisfies

- 2

for some c. If ¢ > 0 we have S’ > 0 so S is strictly increasing. S is called a scale
function for the diffusion X. If S is a scale function, all others are of the form
c1 + ¢S for some ¢; € R, 3 > 0.
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11. ONE-DIMENSIONAL HOMOGENEOUS DIFFUSIONS

With zg € I, r[ given, fix a < zg < b, a,b € ]I, r[. Define
Tap = nf{t : X(t) = a or X(t) = b}.

Then (S(X))™* is a bounded local martingale, hence a true martingale, and so,
for all ¢

ES(X(7ap A1) = ES(X(0)) = S(x0)
and for ¢ — 0o, by dominated convergence

E S(X(Ta,b)) = 5(1‘0)7

where
S(b) on (1 < 7q)
S(X(Tap)) = S(a) on (74 < 7p)
tlir(r)lo S(X(t)) on (14 =+00)

exists by the martingale convergence theorem. It will be shown below that
P(7qp < 00) = 1, believing it for the moment we find

S(X(0)) =ES(X(7ap) =SO)P(mp < 7a) + S(a) P(ra < m),
Pty <7a) =1=Plra < 1) =

the first basic formula.
Notation. 1, = inf{t : X(t) = ¢} for c € ]I, r|[.

Note that since lim; o, S(X(t)) exists almost surely on (7,5 = +00) and
because S is strictly increasing and continuous, also lim; ., X (t) exists almost
surely on (7, = +00) (this is what we can say at the moment - remember that
we shall show shortly that P(7,, = +00) = 0).

With a < z¢ < b as before, let ¢ : [a,b] — R be continuous and let f denote
the unique solution to

Af(r) = —p(@), a<z<b fla)=F()=0.
Then, see (11.2),
df (X (1) + (X (1)) dt = S"(X(t))o(X (1)) dB(t)

M(f) = F(X (1)) + / #(X(s)) ds

is a continuous, local martingale, hence so is M (f)™*. But since

sup [Mr, ,as(f)l < sup [f(z)] +1t sup |p(x)] < oo,
s<t a<z<b a<x<b
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M (f)T=* is a true martingale, in particular

B /OW“ P(X(5))ds = f(zo) — B F(X (LA Tay)).
Since f is continuous, by the remark on the previous page,
Jm f(X(EATap)) = f(X(Tap))
exists almost surely, and by dominated convergence
Ef(X(7ap)) = im E f(X(EATap)).

Further, by monotone convergence if ¢ > 0 or ¢ <0,

lim E/O " (X (5)) ds = E/OT o(X(s)) ds

t—o0

so that for such ¢,

Taking ¢ = 1 on [a, b] this gives
E 7o = fo(zo) — E fo(X(7as)),

where fo solves Afy = —1, fo(a) = fo(b) = 0. Since the expression on the right
hand side is finite E7,; < oo follows. In particular P(7,;, < o0) = 1, and we
have shown the basic scale function formula on p. 114. Also, for general ¢, since
it is now clear that E f(X (74,)) = 0 because f(a) = f(b) =0,

E[”wﬂmm—ﬂm»

This is certainly true if ¢ > 0 or ¢ < 0. For general continuous ¢, write ¢ =
ot — 7. Below, in Theorem 11.2, we give an identity which is true for alle
bounded Borel functions ¢ : [a, b] — R.

Lemma 11.1. Let S be an arbitrary scale function with

si=con(- | 21

for some ¢ > 0, and define k : |l,r[— Ry by
2
o?(x)S'(z)

Then the unique solution f to Af = —¢ on [a,b], f(a) = f(b) =0, where ¢ is a
given continuous function, is

k(z) =

b
1@) = [ Goslon)owkly) dy, (11.3)
where Gqp is the Green function Gop(x,y) = Gap(y, ),

(S(z) = 5(a))(S(b) = S(y))

Gap(z,y) = S(b) — S(a) ’

a<x<y<b

115



11. ONE-DIMENSIONAL HOMOGENEOUS DIFFUSIONS

Proof. Since Gy p(a,y) = Gap(x b) =0, clearly f(a) = f(b) =0.Ifx < z € [a, b],

~ S(x) — z)
~ S(b) — S(a)

53‘
S)

~

f(z) = S(y (y) dy

(st
/Z b y)k(y) dy

/ (S(b) - 5(2))

