.Parameter eStimatipn fOI‘ The concentration of a drug in blood
discretely observed diffusions

Susanne Ditlevsen o .
Department of Mathematical Sciences . :
University of Copenhagen, Denmark £
Email: susanne@math.ku.dk § €1 o .
Summer school 4-12 August 2008, Middelfart, Denmark 0 20 40 60 80 100 120
time in minutes
1
Exponential decay Exponential decay with noise
dC'(t
. Ti ) _ e - dC(t) = —pC(H)dt + oC (1AW (¢)
1. C(t) = C(0)e M 81 W C(t) = C(0)exp (—(u + s)t + oW (1))
s N s M
E 8 | Sk E 8 - ¥ ‘\.‘*
é g: pw,\‘ I\ ‘Vu’v“‘m‘
S o * S o ' W
g = * * g 5 S
N * * * 07 Tk ‘”W
6 2‘0 4‘0 6‘0 8‘0 160 léO 6 2‘0 4‘0 éO 8‘0 160 léO
time in minutes time in minutes



Different realizations
Estimation for discretely observed diffusions

dC(t) = —pC(t)dt + oC(t)dW (¢)

* dXy = b(Xy;0)dt + o(Xy;0)dW, 6 © CRP
8 = C(0) exp (— (1 + 502)t + oW (1))
5 X, band W d-dimensional, o d X d-matrix
g S State space: D C IR?
{1 ‘ ‘ Ford=1, D=({r), —co</l{<r<oo
0 20 40 60 80 100 120
time in minutes Data: Xto’ . ’th’ tz _ Ai
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. . . IF the observations were iid (independent and identically distributed)
The likelihood function - which they are NOT - then we could write the likelihood-function:
dX: = b(Xy; 0)dt X5 0)dW, feO CIRP
t ( ts ) +O'( i) ) t S - Ln(e) _ pl(th;H)x---xpn(th;G)
Data: X, -+, Xy, t1<--- <ty = p1(Xey30) x - x p1(Xy,50)
Likelihood-function:
L,0) =p(Xe, -, Xt,;0) If e.g. the process is stationary, this is an approximation to the true

likelihood, ignoring dependence between observations.



Example: the Ornstein-Uhlenbeck process

where 8 > 0, € R,0 > 0 and X = xp.

Solution:
t
X: = a+(xg— cy)e*ﬂ25 + a/ e PU=s)qw,
0

Note that this is a sum of deterministic terms and an integral of a
deterministic function with respect to a Wiener process with

normally distributed increments. The distribution is thus normal.

Parameter interpretation in the OU-process
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o : the asymptotic mean
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The conditional expectation is

t
E[Xt‘XO = Io] = F |:Oé + (1‘0 — Ol)e_ﬁt + O'/ E_ﬁ(t_s)dws]
0
= a4 (xg—a)e P

The conditional variance is

Var[X;|Xo =x9] = FE {(a/te_ﬁ(t_s)dws)ﬂ
0
Use Ito’s isometry to obtain
Var[X;|Xo = z¢] = 02E [ e~ 2B(t=5) s ] — e‘wt)
Thus (X¢|Xo = z0) ~ N(a + (20 — @) % ( e=201Y).
Asymptotically X; ~ N(a, 2,8) (or always if Xy ~ N(« "—;))
9

Back to maximum likelihood estimation

Consider the OU-process (for simplicity with only one parameter):
dX, = —-60X,dt+dW,

If X ~ N(0, 55) then X; ~ N(0, 55) for all ¢.

Assuming (wrongly) independence between observations, we write
the likelihood

Ln(e) = pl(Xh;e) Xpl(Xt 0)

n?

- el ) e )
<i> exp 92){2}
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Maximizing the likelihood yields the maximum likelihood estimator.
It is easier to maximize the log-likelihood (it has the same maximum):

_ _n o
log Ln(0) = In(0) = = log(6/m) - eg X?
We differentiate to find the maximum:
dl.(0) s
10 = Doln(0) = 20 ;Xti

This is called the score function. An estimator 6 is found by equating
the score function to 0:
5 n
23, X¢

Note that if § <  then dyl,, () > 0 and if 6 > § then l,,(0) < 0.
Thus, § is a (unique) maximum.
12

Log-likelihood function: dgl,,(0) = 55 — >_1 | X2 . For this data set is
6 = 0.984972.

log-likelihood
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Assume observations from this process (simulated with 6 = 1):
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The score function is an example of an estimating function:
Gn(0; Xy, ,Xs,) + ©xD—IRP

which is a p-dimensional function of the parameter 6 and the data.
Usually we simply write G,,(#). An estimator is obtained by solving
the equation:

Ga(0) = 0

In the previous example:

