Parameter estimation for discretely observed diffusions

Susanne Ditlevsen
Department of Mathematical Sciences
University of Copenhagen, Denmark
Email: susanne@math.ku.dk

Summer school 4–12 August 2008, Middelfart, Denmark

Exponential decay

The concentration of a drug in blood

1

Exponential decay with noise

2

Different realizations

4

The likelihood function

$$dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t \qquad \theta \in \Theta \subseteq \mathbb{R}^p$$

Data: $X_{t_1}, \dots, X_{t_n}, \quad t_1 < \dots < t_n$

Likelihood-function:

$$L_n(\theta) = p(X_{t_1}, \cdots, X_{t_n}; \theta)$$

Estimation for discretely observed diffusions

$$dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t \qquad \theta \in \Theta \subseteq \mathbb{R}^p$$

X, b and W d-dimensional, σ $d \times d$ -matrix

State space: $D \subseteq \mathbb{R}^d$

For
$$d = 1$$
, $D = (\ell, r)$, $-\infty \le \ell < r \le \infty$

Data: $X_{t_0}, \dots, X_{t_n}, t_i = \Delta i$

5

IF the observations were iid (independent and identically distributed)
- which they are NOT - then we could write the likelihood-function:

$$L_n(\theta) = p_1(X_{t_1}; \theta) \times \dots \times p_n(X_{t_n}; \theta)$$
$$= p_1(X_{t_1}; \theta) \times \dots \times p_1(X_{t_n}; \theta)$$

If e.g. the process is stationary, this is an approximation to the true likelihood, ignoring dependence between observations.

6

Example: the Ornstein-Uhlenbeck process

$$dX_t = -\beta(X_t - \alpha)dt + \sigma dW_t$$

where $\beta > 0, \alpha \in \mathbb{R}, \sigma > 0$ and $X_0 = x_0$.

Solution:

$$X_t = \alpha + (x_0 - \alpha)e^{-\beta t} + \sigma \int_0^t e^{-\beta(t-s)}dW_s$$

Note that this is a sum of deterministic terms and an integral of a deterministic function with respect to a Wiener process with normally distributed increments. The distribution is thus normal.

8

Parameter interpretation in the OU-process

 β : how "strongly" the system reacts to perturbations (the "decay-rate" or "growth-rate")

 σ^2 : the variation or the size of the noise.

 α : the asymptotic mean

The conditional expectation is

$$E[X_t|X_0 = x_0] = E\left[\alpha + (x_0 - \alpha)e^{-\beta t} + \sigma \int_0^t e^{-\beta(t-s)}dW_s\right]$$
$$= \alpha + (x_0 - \alpha)e^{-\beta t}$$

The conditional variance is

$$\operatorname{Var}[X_t|X_0 = x_0] = E\left[\left(\sigma \int_0^t e^{-\beta(t-s)} dW_s\right)^2 \right]$$

Use Ito's isometry to obtain

$$\operatorname{Var}[X_t | X_0 = x_0] = \sigma^2 E\left[\int_0^t e^{-2\beta(t-s)} ds \right] = \frac{\sigma^2}{2\beta} \left(1 - e^{-2\beta t} \right)$$

Thus $(X_t|X_0 = x_0) \sim N(\alpha + (x_0 - \alpha)e^{-\beta t}, \frac{\sigma^2}{2\beta}(1 - e^{-2\beta t}))$. Asymptotically $X_t \sim N(\alpha, \frac{\sigma^2}{2\beta})$ (or always if $X_0 \sim N(\alpha, \frac{\sigma^2}{2\beta})$).

9

Back to maximum likelihood estimation

Consider the OU-process (for simplicity with only one parameter):

$$dX_t = -\theta X_t dt + dW_t$$

If $X_0 \sim N(0, \frac{1}{2\theta})$ then $X_t \sim N(0, \frac{1}{2\theta})$ for all t.