\_/

Look at the last term in (11.4). We get that

(Sw) — 5(a)) (S(b) — 5(2)) — (S(x) — 5(a)) (S(b) ~ S(w)
< (5(2) ~ 5(@) (S() ~ S(2)) — (S(x) — S(a)) (S(b) ~ 5(2))
= (S() = 5(2)) (S(b) - S(2))

and, by similar reasoning

For the integral itself we therefore get that
/%«ﬂwfﬂwﬂﬂwfﬂ@%%ﬂ@fS@Mﬂwfﬂwﬁmww-
< (5(2) = 5()) (50) - 52)) [ #)

and

/%«ﬁwfﬂwﬂﬂwfﬂ@%%ﬂ@fS@Mﬂwfﬂwﬁmw@-
> ~(5(:) = 5() (8(0) = 5(@) [ Kw)a

It now follows, dividing in (11.4) by S(z) — S(x) and taking limits, that

fo 1
S =~ S5 /. (50— S@)eni) dy

and differentiating this after x gives

(£) @) =575 (5@~ S@)e@ia) + (50) - Sa)ela)i(z)
= —p(@)k(z).
It remains only to check that
AN 0_2
(L) =gt -toesyr =55 7+ Bp) =was. ©
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The measure m on ]I, r[ with density k, m(dz) = k(z) dz, is called the speed
measure for the diffusion X. Note that if the scale function S is replaced by
¢1 + 25 (where ¢; € R, ¢5 > 0), k is replaced by ék

We summarize the results obtained so far, writing P*°, E* instead of P, E to
emphasize the initial value X (0) = z, which is called z in the theorem.

Theorem 11.2. With X given by (11.1) a diffusion with values in |, r|[, where
b and o > 0 are continuous, and where X (0) = x € ]I, r[, it holds for a < x < b,
a,bell,r[, that P* (1, < o0) =1,
P (1 <Ta) =1-P(1a < 1) =
and for ¢ : [a,b] — R bounded and measurable, that
Ta,b b
B [ (X)) ds = [ Gunle )@k du
0 a
in particular
b
E® Ta,b = / Ga,b(x7 y)k(y) dy
In the formulas above, S, given by (apart from an additive constant),

wi-on( [ 28

is an arbitrary scale function and

2z
o?(x)S"(x)

in the corresponding speed measure density.

k(z) =

Example 11.3. If X is a BM(1)-process, X is a martingale, so S(z) = x is a
scale function which corresponds to k = 2, i.e the speed measure is two times
the Lebesgue measure. Further

T—a

b—a’

E*Top = (z —a)(b—x)

PP (1p < Ta) =

fora<xz<beR.
If X is a Brownian motion with drift &, diffusion coefficient o (X (t) = X (0)+
&t +oB(t))

So far we have assumed that
P* () (X(t) €lir]) =1,
t>0

i.e. that 7. = 7, = co P¥-almost surely. The next result will tell us what are the
properties of S and k that prevents X from reaching either of the boundaries
I and r. Throughout S is a given scale, k the matching density for the speed
measure.
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11. ONE-DIMENSIONAL HOMOGENEOUS DIFFUSIONS

Theorem 11.4. Define

S(r)=1lim S(y) < oo, S(I)=1im S(y) > —oo.
ylr yll

(i) FEither

(i) Fora <z <b,

S(r) = S(x)

. S
m, P(Tb<OO)—7.

P? (1, < 0) =
In particular P*(1y < 00) > 0 for all x,y € ]I,7], P*(14, < 00) =1 if and
only if S(r) = oo and P*(1, < 00) =1 if and only if S(I) = —c0
(i) If S(r) < oo, then lim;—,oo X (t) = r P-almost surely on A_, where

A=) (ra=0), and P””(A_):i)

a:a<x
and if S(I) > —oo, then lim;_,o X (t) =1 P"-almost surely on Ay, where

S(r) = S(z)

Ap=|J (m=00), and P"(A})= S0 =50)°

b:b>x

P’”(tIEEOX(t) r)=1, ifS(r)<oo, S(I) = —o0,

PP(lim X(t)=r)=1, ifS(r)=o0, S(l) > —oc.

t—o0o

(v) If S(r) < oo and S(I) > —oo then

P*(lim X(t) =7) =1 —P*(lim X(t) =1) = Sz) = 50)

t—o0

(vi) If S(r) = 0o and S(I) = —oo then X is recurrent in the sense that

Pr I NUEE = =1,

y€Jl,r[t>0s>t
i.e. X hits any level infinitely often in any interval [t, 00[, t > 0.
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Proof. Letl<a<axz<b<r.Forb]r,m 17 = oo (by the assumption that X
never hits r), so 1(7,<-,) — 1(r,—oc), hence

v S@) =S S@) - Sa)
=00l = 50) — 5(a) ~ 80 = S(@)

proving (ii).
If S(r) < 0o, S(X)™ is a bounded local martingale, hence a true martingale,
so the random variable

S(a) on (1, < 00)
S(X(7a)) = {limt—»oo S(X(t)) on (14 = 00)

is well defined P*-almost surely and satisfies
E* S(X(715)) = S(x).