Gn(e) =

15



The likelihood function

Data: th,"',th7 t]<<tn

Remember that we WRONGLY assumed independence. We have the
(“correct”) likelihood-function:

Ln(g) = p(Xtm Xt17 e ath; 0)
which by Bayes’ theorem can be expressed as

Lﬂ(a) :p(th|XtoaXt17"' 7th—1;9) Xp(XtuaXtu"' 7Xt 9)

n—17
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Transition densities:

Data: Xy, Xy, oo, Xe,, O0=tog<t1 <--- <ty

Likelihood-function:

n

Ln(e) = Hp(Ai,Xti,“XtﬁHL

i=1
where A,L = ti — ti—l

y — p(A, x,y;0) is the transition density, i.e. probability density
function of the conditional distribution of X;y given that X; = x.
Also conditional density of X;is4a given Xiis = .

18

Continuing this way we obtain

Ln(e) = p(th‘XtO7th7”' ’th—l;e) X
p(th71 |Xt07 Xt17 T ’thf2;9) Kowes
wo X (X, [ Xy 5 6) X p(Xy30)

A very nice feature of our observations which they inherit from the

diffusion process: they are a Markov process. Thus
P(Xe, | Xeo Xy oo Xy 130) = p(Xe, [ Xe,,50)
and therefore

Ln (9) = p(th

Xt 13 0) p(Xe, o[ X, 03 0) - p(Xey [ Xiy50) p(Xiy50)

n—13

17

dXt = b(Xt)dt + O'(Xt)th.
y = p(t z,y)

Conditional density of X; given Xy = x;

Data: Xy -+, Xy, 11 < <tn.

n?

Likelihood function:

n

L(e) = Hp(ti - tifletianti;a)

i=1

19



e Cox-Ingersoll-Ross
dXt = *9<Xt - Oé)dt + oy Xtth
0>0a>00>0.

Bly/z)2” exp(10vt — By)
['(Ba)(1 — exp(—6t))

p(t,z,y)

o[ Dati]y (D

where 3 = 20072 and v = Ba — 1.
I, is a modified Bessel function with index v.

The transition density is a non-central y2-distribution.

20

The score function

Un(60) = dglog Ln(0) = dglogp(Ai, Xy, _,, X3 6)

i=1

001 (0) = (54(9»...7%9))

Under weak regularity conditions, the score function is a
Py-martingale with respect to {F,},
fn:O'(th,...,th), TL:1,27....

22
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E@ (aa Ing(A’M Xt,',71 ) Xti; 9)’ fi*l)

80p(Ai7 Xti—l ) Xti; 9)
p(A, X,y X50) |70

i—17

apAlﬁX@‘fU 70
/Ea( e )p(Ai,Xt,;ny;@)dy

p(Aia Xt,ﬁ1 » Us 0)

/ Oop(Ai, X4,y y;0)dy
E

89/ p(As, X, _,,y;0)dy =0
E

=1
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Local dominated integrability

Lemma. Consider a real function f(x;0),(z,0) € D x ©, where
O C IR. Suppose %f(ac; ) is locally dominated integrable w.r.t. a

measure 1 on D. Then

%/Df(ﬂﬁe)ﬂ(dx):/D%f(x;g)u(dx).

A real function h(x;0) (z € D C RY) is called locally dominated
integrable w.r.t. the measure p on D if, for each 6y € O, there exists
a neighbourhood Uy, of 6y and a non-negative p-integrable function
9o, (x) such that

[ W(x:0) | < ga, (z)
for all (x,0) € D x Uy,.

24

p(A, z,y;0) is Gaussian with
E@(XiA |X(i71)A = $) = $69A

and

e
Varg(XiA | X(i—l)A) = 70’2

Find an estimator for # by minimizing

n

K, (0) = Z(Xm —e"2X(;_1)a)?

i=1

Least squares estimation or minimum contrast estimation.

26

Example
dX; = 0X,dt + odW,, Xo=x0, 0 € R.

Ornstein-Uhlenbeck process.

Data: Xa, Xoa, ..., X, for some A > 0.

t
X, = X et%) 4 o/ea(t*“)dVVu

for0<s<t.
25

Solve LK, (#) =0 or G,,(#) = 0, where

G, (0) = ZX(i—l)A(XiA — "X (1))
i=1

-1
0, = — log

Yo Xi—naXia
A )

Y1 XG A
provided that Y% | X(;_1)aX;a > 0.