Assuming (wrongly) independence between observations, we write the likelihood

$$L_n(\theta) = p_1(X_{t_1}; \theta) \times \dots \times p_1(X_{t_n}; \theta)$$

$$= \frac{1}{\sqrt{2\pi/2\theta}} \exp\left\{-\frac{X_{t_1}^2}{2/2\theta}\right\} \times \dots \times \frac{1}{\sqrt{2\pi/2\theta}} \exp\left\{-\frac{X_{t_n}^2}{2/2\theta}\right\}$$

$$= \left(\frac{\theta}{\pi}\right)^{\frac{n}{2}} \exp\left\{-\theta \sum_{i=1}^n X_{t_i}^2\right\}$$

Maximizing the likelihood yields the maximum likelihood estimator. It is easier to maximize the log-likelihood (it has the same maximum):

$$\log L_n(\theta) = l_n(\theta) = \frac{n}{2} \log(\theta/\pi) - \theta \sum_{i=1}^n X_{t_i}^2$$

We differentiate to find the maximum:

$$\frac{\mathrm{d} \, l_n(\theta)}{\mathrm{d} \, \theta} = \partial_{\theta} l_n(\theta) = \frac{n}{2\theta} - \sum_{i=1}^n X_{t_i}^2$$

This is called the *score function*. An estimator $\hat{\theta}$ is found by equating the score function to 0:

$$\hat{\theta} = \frac{n}{2\sum_{i=1}^{n} X_{t_i}^2}$$

Note that if $\theta < \hat{\theta}$ then $\partial_{\theta}l_n(\theta) > 0$ and if $\theta > \hat{\theta}$ then $\partial_{\theta}l_n(\theta) < 0$. Thus, $\hat{\theta}$ is a (unique) maximum.

12

Log-likelihood function: $\partial_{\theta} l_n(\theta) = \frac{n}{2\theta} - \sum_{i=1}^n X_{t_i}^2$. For this data set is $\hat{\theta} = 0.984972$.

Assume observations from this process (simulated with $\theta = 1$):

13

The score function is an example of an *estimating function*:

$$G_n(\theta; X_{t_1}, \cdots, X_{t_n}) : \Theta \times D \mapsto \mathbb{R}^p$$

which is a p-dimensional function of the parameter θ and the data. Usually we simply write $G_n(\theta)$. An estimator is obtained by solving the equation:

$$G_n(\theta) = 0$$

In the previous example:

$$G_n(\theta) = \frac{n}{2\theta} - \sum_{i=1}^n X_{t_i}^2$$

The likelihood function

$$dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t \qquad \theta \in \Theta \subseteq \mathbb{R}^p$$

Data: $X_{t_1}, \dots, X_{t_n}, t_1 < \dots < t_n$

Remember that we WRONGLY assumed independence. We have the ("correct") likelihood-function:

$$L_n(\theta) = p(X_{t_0}, X_{t_1}, \cdots, X_{t_n}; \theta)$$

which by Bayes' theorem can be expressed as

$$L_n(\theta) = p(X_{t_n}|X_{t_0}, X_{t_1}, \cdots, X_{t_{n-1}}; \theta) \times p(X_{t_0}, X_{t_1}, \cdots, X_{t_{n-1}}; \theta)$$

16

Transition densities:

 $dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t \qquad \theta \in \Theta \subseteq \mathbb{R}^p$

Data: $X_{t_0}, X_{t_1}, \dots, X_{t_n}, \quad 0 = t_0 < t_1 < \dots < t_n$

Likelihood-function:

$$L_n(\theta) = \prod_{i=1}^n p(\Delta_i, X_{t_{i-1}}, X_{t_i}; \theta),$$

where $\Delta_i = t_i - t_{i-1}$

 $y \mapsto p(\Delta, x, y; \theta)$ is the transition density, i.e. probability density function of the conditional distribution of $X_{t+\Delta}$ given that $X_t = x$. Also conditional density of $X_{t+s+\Delta}$ given $X_{t+s} = x$. Continuing this way we obtain

$$L_{n}(\theta) = p(X_{t_{n}}|X_{t_{0}}, X_{t_{1}}, \cdots, X_{t_{n-1}}; \theta) \times p(X_{t_{n-1}}|X_{t_{0}}, X_{t_{1}}, \cdots, X_{t_{n-2}}; \theta) \times \cdots \cdots \times p(X_{t_{n}}|X_{t_{1}}; \theta) \times p(X_{t_{n}}; \theta)$$

