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Numerical approximation of SDEs

Researchers are interested in using differential equations to
modelize the dynamics of physical phenomena.
However analytic solutions to general systems of differental
equations are often unavailable
Computer based numerical strategies are necessary to overcome
such difficulty
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SDEs solutions can be obtained numerically using approximations
based on stochastic Itô-Taylor expansion, obtained through
iterated use of Itô’s formula, see Kloeden and Platen (1992).
The easiest approximation is the stochastic version of the Euler
method for ODEs, namely the Euler-Maruyama approximation.

U. Picchini ( Department of Mathematical Sciences University of Copenhagen, Denmark)MC transition density estimation Middelfart 3-16 August 2008 3 / 26

Consider the one-dimensional Itô SDE

dXt = f (Xt , t)dt + g(Xt , t)dWt , X0 = x0

where
W is an m-dimensional standard Wiener process
f : R× R+ → R and g : R× R+ → R1×m are known functions.

Consider the Itô SDE above on [t0,T ]: for a given discretization
t0 < t1 < · · · < tn < · · · < tN = T of [t0,T ], the Euler–Maruyama
approximation is a continuous time stochastic process satisfying the
iterative scheme

yn+1 = yn + hf (yn, tn) + g(yn, tn)∆Wn y0 = x0, n = 0,1, . . . ,N − 1

where yn = y(tn), h = tn+1 − tn is the stepsize,
∆Wn = W (tn+1)−W (tn) ∼ N (0,h) with W (t0) = 0, and N is the
normal distribution.
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Another approximation method is the Milstein scheme, which is given
by

yn+1 = yn+hf (yn)+g(yn)∆Wn+
1
2

g(yn)g′(yn)((∆Wn)
2−h), y0 = x0

where the superscript
′

denotes differentiation with respect to X .
When g is constant the Euler-Maruyama and the Milstein scheme
coincide.
Def: an approximation y of X is said to converge strongly to X with
order p if exists C > 0 (independent of the stepsize h) and δ > 0 such
that

E(|yN − XtN |) ≤ Chp, h ∈ (0, δ).

The higher the order the better the approximation.
The Euler-Maruyama scheme has strong order of convergence 0.5
while the Milstein scheme has order 1.
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Consider for example, the output you get by running the Matlab
program in demo_GBM.m, which produces three realizations of the
Geometric Brownian Motion using the exact, the Euler-Maruyama and
the Milstein solutions.
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Notice that the exact and the Milstein solutions cannot be
distinguished at this scale.
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...and are undistinguishable also at a much smaller scale...
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Monte Carlo estimation of SDEs: basic setup

Consider the following d-dimensional Itô SDE:

dXt = b(Xt , t ; θ)dt + σ(Xt , t ; θ)dWt

Xt = (X (1)
t , ...,X (d)

t )T

Wt = (W (1)
t , ...,W (m)

t )T

b : Rd × R+ ×Θ → Rd

σ : Rd × R+ ×Θ → Rd×m

where b(·) and σ(·) are known functions depending on an unknown
finite-dimensional parameter vector θ ∈ Θ.
We assume that b(·) and σ(·) satisfy the usual conditions (Lipschitz,
linear growth) for the existence of a unique t-solution of the SDE.
Here T denotes transposition.
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Suppose that the following observations are available from process X
at discrete time points {t0, t1, ..., tn}:

X0,X1, ...,Xn.

The central inferential problem for diffusion processes is to estimate θ
from the available observations.

As for any parametric problem, maximum likelihood is the preferred
method for estimating parameters given a model and a set of data.

The maximum likelihood estimator (MLE) of θ can be calculated if the
transition densities p(Xi+1; Xi , θ) are known (i = 0,1, ...,n − 1).
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Since X is Markovian then the loglikelihood of θ is given by

ln(θ) =
n−1∑

i=0

log p(Xi+1; Xi , θ)

and
θ̂MLE = arg max

θ∈Θ
ln(θ)

Under mild regularity conditions θ̂MLE is consistent, asymptotically
normally distributed and asymptotically efficient as n → +∞ (Dacunha
Castelle-Florens Zmirnou (1986)).
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The problem is that the transition density p(Xi+1; Xi , θ) is often
unknown!

Thus approximations are needed, e.g.:
1 simulate many times the numerical solution of the process to

approximate the transition density via Monte Carlo techniques
(numerically intensive!)