Gn(0) is a martingale estimating function:

Bo(Xi-1a(Xia — "2 X(i1)a) | Fic1)
= Xi-na{Bo(XalXi-1a) —€"*Xi_1at =0
—_———

=ef2X(i_1na

27



Approximate likelihood inference

Approximate transition density
1 _ . 2
o |5 8:0)
V2m®(A, z;0) 20(A, z;0)

F(z;0) = Eg(Xa|Xo=2) and ®(z;60) = Varg(Xa|Xo = 2x)

p(A,z,y;0) = q(A,z,y;0) =

Approximate likelihood function

28

Approximate score function

- {agF A, Xt 150)

89 log f/n(e Z [th - F(AiﬂXti—l;H)]

i—1 A’I7Xf1 176)
o2 (A i Xt ) .02 .
2<I>(A17Xti,l,9) [(Xt (A“Xti—l76)) - @(A“Xti—179)j|

Quadratic martingale estimating function

Gn(0) = i {ar(Xi,_,, 8i;0)(Xe, — F(Ai, Xy, ,30)

i=1
+ a’Q(Xti—l ) Ai; 9) [(th - F(Al’ th—l ) 9))2 - (I)(Aiv Xti—l ] 9)]}

Bibby and Sgrensen (1995,1996)
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Approximate likelihood inference

Approximate log-likelihood function
IOg in(e) = Zlog Q(AiaXtiflaXtr,:;g)
i=1

n 2
Z [; log(27) — %log@ - (yzq)F)]

i=1

Approximate score function:

29

Martingale estimating functions

Gn(a) = Zg(AivXtﬂXti,l;e)

i=1

N
gDy, m0) = > ai(, As0)[f;(y) — 75 fi(w)]

j=1
T T
p-dimensional real valued
Transition operator: 75 f(z) = Eo(f(Xa)| Xo = z)
31



Gn(0) is a Py-martingale:

Ee(aj(Xti—17Ai; Q)UJ(th) - WaAifj(Xtifl)] |Xi17 T 7Xti—1)

a’j(Xti—l ) Ai; G)EG([fj(th) - ﬂ—GAifj(Xtifl )] | th T ’th—l) =0
G—estimator(s): Gn(0,) =0
32
Simulation

75 f(z) = Eg(f(Xa)|Xo =) is usually not explicitly known

Fix 6

Simulate numerically M independent trajectories of {X; : ¢t € [0, A]}
with Xg ==

1 U :
T (@) ~ 57 > FXL)
i=1

34

Martingale estimating functions

GTL(G) = Z g(Ala Xti? Xti,—l ; 9)3

i=1

N
9(A,y,2:0) = a(x, A;0)[f(y) — 75 f()]

j=1
e Easy asymptotics

e Simple expression for optimal estimating function

e The score function is a Py-martingale

33

Taylor expansions

Review of deterministic expansions:

Consider
d

pri a(zy)

with initial value x, for t € [tg, T], and a(+) is sufficiently smooth.

We can write

T
Ty = xt0+/ a(zs)ds

to



Let f: IR — IR be a continuously differentiable function. By the
chain rule

d d
%f(xt) = dtlﬂtf(l’t) = a(x) f'(x2)
Define the operator
Lf = af

where ’ denotes differentiation with respect to x. Express the above
equation for f(x) in integral form

fa) = fla)+ / Lf(a,)ds

to

Note that if f(z) = « then Lf = a, L?>f = La and

t
Ty = xto-i-/ a(zs)ds

to

36

Apply again to the function f = La to obtain

t
xy = myy, +alxy) | ds +/ La(x,)dzds
to to Jto

Tty + a(T,) ) ds + La(zy,) / / dzds + Ry
0

= @y talzy)(t —to) + La(wto)ﬁ(t —t0)> + Ry

where

t 5 z
/ / / L?a(zy)dudz ds
to Jto Jto

38

If f(x) = a(x) then La = ad’ and

alzs) = a(wto)—i—/s La(x,)dz

to

Apply this to the equation for x;

2 = ay + /t <a(mt0) /SLa(xz)dz) ds

Ty + a(Te,) / ds +/ La(x,)dzds
to to Jto
Ty + (e, )(t —to) + Ra

which is the simplest non-trivial expansion for z;.

37

For a general r + 1 times continuously differentiable function f we

obtain the classical Taylor formula in integral form

r _ l t Sy
flxe) = flrg,)+ Z (¢ Z'to) Llf($t0) + / / L™ f(xg,)dsy ... ds,yyq
=1 ’ to to

39



The Ito-Taylor expansion

Iterated application of Ito’s formula!