A very nice feature of our observations which they inherit from the diffusion process: they are a Markov process. Thus

$$p(X_{t_n}|X_{t_0}, X_{t_1}, \cdots, X_{t_{n-1}}; \theta) = p(X_{t_n}|X_{t_{n-1}}; \theta)$$

and therefore

$$L_n(\theta) = p(X_{t_n}|X_{t_{n-1}};\theta) p(X_{t_{n-1}}|X_{t_{n-2}};\theta) \cdots p(X_{t_n}|X_{t_1};\theta) p(X_{t_0};\theta)$$

17

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t.$$
$$y \mapsto p(t, x, y)$$

Conditional density of X_t given $X_0 = x$;

Data: $X_{t_1}, \dots, X_{t_n}, t_1 < \dots < t_n$.

Likelihood function:

$$L(\theta) = \prod_{i=1}^{n} p(t_i - t_{i-1}, X_{t_{i-1}}, X_{t_i}; \theta)$$

• Cox-Ingersoll-Ross

$$dX_t = -\theta(X_t - \alpha)dt + \sigma\sqrt{X_t}dW_t$$

 $\theta > 0$, $\alpha > 0$, $\sigma > 0$.

$$p(t, x, y) = \frac{\beta(y/x)^{\frac{1}{2}\nu} \exp(\frac{1}{2}\theta\nu t - \beta y)}{\Gamma(\beta\alpha)(1 - \exp(-\theta t))} \times \exp\left[\frac{-\beta(x+y)}{\exp(\theta t) - 1}\right] I_{\nu}\left(\frac{\beta\sqrt{xy}}{\sinh(\frac{1}{2}\theta t)}\right),$$

where $\beta = 2\theta\sigma^{-2}$ and $\nu = \beta\alpha - 1$.

 I_{ν} is a modified Bessel function with index ν .

The transition density is a non-central χ^2 -distribution.

20

The score function

$$U_n(\theta) = \partial_{\theta} \log L_n(\theta) = \sum_{i=1}^n \partial_{\theta} \log p(\Delta_i, X_{t_{i-1}}, X_{t_i}; \theta)$$
$$\partial_{\theta} f(\theta) = \left(\frac{\partial f}{\partial \theta_1}(\theta), \dots, \frac{\partial f}{\partial \theta_p}(\theta)\right)^T$$

Under weak regularity conditions, the score function is a P_{θ} -martingale with respect to $\{\mathcal{F}_n\}$, $\mathcal{F}_n = \sigma(X_{t_1}, \dots, X_{t_n}), \quad n = 1, 2, \dots$

$$E_{\theta} \left(\partial_{\theta} \log p(\Delta_{i}, X_{t_{i-1}}, X_{t_{i}}; \theta) \middle| \mathcal{F}_{i-1} \right)$$

$$= E_{\theta} \left(\frac{\partial_{\theta} p(\Delta_{i}, X_{t_{i-1}}, X_{t_{i}}; \theta)}{p(\Delta_{i}, X_{t_{i-1}}, X_{t_{i}}; \theta)} \middle| X_{t_{i-1}} \right)$$

$$= \int_{E} \frac{\partial_{\theta} p(\Delta_{i}, X_{t_{i-1}}, y; \theta)}{p(\Delta_{i}, X_{t_{i-1}}, y; \theta)} p(\Delta_{i}, X_{t_{i-1}}, y; \theta) dy$$

$$= \int_{E} \partial_{\theta} p(\Delta_{i}, X_{t_{i-1}}, y; \theta) dy$$

$$= \partial_{\theta} \underbrace{\int_{E} p(\Delta_{i}, X_{t_{i-1}}, y; \theta) dy}_{=1} = 0$$