2 derive a closed-form Hermite expansion to the transition density
(Aït-Sahalia (2002,2008))(very fast but not always applicable);

3 solve numerically the Kolmogorov partial differential equations
satisfied by the transition density (Lo (1988))(numerically
intensive!);

Today we consider only (1).
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Monte Carlo based approximation

A Monte Carlo approximation to p consists in:
1 approximating the SDE solution by numerical techniques

(Euler-Maruyama, Milstein, stochastic Runge-Kutta, etc.), and
2 averaging Monte-Carlo replicas of functionals of such

approximations.
Merits: often applicable over very general, nonlinear, multidimensional
SDEs;
Drawbacks: numerically intensive; not always efficient (from a
statistical point of view).
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One of the most important MC methods for the estimation of
transition densities has been suggested by Pedersen (1995) and,
indipendently, by Santa-Clara (1995) (published as article in
Brandt and Santa-Clara (2002)).
Other important contributions are e.g. Durham-Gallant (2002) and
Nicolau (2002).
In the following we consider the contribution by Pedersen and
Brandt & Santa-Clara.
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The Pedersen/Brandt/Santa-Clara Monte Carlo
method

Consider two consecutive observations (Xi ,Xi+1) from the
d-dimensional process X recorded at times (ti , ti+1) respectively.
Without loss of generality, assume ti+1 − ti = 1 and divide this interval
into M subintervals of length h = 1/M.
Denote with X̂ti+(m+1)h the Euler-Maruyama (EM, shortly)
approximation of Xt at time ti + (m + 1)h, for m = 0,1, ...,M − 1:

X̂ti+(m+1)h = X̂ti+mh+b(X̂ti+mh, ti+mh; θ)h+σ(X̂ti+mh, ti+mh; θ)
√

hεti+(m+1)h

with X̂ti = Xti .
By definition, the ε’s are (independent) ∼ N (0,1) and thus the EM
scheme produce a Gaussian process which is such that X̂t → Xt
weakly as h → 0 under the following assumptions.
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Def: a numerical approximation X̂ (h) of X , corresponding to a given
time-discretization with stepsize h, converges weakly to X at time T if

lim
h↓0

|EXT − EX̂T (h)| = 0.

The following are necessary to assure both the weak convergence of
the EM scheme to the true solution and the applicability of the MC
transition density estimation method.
A1: b(·) (drift) and σ(·) (diffusion) infinitely differentiable with
continuous and bounded derivatives of all orders.
A2: (covariance) matrix σσT positive defined.
A3: the parameter space Θ is compact and contains the true θ0;
A4: the likelihood function Ln(θ) is twice continously differ. in θ in a
neighbor. of θ0; E([∂LN(θ)/∂θ][∂LN(θ)/∂θT ]) has full rank and is
bounded for all θ ∈ Θ
There are a couple of more assumptions which, however, in this
context it is not strictly necessary to mention.
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Since the EM scheme between two adjacent instants
[ti + mh, ti + (m + 1)h] defines a Gaussian process, we have that the
transition density at X̂ti+(m+1)h = y given X̂ti+mh = x is a multivariate
gaussian pdf:

qM(y , ti + (m + 1)h|x , ti + mh; θ) =

φ(y ; x + b(x , ti + mh; θ) · h,h · V (x , ti + mh; θ))

where V = σ(·)σ(·)T .

However qM is just an approximation of
p(y , ti + (m + 1)h|x , ti + mh; θ) but qM → p as h → 0.
Unfortunately the relation above can only give the transition
density between two adjacent points: instead, we are interested in
the density between two non-adjacent points, say between Xti+mh
and Xti+(m+j)h (with j = 2,3, ...,M −m).
remember: our goal is to compute the density between Xti and
Xti+1 , which correspond to the case m = 0 and j = M.
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To reach our goal we need to compute the multi-step-ahead transition
density, which can be defined recursively: that is

qM(y , ti + (m + j)h|x , ti + mh; θ) =∫

Rd

{
qM(y , ti + (m + j)h|z, ti + (m + j − 1)h; θ)

× qM(z, ti + (m + j − 1)h|x , ti + mh; θ)

}
dz

=

∫

Rd

{
φ(y ; z + b(z, ti + (m + j − 1)h; θ) · h,h · V (z, ti + (m + j − 1)h; θ))

× qM(z, ti + (m + j − 1)h|x , ti + mh; θ)

}
dz

and the last term in the integrand can be computed in the same
way...in the end we get a convolution of M − 1 integrals which in
general is not solvable neither analytically nor numerically (via
quadrature techniques) when M increases.