On the other hand

S(a) = 7 S(X(m)) = S(0) g3 g + B (SX(7)Lr, )
implying that
S(z) - S(a)

E” (S(X(7a))L(ro=00)) = S(r) = S(r) P*(rq = 00).

S(r) = S(a)

Since S(X (74)) < S(r), it follows that S(X(r,)) = S(r) P*-almost surely on
(Ta = 00), L.e. limy_,oo X () = r P¥-almost surely on (7, = o0) and (iii) follows
since (7, =00) 1 A_ asa |l so

eia e oy S(@) = S(l)
P (A,)—léirllP (T = 00) = S =50)°

Now we can prove (i): if S(r) < oo, limpy, 74, = 7, P¥-almost surely and so
by monotone convergence

b
E*r, = lbi%n/ Gap(z,y)k(y) dy.

But since by (ii), P*(7, = c0) > 0, the left hand side equals co. The right hand
side equals

. b (S(z) = S(a))(S(b) — S(v))
b (/ S(b) — S(a) ky) dy

. /”” (5(y) = 5(a))(S(b) — S(x))k(y) dy)

S - 5@
S(r) — S(a)
S(r) - S(x)

TS50 =5

with the last term finite, hence the first integral equals +oo and (i) is proved.

[ (56) = sk ay

xT

/“ww>—sw»umdy
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11. ONE-DIMENSIONAL HOMOGENEOUS DIFFUSIONS

It remains to establish (vi). From (ii) we know that
P (1, < 00) =P¥(1p < 00) =1

for all a < x, b > x. Let a, | I, b, 1 r, then 7,, T o0, 7, 1 oo P*-almost
surely and between 7, and 7, X passes through all levels y € [a, b,] since it
is continuous. (vi) follows easily from this. O

Instead of starting with a solution to the SDE (11.1), assume given an open
interval ]I, 7[ and continuous functions b : JI,r[— R, o : ]I,r[— Ry =]0, 00| that
satisfy the condition from Theorem 11.4 (i):

S(r) = 400, or /T(S(r) — S(2))k(2)dz = 400, yellr]

S(l) = -0, or /ly(S(T) —S(2)k(z)dz = 400, ye]l,r|

where for some zg € ]I, 7|,
T " 2b(y) __ 2
s@=en (- 29 0= apsm

Theorem 11.5. Let |i,r[, b,o be as above, let B be a BM(1)-process on the
filtered space (Q, F, F;,P) and let U € Fy be a given random variable with values
in l,r[. Then the SDE

AX(t) = b(X () dt + o(X(t))dB(t), Xo=U,

has a unique solution, which is a diffusion.

If U = xq, the distribution 1170 of X, viewed as a random variable with values
in Cr, (]l,7]), the space of continuous paths w : Ry —]l,7[, does not depend on the
choice of (0, F,F:,P) and B (unigness in law), and with an arbitrary boundary
condition U € Fy, the distibution of X is the mizture jilﬂ”[ m*PU € dz).

This very important result we cannot prove/don’t have the time to prove. At
best we could give a proof when b, o are Lipschitz on any interval |\, p[ where
[l < A < p < r.Some of the ideas in a proof is contained in the following.

Example 11.6. Let B be a BM(d)-process where d > 2, let @ > 0 and define
d 1
2
X = 1B = (3 (B91)?)
Jj=1

where BU)(t) = BO(t) 4+ a for j =1, BU)(t) = BU)(¢) for j > 2.

X is a d-dimensional Bessel process (BES(d)) starting at a > 0. We shall
first study the properties of X using It6’s formula. However, z +— |[|z|| is C? only
on R?\ 0, so it is necessary to stop X before it hits 0; let 0 < r < a and define

7=inf{t: X(t) =r}.
Then X7 = |B|, and by It6’s formula, using that

(51']' ximj

Dijllxll= % =
|| H N el fl]®

Di|zf|=
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we get

1 . s 1d
AX7(1) = 57y D (BY0) d(BY0) + 5+

in particular

d ~
[(XT](t —( 22 (BY)" ((J))T]>(t):7—/\t.