Local dominated integrability

Lemma. Consider a real function $f(x;\theta), (x,\theta) \in D \times \Theta$, where $\Theta \subseteq \mathbb{R}$. Suppose $\frac{\partial}{\partial \theta} f(x;\theta)$ is locally dominated integrable w.r.t. a measure μ on D. Then

$$\frac{\partial}{\partial \theta} \int_D f(x; \theta) \mu(dx) = \int_D \frac{\partial}{\partial \theta} f(x; \theta) \mu(dx).$$

A real function $h(x;\theta)$ $(x \in D \subseteq \mathbb{R}^d)$ is called locally dominated integrable w.r.t. the measure μ on D if, for each $\theta_0 \in \Theta$, there exists a neighbourhood U_{θ_0} of θ_0 and a non-negative μ -integrable function $g_{\theta_0}(x)$ such that

$$|h(x;\theta)| \leq g_{\theta_0}(x)$$

for all $(x, \theta) \in D \times U_{\theta_0}$.

24

 $p(\Delta, x, y; \theta)$ is Gaussian with

$$E_{\theta}(X_{i\Delta} \mid X_{(i-1)\Delta} = x) = xe^{\theta\Delta}$$

and

$$\operatorname{Var}_{\theta}(X_{i\Delta} \mid X_{(i-1)\Delta}) = \frac{e^{2\theta\Delta} - 1}{2\theta} \sigma^2$$

Find an estimator for θ by minimizing

$$K_n(\theta) = \sum_{i=1}^n (X_{i\Delta} - e^{\theta \Delta} X_{(i-1)\Delta})^2$$

Least squares estimation or minimum contrast estimation.

Example

 $dX_t = \theta X_t dt + \sigma dW_t, \ X_0 = x_0, \ \theta \in \mathbb{R}.$

Ornstein-Uhlenbeck process.

Data: $X_{\Delta}, X_{2\Delta}, \dots, X_{n\Delta}$ for some $\Delta > 0$.

$$X_t = X_s e^{\theta(t-s)} + \sigma \int_{s}^{t} e^{\theta(t-u)} dW_u$$

for $0 \le s < t$.

25

Solve $\frac{d}{d\theta}K_n(\theta) = 0$ or $G_n(\theta) = 0$, where

$$G_n(\theta) = \sum_{i=1}^n X_{(i-1)\Delta} (X_{i\Delta} - e^{\theta \Delta} X_{(i-1)\Delta})$$

$$\widehat{\theta}_n = \frac{1}{\Delta} \log \left(\frac{\sum_{i=1}^n X_{(i-1)\Delta} X_{i\Delta}}{\sum_{i=1}^n X_{(i-1)\Delta}^2} \right),$$

provided that $\sum_{i=1}^{n} X_{(i-1)\Delta} X_{i\Delta} > 0$.

 $G_n(\theta)$ is a martingale estimating function:

$$E_{\theta}(X_{(i-1)\Delta}(X_{i\Delta} - e^{\theta\Delta}X_{(i-1)\Delta}) | \mathcal{F}_{i-1})$$

$$= X_{(i-1)\Delta}\{\underbrace{E_{\theta}(X_{\Delta}|X_{(i-1)\Delta})}_{=e^{\theta\Delta}X_{(i-1)\Delta}} - e^{\theta\Delta}X_{(i-1)\Delta}\} = 0$$

Approximate likelihood inference

$$dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t \qquad \theta \in \Theta \subseteq \mathbb{R}^p \qquad d = 1$$

Approximate transition density

$$p(\Delta, x, y; \theta) \approx q(\Delta, x, y; \theta) = \frac{1}{\sqrt{2\pi\Phi(\Delta, x; \theta)}} \exp\left[\frac{(y - F(\Delta, x; \theta))^2}{2\Phi(\Delta, x; \theta)}\right]$$

$$F(x;\theta) = E_{\theta}(X_{\Delta}|X_0 = x)$$
 and $\Phi(x;\theta) = \operatorname{Var}_{\theta}(X_{\Delta}|X_0 = x)$