U. Picchini ( Department of Mathematical Sciences University of Copenhagen, Denmark)MC transition density estimation Middelfart 3-16 August 2008 17 / 26

The idea is to treat the integral as an expectation of the function φ w.r.t.
the random variable z:

qM(y , ti + (m + j)h|x , ti + mh; θ) =

=

∫

Rd
φ(y ; z + b(z, ti + (m + j − 1)h; θ) · h,h · V (z, ti + (m + j − 1)h; θ))

× f (z)dz = Ez(φ(·))

where f (z) = qM(z, ti + (m + j − 1)h|x , ti + mh; θ).

The expectation can be approximated via Monte Carlo simulations
from the density f .
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Very interesting...but in practice?!

This means that we can generate a large number R of random
draws zr (r = 1, ...,R) using the EM scheme
using the z1, ..., zR we approximate the density qM by averaging all
the φ’s evaluated at the different zr ’s, i.e.

qM(Xi+1, ti+1|Xi , ti ; θ) ≈
q̂M,R(Xi+1, ti+1|Xi , ti ; θ) =
∑R

r=1 φ(Xi+1; zr + b(zr , ti + (M − 1)h; θ) · h,h · V (zr , ti + (M − 1)h; θ))

R
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The innovation of the SML method is to interpret the integral in Eq. (7) as an
expectation of the function f of the random variable z: The distribution of this
variable z is f ðzÞ 	 qMðz; tn þ ðM 
 1ÞhjYtn

; tnÞ: Although we cannot easily evaluate
the expectation, we can use the Euler discretization to generate a large number of
independent random draws zs; for s ¼ 1; 2;y;S; from the distribution f ðzÞ: Then, we
approximate the expectation, and ultimately the corresponding continuous-time
transition density p; with a sample average of the function f evaluated at these
random draws of z:

In more detail, the method works as follows. Starting at time tn with #Ytn
¼ Ytn

; we
iterate on the Euler recursion (4) exactly M 
 1 times. This results in a single draw
zs ¼ #YtnþðM
1Þh of the discrete-time process at time tn þ ðM 
 1Þh from the
distribution f ðzÞ: We repeat this procedure S times, which yields the random sample
fz1; z2;y; zSg: Finally, we average the function f over this random sample of z to
approximate the expectation in Eq. (7).

Fig. 1 further illustrates the mechanics of the approximation. The solid line that
connects the two adjacent discrete-time observations Y0 and Y1 represents the
unobserved continuous-time sample path of a univariate diffusion. The four dashed
lines represent incomplete ten-step discretizations of this diffusion. Each discretiza-
tion is generated by starting the Euler recursion at #Y0 ¼ Y0 ¼ 4:00 and iterating on it
nine times. The end points #Y9=10 of these discretizations represent the random sample
zs; for s ¼ f1; 2; 3; 4g: The approximation amounts to averaging the function f over
the random draws of zs from f ðzÞ: Graphically, we average the probabilities that the
final step of the Euler discretization connects the points zs and Y1 ¼ 4:03 along the
four dotted lines.
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Fig. 1. Approximating the transition densities. This figure illustrates the approximation of the transition

densities of a diffusion. The solid line represents the unobserved continuous-time sample path of a

univariate diffusion. The four dashed lines represent incomplete ten-step Euler discretizations.
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In the end we get:

ln(θ) ≈ ln,M,R(θ) =
n−1∑

i=0

ln(q̂M,R(Xi+1, ti+1|Xi , ti ; θ))

and by denoting with θ̂n,M,R = arg maxθ∈Θ ln,M,R(θ) we have

θ̂n,M,R → θ̂n, M,R →∞, R1/2/M → 0

θ̂n → θ0, n →∞
under the stated assumptions.
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Let’s consider some computer simulations...
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Merits: "easy" to implement; applicable with multidimensional
SDEs;
Drawbacks: numerically intensive (requires large M and R
values); there is no specified criteria to sample from the f (z)
distribution efficiently, i.e. importance sampling techniques are
needed (see the figure below and the improvements by Durham
and Gallant (2002)).
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Software for SML