1

Next, let fq: Ro — R solve —fd( )= (/1/(36) ie.
log if d=2
falz) = { L@ >3,
Then
1 d ,
Afa(X7) = fo(X7)dXT + S f{(XT) d[X7] T 5" (BY) d(BY),
j=1

ie. f4(X7) is a continuous local martingale. It follows that for any n € N, N € N,
fa(X™ M) is a true martingale (being a bounded local martingale), where

Tn’N:inf{t:X(t): 1 or X(t) :N}7

n

assuming that % < a < N. Clearly P(7,,y < 00) =1 (because 7,y < inf{t :
|Bt(2)\ = N} < oo almost surely) so

Fa(X7 % (00)) = fulX(rw)) = fa(5) o fu(N). (115)

Using optional sampling on the uniformly integrabel (since bounded) martingale
Fa(XTmN) we get

E(fd(X(Tn,N)) | anfl,N) = fd(X(Tnfl,N)%

ie. for N > afixed, (f4(X(7n,n)))n is a discrete time martingale, bounded above
by the constant f;(N). Hence

Jim. fa(X(Tn,N)) = Zn
exists almost surely as a finite limit, but since (11.5) holds and f4(+) — —oo,
necessarily X (7, n) = N for n sufficiently large i.e. X hits any given high level
N before it hits levels sufficiently close to 0. It follows that with probability 1, X
will never hit 0. But then we may use It6’s formula directly and deduce that

d
1d-— 1 1

- (J)
dX(t) = 5 X( X(t ;:1 dB (t).
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11. ONE-DIMENSIONAL HOMOGENEOUS DIFFUSIONS

The last term corresponds to a continuous local martingale with Yy = 0 and

d 50 1) 2
B t (B(J)(s)) .
¥ =3 | St

hence by Lévys characterisation of Brownian motion (Eksempel 8.5) Y is a
BM(1)-process B*, and X solves

dX(t) = ;C)l(_(t)l dt +dB*(t), X(0) =a.

We have now shown that BES(d) is a diffusion with values in ]0, co[, with scale

function fy and speed measure density

2
fa(x)

By Theorem 11.4, X is recurrent for d = 2 (in particular it gets arbitrarily close
to 0 without ever hitting), while for d > 3,

ka(x) =2z~ (4=,

P (lim X(t) =o0) =1,

t—oo
r\ d—2
P(TT<OO):(5> , r<a.
Note that if you are good at integration, you should be able to prove that for
d = 2 the local martingale f4(X) = log X is not a true martingale, simply by
shoving that

oo
1 X
ElogX(l):loga—i—/ fe_%Tzdr>loga. o
r
a

Let now again X be a diffusion on ]I, |,
dX(t) =b(X(t))dt+o(X(t))dB(t), X(0)=U € Fy

with scale function S, speed measure density k, satisfying the critical condition
from Theorem 11.4, repeated on p. 120. As usual b, o are continuous with o > 0.
The problem we shall now study is that of investigating whether there exists
a probability p on ]I, r[, such that if U has distribution u, X is stationary for
all ¢, X(¢) has distribution p. p is also called an invariant probability for U. If
it exists, p is uniquely determined and typically, for all z, p:(z,-) Zou (weak
convergence) as t — 0o (pi(z,-) is the transition probability from x).

Theorem 11.7. X has an invariant probability u if and only if
KE/ k(x)dz < oo,
l
and in that case

wu(dz) = () dz.

1
—k
K
In particular, in order for the invariant probability to exist, it is necessary that
X be recurrent, S(r) = 00, S(l) = —o0.
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Proof (partial). Suppose first that the invariant probability measure u exists.
Let K denote the class of f € C?(]l,r[) such that for some I’ < 7’ it holds that f
is constant on ]I, !’[ and constant on |/, r[ (the constant values may be different).
Then, since

ﬂﬂm:ﬂmm+AAﬂmw®+Aﬂ@@ﬁ@@ﬂﬂ$ (11.6)

and since f is bounded, Af, f’ have compact support so that also Af, f’ are
bounded, taking expectations and using X (t) Zx (0), we obtain

n(Af) =0, fek.

Thus
/lr (bf’ + %azf”)u(d) —0, fek.

Assuming now that u(dz) = u(x) dz, this gives (use partial integration and that

/' has compact support)
" 1
/l (bu—i(au)>fdx—0

But as f’ we can obtain any g € C! with compact support (since f;’;} g(y) dy is
constant close to | and r respectively since g vanishes close to [ and r), and the
class of such g is dense in L? (Lebesgue (I,7)). Deduce that bu — 3 (c?u)’ = 0 on
(I,7) and the desired expression for the invariant density follows.