Approximate likelihood function

$$L_n(\theta) \approx \tilde{L}_n(\theta) = \prod_{i=1}^n q(\Delta_i, X_{t_{i-1}}, X_{t_i}; \theta)$$

28

Approximate score function

$$\partial_{\theta} \log \tilde{L}_{n}(\theta) = \sum_{i=1}^{n} \left\{ \frac{\partial_{\theta} F(\Delta_{i}, X_{t_{i-1}}; \theta)}{\Phi(\Delta_{i}, X_{t_{i-1}}; \theta)} [X_{t_{i}} - F(\Delta_{i}, X_{t_{i-1}}; \theta)] \right.$$
$$\left. + \frac{\partial_{\theta} \Phi(\Delta_{i}, X_{t_{i-1}}; \theta)}{2\Phi(\Delta_{i}, X_{t_{i-1}}; \theta)^{2}} \left[(X_{t_{i}} - F(\Delta_{i}, X_{t_{i-1}}; \theta))^{2} - \Phi(\Delta_{i}, X_{t_{i-1}}; \theta) \right] \right\}$$

Quadratic martingale estimating function

$$G_n(\theta) = \sum_{i=1}^n \left\{ a_1(X_{t_{i-1}}, \Delta_i; \theta) (X_{t_i} - F(\Delta_i, X_{t_{i-1}}; \theta)) + a_2(X_{t_{i-1}}, \Delta_i; \theta) \left[(X_{t_i} - F(\Delta_i, X_{t_{i-1}}; \theta))^2 - \Phi(\Delta_i, X_{t_{i-1}}; \theta) \right] \right\}$$

Bibby and Sørensen (1995,1996)

Approximate likelihood inference

Approximate log-likelihood function

$$\log \tilde{L}_n(\theta) = \sum_{i=1}^n \log q(\Delta_i, X_{t_{i-1}}, X_{t_i}; \theta)$$
$$= \sum_{i=1}^n \left[-\frac{1}{2} \log(2\pi) - \frac{1}{2} \log \Phi - \frac{(y-F)^2}{2\Phi} \right]$$

Approximate score function:

$$\partial_{\theta} \log \tilde{L}_n(\theta) = \sum_{i=1}^n \left[-\frac{1}{2} \frac{\partial_{\theta} \Phi}{\Phi} + \frac{y-F}{\Phi} \partial_{\theta} F + \frac{(y-F)^2}{2\Phi^2} \partial_{\theta} \Phi \right]$$

29

Martingale estimating functions

$$G_n(\theta) = \sum_{i=1}^n g(\Delta_i, X_{t_i}, X_{t_{i-1}}; \theta)$$

$$g(\Delta, y, x; \theta) = \sum_{j=1}^N a_j(x, \Delta; \theta) [f_j(y) - \pi_\theta^\Delta f_j(x)]$$

$$\uparrow \qquad \uparrow$$

p-dimensional real valued

Transition operator: $\pi_{\theta}^{\Delta} f(x) = E_{\theta}(f(X_{\Delta}) | X_0 = x)$

 $G_n(\theta)$ is a P_{θ} -martingale:

$$E_{\theta}(a_{j}(X_{t_{i-1}}, \Delta_{i}; \theta)[f_{j}(X_{t_{i}}) - \pi_{\theta}^{\Delta_{i}} f_{j}(X_{t_{i-1}})] | X_{t_{1}}, \dots, X_{t_{i-1}}) =$$

$$a_{j}(X_{t_{i-1}}, \Delta_{i}; \theta) E_{\theta}([f_{j}(X_{t_{i}}) - \pi_{\theta}^{\Delta_{i}} f_{j}(X_{t_{i-1}})] | X_{t_{1}}, \dots, X_{t_{i-1}}) = 0$$