1 R package: S.M. Iacus’s sde,
http://cran.r-project.org/web/packages/sde/ with
companion monography available from Springer;

2 MATLAB package: U. Picchini’s SDE Toolbox,
http://sdetoolbox.sourceforge.net/

3 ???
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1 A deterministic model of the EHC

2 Modeling the EHC by SDEs
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The Physiological Problem: Feedback Loop

Umberto Picchini www.math.ku.dk/~umberto ( Department of Mathematical Sciences University of Copenhagen, Denmark )SDEs models of the EHC Middelfart 3-16 August 2008 3 / 30

The Physiological Problem: EHC procedure

The Euglycemic Hyperinsulinemic Clamp (EHC, DeFronzo et.al.
(1979)) is the diabetological gold-standard for the assessment of
insulin sensitivity.
In this procedure

1 insulin concentrations are rapidly raised to a high value by means
of an insulin bolus injection and maintained at this level during the
experiment (2-5 hrs) by means of a constant insulin infusion

2 glucose concentrations are maintained close to a “target” (basal)
level by means of variable rate glucose infusions

3 both glycemia and insulinemia are sampled during the experiment
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Observed glycemias (�) and external glucose infusion rate (solid line).

Notice how the external infusion try to keep the glycemia around the
“normal” (basal) value, i.e. around the first observation.
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A ODE model: Picchini et al. (2006) J. Math. Biol.

We firstly hypothesize a system of ODEs explaining glycemia and
insulinemia dynamics:

dG(t)
dt

=
(Tgx(t − τg) + Tgh(t))

Vg
− Txg

G(t)
0.1 + G(t)

− KxgIG(t)I(t)

dI(t)
dt

=
(TiGG(t) + Tix(t))

Vi
− Kxi I(t)

Tgh(t) = Tghmax exp(−λG(t)I(t))

where
G(0) = Gb, I(0) = Ib,

Tgh(0) = Tghb = Tghmax exp(−λGbIb),

Tgx(s) = 0 ∀s ∈ [−τg ,0] and Tix(0) = Tixb
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Figure: Schematic representation of the model.
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We considered two different procedure to estimate the model
parameters θ = (Gb, Ib,KxgI ,Kxi ,Tghmax ,Vg ,Vi , τg , λ):

1 estimate the parameters separately for each subjects;
2 perform a population estimation approach.

For the sake of this lecture we will consider the second approach only,
which is more interesting to motivate the use of SDEs in this
experiment.
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Population estimation

In this analysis we want to estimate from the data both:
the structural model parameters considered in
θ = (Gb, Ib,KxgI ,Kxi ,Tghmax ,Vg ,Vi , τg , λ) and
the coefficient of variations for the glycemia/insulinemia
measurements ξ = (CVG,CVI).

The best way to estimate the CV’s is by the use of repeated
measurements over the subjects, when available.
In this case repeated measurements are not available, and thus we
pool together the data obtained on all the subjects in order to estimate
ξ.
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Population estimation: notation

We have glycemia and insulinemia data from 15 subjects. Let θi be the
individual model parameters for subject i and consider the complete
measurement vector for subject i : y i = (y i

G,1, ..., y
i
G,ni

G
, y i

I,1, ..., y
i
I,ni

I
) for

the sequence of data for subject i ; ni
G and ni

I are the numbers of
glycemia and insulinemia measurements for subject i respectively.
Then we consider the following error-model:

y i = f i(θi) + εi , i = 1, ...,15

such that
E(εi |θi) = 0, Cov(εi |θi) = Ωi(θi , ξ)

with f i(·) = (f i
G,1, ..., f

i
G,ni

G
, f i

I,1, ..., f
i
I,ni

I
) representing the numerical

solution of the ODE system for subject i ; εi has the same dimensions
of y i and f i .
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We assume that the functional form of Ωi(·, ·) and the intra-individual
covariance parameter ξ = (CVG,CVI) are the same across individuals.