We still need that the ex1stence of p implies fl z)dz < oo and uniqueness
of p. We claim that If fl z)dr < oo, then u = 1 7ok is the density for the
invariant measure, but the proof of this requires Markov process theory. We now
know that u(Af) =0 for f € K where p(dx) = u(z) de. We also have

Hﬂ@:ﬂ@+APAMM@®

from (11.6). Also u(P; f) = p(f) + fo Ps(Af)ds). One must now argue that
Ps f € 2(A) (standard definiton of the domaln f € C? bounded, Af bounded),
that Ps(Af) = A(Ps f) and finally that ,u(A(PS f)) =0 (or pu(A(g)) = 0 for all
g € 2(A)). Then

MHﬁ=Mﬂ+AuM@J”®=Mﬂ

It remains to verify that if [, k(z) dz < oo, then S(r) = oo, S(I) = —oo. But
for an arbitrary = € ]I, 7]

o= [ (56~ Sk ay < [ k) () - 5()
so [ k(y)dy < oo forces S(r) = oc. O
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11. ONE-DIMENSIONAL HOMOGENEOUS DIFFUSIONS

Example 11.8. The Coz-Ingersoll-Ross process solves the SDE

dX(t) = (a+bX(t))dt + o/ X (t)dB(t)
with parameters a,b € R, ¢ > 0. One is interested in a solution which is strictly
positive and finite i.e. ]I,7[ = ]0, col.

We use Theorem 11.4 to decide for what values of a, b, o > 0 a strictly positive
and finite solution exists. By computation

S'(x) —exp(—/lwwdy) :af%exp<—j—g(x—l)),

o2y

and

It follows that
S(0)=-00 +—= = >1,
2a
S(0) =00 &= b<O0orb=0, - <1
o
In the case where S(c0) < co we next compute

r= [ (500 - S

for large x.

(i) Ifb=0, 24 > 1,

) 00 e 20,
I=K z o2 dzyo? " dy = +o0.
z Jy

(ii) It b > 0,
[ _2a _2, 201 2b
I=K 2z o2e o2%dzye? Te.2Ydy.
z Jy

Rewrite the inner integral as

2 o0 zZ 727% 2b
y_ﬁ/ (*) e o7 dz
y Y

stays bounded when y < z < y+ ¢ for arbitrary ¢ > 0,

and use that (5)7%
to deduce that

= [0 _2¢ _2p, 20 4 2,
I~K y oZe 29y eo2Y dy = +o0.
T

Thus the conditions on S, k p. 120 are always satisfied for r = oo.

124



Finally we evaluate J = ;' (S(y) — 5(0))k(y) dy for small z > 0 when S(0) >

2b
—o00, i.e. when % < 1. But since e*5%7 is close to 1 for small z,

* v _ 2a 2a _q
JNK/ / z 2 dzy-2" " dy < oo.
o Jo

so when % < 1, the conditions on S, k p. 120 are not satisfied for [ = 0.
The conclusion is that the Cox-Ingersoll-Ross SDE has a strictly positive and
finite solution if and only if

The solution is recurrent (S(c0) = 00, S(0) = —o0) if and only if either 2% > 1,
b<Oor 2% =1,b=0.

In the recurrent case, the process has an invariant probability if and only if
i—‘; > 1, b < 0. The invariant probability is then a I'-distribution. o

We conclude this chapter with a discussion of the expected time for a diffusion
to hit a given level.

Proposition 11.9. Let X solve
dX = b(X)dt +o(X)dB
on |l,r[, with scale S, speed density k. Then if | < a < z,
(i) if S(r) < oo then P¥(1, = 00) > 0 and E* 7, = o0,
(ii) if S(r) = oo then P*(1, < 00) =1 and E* 7, < oo if and only if

/k: )dy < 0.

(iii) #f S(r) = 00 and S(I) = —oo,we have E* 7, < 00, E* 1, < 00 for all a €
1L, z[, allb € |x,r[ if and only if X has an invariant measure; f; k(y)dy <
00.

Proof. (i): Follows from Theorem 11.4 (ii).
(ii): If S(r) = o0, we also know that P*(7, < 0o) =1 from Theorem 11.4 (ii).
And by monotone convergence, as b | r,

E* 71, = ImE* 7,
blr ’

[P (5() - S@)(S) - 5(1))
=y S -5 W W
* (S(y) — S(@)(S(b) - S(x))
- S-S d)
— (8(@) = S(@)) [ k)dy+ [ (St) - S(a)ky) dy

and (ii) follows.
(iii): Is a direct consequense of (ii) (applying also the version of (ii) with

S(l) = —00). O
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