 G_n -estimator(s): $G_n(\hat{\theta}_n) = 0$

32

Simulation

 $\pi_{\theta}^{\Delta} f(x) = E_{\theta}(f(X_{\Delta})|X_0 = x)$ is usually not explicitly known

Fix θ

Simulate numerically M independent trajectories of $\{X_t: t \in [0, \Delta]\}$ with $X_0 = x$

$$\pi_{\theta}^{\Delta} f(x) \approx \frac{1}{M} \sum_{i=1}^{M} f(X_{\Delta}^{(i)})$$

Martingale estimating functions

$$G_n(\theta) = \sum_{i=1}^n g(\Delta_i, X_{t_i}, X_{t_{i-1}}; \theta),$$

$$g(\Delta, y, x; \theta) = \sum_{j=1}^{N} a_j(x, \Delta; \theta) [f_j(y) - \pi_{\theta}^{\Delta} f_j(x)]$$

- Easy asymptotics
- Simple expression for optimal estimating function
- The score function is a P_{θ} -martingale

33

Taylor expansions

Review of deterministic expansions:

Consider

$$\frac{d}{dt}x_t = a(x_t)$$

with initial value x_{t_0} for $t \in [t_0, T]$, and $a(\cdot)$ is sufficiently smooth. We can write

$$x_t = x_{t_0} + \int_{t_0}^T a(x_s) ds$$

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. By the chain rule

$$\frac{d}{dt}f(x_t) = \frac{d}{dt}x_t f'(x_t) = a(x_t)f'(x_t)$$

Define the operator

$$Lf = af'$$

where 'denotes differentiation with respect to x. Express the above equation for f(x) in integral form

$$f(x_t) = f(x_{t_0}) + \int_{t_0}^t Lf(x_s)ds$$

Note that if f(x) = x then $Lf = a, L^2f = La$ and

$$x_t = x_{t_0} + \int_{t_0}^t a(x_s) ds$$

36

Apply again to the function f = La to obtain

$$x_{t} = x_{t_{0}} + a(x_{t_{0}}) \int_{t_{0}}^{t} ds + \int_{t_{0}}^{t} \int_{t_{0}}^{s} La(x_{z}) dz ds$$

$$= x_{t_{0}} + a(x_{t_{0}}) \int_{t_{0}}^{t} ds + La(x_{t_{0}}) \int_{t_{0}}^{t} \int_{t_{0}}^{s} dz ds + R_{2}$$

$$= x_{t_{0}} + a(x_{t_{0}})(t - t_{0}) + La(x_{t_{0}}) \frac{1}{2} (t - t_{0})^{2} + R_{2}$$

where

$$R_2 = \int_{t_0}^t \int_{t_0}^s \int_{t_0}^z L^2 a(x_u) du \, dz \, ds$$

If f(x) = a(x) then La = aa' and

$$a(x_s) = a(x_{t_0}) + \int_{t_0}^s La(x_z)dz$$

Apply this to the equation for x_t

$$x_{t} = x_{t_{0}} + \int_{t_{0}}^{t} \left(a(x_{t_{0}}) + \int_{t_{0}}^{s} La(x_{z})dz \right) ds$$

$$= x_{t_{0}} + a(x_{t_{0}}) \int_{t_{0}}^{t} ds + \int_{t_{0}}^{t} \int_{t_{0}}^{s} La(x_{z})dz ds$$

$$= x_{t_{0}} + a(x_{t_{0}})(t - t_{0}) + R_{1}$$

which is the simplest non-trivial expansion for x_t .

37

For a general r+1 times continuously differentiable function f we obtain the classical Taylor formula in integral form

$$f(x_t) = f(x_{t_0}) + \sum_{l=1}^r \frac{(t-t_0)^l}{l!} L^l f(x_{t_0}) + \int_{t_0}^t \cdots \int_{t_0}^{s_r} L^{r+1} f(x_{s_1}) ds_1 \dots ds_{r+1}$$

The Ito-Taylor expansion

Iterated application of Ito's formula!