Ωi(θi , ξ) =

(
Ωi

G 0
0 Ωi

I

)
i = 1, ...,15

Ωi
G =




CV 2
G(f i

G,1)
2 0 · · · 0

· · · · · · · · · · · ·
0 · · · 0 CV 2

G(f i
G,niG

)2


 ,

and similarly

Ωi
I =




CV 2
I (f i

I,1)
2 0 · · · 0

· · · · · · · · · · · ·
0 · · · 0 CV 2

I (f i
I,niI

)2
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We used these structures to perform the following GLS (General Least
Squares) algorithm:

1 in m = 15 separate regressions, obtain preliminary estimates θ̂(p),i

for the parameters of each subject, i = 1, ...,m;
2 use residuals from these preliminary fits to estimate ξ by

minimizing the pseudolikelihood of ξ for the ith individual
m∑

i=1

PLi(θ̂(p),i , ξ) =
m∑

i=1

log |Ωi(θ̂(p),i , ξ)|

+ (y i − f i(θ̂(p),i))′(Ωi)−1(θ̂(p),i , ξ)(y i − f i(θ̂(p),i))

Form estimated weight matrices

Ω̂i(θ̂(p),i , ξ̂)

3 using the estimated weight matrices from step 2, re-estimate the
θi ’s by m separate minimizations: for individual i , minimize in θi

(y i − f i(θi))′(Ω̂i)−1(y i − f i(θi))

Treating the resulting estimators as new preliminary estimators,
return to step 2.
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In this way we obtained reasonable fits:
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Clamp: Subject 1,  plot 1

(a) Subject 1, fitted glycemias
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Clamp: Subject 1,  plot 2

(b) Subject 1, fitted insulinemias
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Clamp: Subject 9,  plot 1

(c) Subject 9, fitted glycemias
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(d) Subject 9, fitted insulinemias
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(e) Subject 10, fitted glycemias
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(f) Subject 10, fitted insuline-
mias
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... but

we found that ĈV G = 0.071 and ĈV I = 0.170, which are too high to be
compatible with measurement error, especially if compared with
commonly accepted values, e.g. (CVG,CVI) = (0.015,0.07) in
Bergman et al. (1979).

This finding has prompt us to consider an additional source of noise,
besides measurement error, explaining the variation of the
observations around the predicted curve.
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Modeling the EHC by SDEs

Why do we model glycemia and insulinemia values by means of
SDEs?

We hypothesize that some physiological process (e.g. glucose
tissue absorption) is perturbed by random noise.
This noise represents the overall action of many factors (e.g.
sudden changes in physical activity or emotional stresses), each
with a small individual effect, affecting glucose tissue absorption
This noise is superimposed to a non-random (drift) term,
representing the most relevant and well-recognized factors
affecting glycemia
We will show how to modelize and identify both system noise and
measurement error, where the latter influences the measurement
values but not the course of the underlying process.
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A SDE model of the EHC

We let the insulin dependent glucose tissue uptake rate KxgI vary
randomly as (KxgI − ξ(t)), where ξ(·) is a gaussian white noise
process;
the system noise ξ(t)dt can be written as σdW (t) and σ is an
intensity factor.

We obtain the following SDE model of glycemia G(t) and insulinemia
I(t) dynamics

dG(t) =

[
(Tgx(t − τg) + Tgh(t))

Vg
− Txg

G(t)
0.1 + G(t)

− KxgIG(t)I(t)
]
dt

+σG(t)I(t)dW (t)

dI(t) =

[
(TiGG(t) + Tix(t))

Vi
− Kxi I(t)

]
dt

Tgh(t) = Tghmax exp(−λG(t)I(t))

Umberto Picchini www.math.ku.dk/~umberto ( Department of Mathematical Sciences University of Copenhagen, Denmark )SDEs models of the EHC Middelfart 3-16 August 2008 16 / 30



Some Complications...

...but

Partially Observed System
G(t) is measured every 5 min, whereas I(t) every 20 min; this means
that we deal with a partially observed system ⇒ the transition densities
cannot be computed at each observation time-point

Measurement Error
We allow the measurements to be generated with non-negligible
measurement error, e.g. for a generic subject his/her j th observation
(glycemia or insulinemia) is modelized as: yj = Xj(θ) + εj with
εj ∼ N (0,Σj(ξ)), with the ε’s independent of W (·), thus...