Consider

t t
X, = Xt0+/ b(Xs)der/ o(X,)dW s

to to

We introduce the operators
1
LOf‘ — bf/ + 5O_Qf'll
Llf _ O'f/

40

Like in the deterministic expansions, we apply Ito’s formula to the

functions f = b and f = o and obtain

Xy

t s s
Xt [ (o) + [ 20+ [ Ewxaws ) ds
to

to to

t s s
+ / <U(Xt0)+ / L°0(X,)dz + / Lla’(Xz)sz> dW's
to to to
t

t
= X +b(Xy,) | ds+0o(Xy,) / dWs+ R

to to

= Xy + (X))t —to) + 0(Xeo ) (Wi = Wiy ) + R

This is the simplest non-trivial Ito-Taylor expansion of X; involving
single integrals with respect to both time and the Wiener process.

The remainder contains multiple integrals with respect to both.
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For f twice continuously differentiable, Ito’s formula yields

P = 50+ [ (B + 5o ) ds

to

—|—/t a(Xs)f'(Xs)dWs

= f(Xto)—i—/ Lof(Xs)der/ L'f(X)dW s

to to

Note that for f(x) = 2 we have L°f = b and L' f = o, and the
original equation for X, is obtained

t t
X, = Xt0+/ b(Xs)ds+/ o(X,)dW s

to to

41

In the previous expansion we had

t s t s
R = //L%(Xz)dde/ / L'(X,)dW., ds
to Jto to Jto

t s t s
+/ / Loa(Xz)ddes+/ / L'o(X.)dW, dW,
to Jto to Jto

Note that dz ds,dW, ds and dz dW, “scales like 0”, whereas dW, dW
scales like dt, comparable to the terms in the simplest expansion with
two single integrals.

We therefore continue the expansion by applying the Ito formula to
f=Lo.

43



The next Ito-Taylor expansion becomes

t s
Xi = Xy + b(Xto)/ ds + o(Xy,) s +Lo(Xy,) / / dW. dWs + R Numeric solutions
to to to
= Xy +b(X4, )AL+ 0( X)) AW, + 0( Xy, )0 (Xt<))§(AWt2 —At)+ R When no explicit solution is available we can approximate different

characteristics of the process by simulation. (Realizations, moments,

with remainder qualitative behavior etc). We use the approximations from the

// LOb(X )dzds+/ / LB(X.)dW. ds Ito-Taylor expansions.
/ / L0 (X.)dz dW, + / / / LOL'o(X,)dudW, dW, e Different schemes (Euler, Milstein, higher order schemes...)
to Jto to Jto Jto
e Rate of convergence (Weak and strong)
/ / / L'L'o(X,)dW, dW. dW,
to Jto Jto
44 45

Consider the Ito stochastic differential equation The EUIer-Maruyama scheme

dX; = b(X,)dt+o(Xy)dW, We approximate the process X; given by

and a time discretization

O=to<ty<---<t;<--<ty=T Xy = b(Xy)dt+o(X)dW: 5 X(0) = o
Put
at the discrete time-points ¢;,1 < j < N by
Aj = Ly —t
AW; = Wy, — W,
Vi = Y +b(Y,)A; +0(Yy,))AW; 5 Yy, =m0
Then

AW; ~ N(0,4;)
where AW; = \/A; - Z;, with Z; ~ N(0, 1) for all j.
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The Euler-Maruyama scheme

Let us consider the expectation of the absolute error at the final time
instant 7'

There exist constants K > 0 and dp > 0 such that
E(|Xr = Yiy|) < K&

for any time discretization with maximum step size 6 € (0, dp).

We say that the approximating process Y converges in the strong

sense with order 0.5.

(Compare with the Euler scheme for an ODE which has order 1).

48

The Milstein scheme

We can even do better!

We approximate X; by

Yi Vi, + b<Ytj)Aj + U(Ytj)AWj

J+1

—l—%a(Ytj)a/(Kj){(AWj)z —Aj} (now Milstein...)

where the prime ' denotes the derivative.

50

The Euler-Maruyama scheme

Sometimes we do not need a close pathwise approximation, but only
some function of the value at a given final time 7" (e.g. E(X7),
E(X2) or generally E(g(X71))):

There exist constants K > 0 and §p > 0 such that for any polynomial
g

[E(9(XT) = E(g(Yiy))| < K9

for any time discretization with maximum step size 6 € (0, dp).

We say that the approximating process Y converges in the weak sense

with order 1.

49

The Milstein scheme

The Milstein scheme converges in the strong sense with order 1:

E(Xr —Y,l) < Kb

We could regard the Milstein scheme as the proper generalization of
the deterministic Euler-scheme.

If b(X;) does not depend on X, the Euler-Maruyama and the
Milstein scheme coincide.
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Multi-dimensional diffusions:
Euler scheme: Similar.

Milstein scheme: Involves multiple Wiener integrals.

(n+1)8 s
/ / dw D aw 2
nd nd

Simulation schemes are based on stochastic Ito-Taylor expansions

that are formally obtained by iterated use of Ito’s formula.

Kloeden and Platen (1992)
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