Consider

$$X_t = X_{t_0} + \int_{t_0}^t b(X_s)ds + \int_{t_0}^t \sigma(X_s)dWs$$

We introduce the operators

$$L^{0}f = bf' + \frac{1}{2}\sigma^{2}f''$$

$$L^{1}f = \sigma f'$$

40

Like in the deterministic expansions, we apply Ito's formula to the functions f = b and $f = \sigma$ and obtain

$$X_{t} = X_{t_{0}} + \int_{t_{0}}^{t} \left(b(X_{t_{0}}) + \int_{t_{0}}^{s} L^{0}b(X_{z})dz + \int_{t_{0}}^{s} L^{1}b'(X_{z})dWz \right) ds$$

$$+ \int_{t_{0}}^{t} \left(\sigma(X_{t_{0}}) + \int_{t_{0}}^{s} L^{0}\sigma(X_{z})dz + \int_{t_{0}}^{s} L^{1}\sigma'(X_{z})dWz \right) dWs$$

$$= X_{t_{0}} + b(X_{t_{0}}) \int_{t_{0}}^{t} ds + \sigma(X_{t_{0}}) \int_{t_{0}}^{t} dWs + R$$

$$= X_{t_{0}} + b(X_{t_{0}})(t - t_{0}) + \sigma(X_{t_{0}})(W_{t} - W_{t_{0}}) + R$$

This is the simplest non-trivial Ito-Taylor expansion of X_t involving single integrals with respect to both time and the Wiener process. The remainder contains multiple integrals with respect to both.

For f twice continuously differentiable, Ito's formula yields

$$f(X_t) = f(X_{t_0}) + \int_{t_0}^t \left(b(X_s)f'(X_s) + \frac{1}{2}\sigma^2(X_s)f''(X_s) \right) ds$$
$$+ \int_{t_0}^t \sigma(X_s)f'(X_s)dWs$$
$$= f(X_{t_0}) + \int_{t_0}^t L^0f(X_s)ds + \int_{t_0}^t L^1f'(X_s)dWs$$

Note that for f(x) = x we have $L^0 f = b$ and $L^1 f = \sigma$, and the original equation for X_t is obtained

$$X_t = X_{t_0} + \int_{t_0}^t b(X_s)ds + \int_{t_0}^t \sigma(X_s)dWs$$

41

In the previous expansion we had

$$R = \int_{t_0}^{t} \int_{t_0}^{s} L^0 b(X_z) dz \, ds + \int_{t_0}^{t} \int_{t_0}^{s} L^1 b(X_z) dW_z \, ds$$
$$+ \int_{t_0}^{t} \int_{t_0}^{s} L^0 \sigma(X_z) dz \, dW_s + \int_{t_0}^{t} \int_{t_0}^{s} L^1 \sigma(X_z) dW_z \, dW_s$$

Note that $dz\,ds$, $dW_z\,ds$ and $dz\,dW_s$ "scales like 0", whereas $dW_z\,dW_s$ scales like dt, comparable to the terms in the simplest expansion with two single integrals.

We therefore continue the expansion by applying the Ito formula to $f = L^1 \sigma$.

The next Ito-Taylor expansion becomes

$$X_{t} = X_{t_{0}} + b(X_{t_{0}}) \int_{t_{0}}^{t} ds + \sigma(X_{t_{0}}) \int_{t_{0}}^{t} dW s + L^{1} \sigma(X_{t_{0}}) \int_{t_{0}}^{t} \int_{t_{0}}^{s} dW_{z} dW_{s} + \bar{R}$$

$$= X_{t_{0}} + b(X_{t_{0}}) \Delta t + \sigma(X_{t_{0}}) \Delta W_{t} + \sigma(X_{t_{0}}) \sigma'(X_{t_{0}}) \frac{1}{2} (\Delta W_{t}^{2} - \Delta t) + \bar{R}$$

with remainder

$$\bar{R} = \int_{t_0}^t \int_{t_0}^s L^0 b(X_z) dz \, ds + \int_{t_0}^t \int_{t_0}^s L^1 b(X_z) dW_z \, ds
+ \int_{t_0}^t \int_{t_0}^s L^0 \sigma(X_z) dz \, dW_s + \int_{t_0}^t \int_{t_0}^s \int_{t_0}^z L^0 L^1 \sigma(X_u) du \, dW_z \, dW_s
+ \int_{t_0}^t \int_{t_0}^s \int_{t_0}^z L^1 L^1 \sigma(X_u) dW_u \, dW_z \, dW_s$$

44

Consider the Itô stochastic differential equation

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t$$

and a time discretization

$$0 = t_0 < t_1 < \dots < t_i < \dots < t_N = T$$

Put

$$\Delta_j = t_{j+1} - t_j$$

$$\Delta W_j = W_{t_{j+1}} - W_{t_j}$$

Then

$$\Delta W_j \sim N(0, \Delta_j)$$

Numeric solutions

When no explicit solution is available we can approximate different characteristics of the process by simulation. (Realizations, moments, qualitative behavior etc). We use the approximations from the Ito-Taylor expansions.

- Different schemes (Euler, Milstein, higher order schemes...)
- Rate of convergence (Weak and strong)

45

The Euler-Maruyama scheme

We approximate the process X_t given by

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t : X(0) = x_0$$

at the discrete time-points $t_j, 1 \leq j \leq N$ by

$$Y_{t_{j+1}} = Y_{t_j} + b(Y_{t_j})\Delta_j + \sigma(Y_{t_j})\Delta W_j \; ; \; Y_{t_0} = x_0$$

where
$$\Delta W_j = \sqrt{\Delta_j} \cdot Z_j$$
, with $Z_j \sim N(0,1)$ for all j.

The Euler-Maruyama scheme

Let us consider the expectation of the absolute error at the final time instant T:

There exist constants K > 0 and $\delta_0 > 0$ such that

$$E(|X_T - Y_{t_N}|) \leq K\delta^{0.5}$$

for any time discretization with maximum step size $\delta \in (0, \delta_0)$.

We say that the approximating process Y converges in the strong sense with order 0.5.

(Compare with the Euler scheme for an ODE which has order 1).

48

The Milstein scheme

We can even do better!

We approximate X_t by

$$\begin{array}{lcl} Y_{t_{j+1}} & = & Y_{t_j} + b(Y_{t_j})\Delta_j + \sigma(Y_{t_j})\Delta W_j \\ & & + \frac{1}{2}\sigma(Y_{t_j})\sigma'(Y_{t_j})\{(\Delta W_j)^2 - \Delta_j\} \quad \text{(now Milstein...)} \end{array}$$

where the prime $^{\prime}$ denotes the derivative.

The Euler-Maruyama scheme

Sometimes we do not need a close *pathwise* approximation, but only some function of the value at a given final time T (e.g. $E(X_T)$, $E(X_T^2)$ or generally $E(g(X_T))$):

There exist constants K>0 and $\delta_0>0$ such that for any polynomial g

$$|E(g(X_T) - E(g(Y_{t_N}))| \leq K\delta$$

for any time discretization with maximum step size $\delta \in (0, \delta_0)$.

We say that the approximating process Y converges in the weak sense with order 1.

49

The Milstein scheme

The Milstein scheme converges in the strong sense with order 1:

$$E(|X_T - Y_{t_N}|) \le K\delta$$

We could regard the Milstein scheme as the proper generalization of the deterministic Euler-scheme.

If $b(X_t)$ does not depend on X_t the Euler-Maruyama and the Milstein scheme coincide.

Multi-dimensional diffusions:

Euler scheme: Similar.

Milstein scheme: Involves multiple Wiener integrals.

$$\int_{n\delta}^{(n+1)\delta} \int_{n\delta}^{s} dW_u^{(1)} dW_s^{(2)}$$

Simulation schemes are based on stochastic Ito-Taylor expansions that are formally obtained by iterated use of Ito's formula.

Kloeden and Platen (1992)