Non-Markovianity
... the observations yj are Non-Markovian
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Estimation strategy

1 Consider all the past history of the observed process
2 build the likelihood function of (θ, ξ) separately for each subject

L(θ, ξ) =
n∏

j=1

pj|j−1(yj |y0, y1, . . . , yj−1, θ, ξ)

where we use the notation pj|j−1 to denote the conditional density
function of yj given y0, y1, ..., yj−1 and n + 1 is the total number of
measurements (glycemia and insulenimia) available for the
considered subject

3 for each subject, maximize the corresponding likelihood to obtain
the individual MLE estimates of (θ, ξ)
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How To? (A.R. Pedersen (2001))

Since measurement errors are stochastically independent, and
independent of the diffusion process, we have

L(θ, ξ) =

∫ [ n∏

j=0

φj(yj ; xj , ξ)

]
λ(x1, . . . , xn; θ)dx1 · · ·dxn

= Eθ

n∏

j=0

φj(yj ; Xtj ; ξ)

where λ denotes the joint pdf of Xt1 , . . . ,Xtn , Eθ denotes expectation
with respect to the distribution of Xt1 , . . . ,Xtn for the indicated
parameter values, and

φj(yj ; xj , ξ) = |2πΣj(ξ)|−1/2 exp
(
−1

2

[
yj − xj(θ)

]′
Σ−1

j (ξ)

[
yj − xj(θ)

])
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Error model

We used the following error-model yj = Xj(θ) + εj with εj ∼ N (0,Σj(ξ))
where

Xj(θ) = X (tj) = (Gj , Ij) is the (numerical) solution of the SDEs at
sampling time tj ;

Σj(ξ) =

(
CV 2

GG2
j 0

0 CV 2
I I2

j

)

and ξ = (CVG,CVI) contains the glucose and insulin coefficient of
variations.
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So, by simulating many (R) trajectories X r of X ,

L(θ, ξ) ' 1
R

R∑

r=1

n∏

j=0

φj(yj |X r
tj (θ), ξ), (R → +∞)

The X r
ti can be simulated using a standard algorithm (e.g.

Euler-Maruyama, Milstein)
the independent Wiener increments should be simulated, initially,
and kept fixed in all subsequent calculations of the Monte Carlo
approximation of the likelihood function.
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Difficulties

This simulation-based approach is HIGHLY time consuming since:
1 the number of simulations R should be at least of the order of

thousands (we choose R = 2000)
2 the integration stepsize should be “small” enough (we choose

h = 0.1)
3 the larger the number of parameters to be optimized the slower

the convergence for the optimization procedure
4 the likelihood approximation procedure must be performed for

every infinitesimal variation of (θ, ξ) during the optimization
procedure
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Our Strategy

We optimize only the σ parameter in the diffusion part.

We plugged into the SDE the parameter estimates obtained for the
ODE model (corresponding to the SDE’s drift) for different levels of
measurement error;

(CVG,CVI) ∈ {(0.015,0.07), (0.02,0.10), (0.03,0.10), (0.03,0.15),

(0.04,0.15), (0.05,0.15), (0.15,0.30)}.

We also used the GLS population estimates of the measurement error
variance;

Then, we fixed both the parameters entering the drift and the
measurement error variances and, conditionally to these, only σ was
optimized.
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Two typical likelihoods of σ
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Some Results: plasma glucose (subject 10)
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Some Results: plasma glucose (subject 9)
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Estimates of the diffusion coefficient

Here are the 7 estimates of σ corresponding to the 7 hypothesized
increasing levels of measurement error (proportional to (CVG,CVI))

Subjects σ̂(1) σ̂(2) σ̂(3) σ̂(4) σ̂(5) σ̂(6) σ̂(7)

1 1.60E-5 1.78E-5 2.25E-5 1.59E-5 2.10E-5 2.25E-5 0
2 NA 1.38E-5 1.47E-5 1.38E-5 1.38E-5 1.15E-5 2.88E-7
3 2.39E-5 4.55E-5 5.71E-5 2.54E-5 3.95E-5 2.58E-5 0
4 NA 1.00E-5 1.00E-5 1.00E-5 1.00E-5 0.95E-5 3.68E-8
5 1.83E-5 1.97E-5 2.00E-5 1.93E-5 1.93E-5 1.93E-5 0.91E-5
6 2.72E-5 2.65E-5 2.68E-5 2.71E-5 2.72E-5 2.73E-5 5.29E-8
7 0.80E-5 0.80E-5 0.80E-5 0.80E-5 2.35E-8 2.35E-8 1.47E-7
8 0.72E-5 0.76E-5 0.73E-5 0.72E-5 0.60E-5 0.42E-5 2.12E-7
9 NA 2.42E-5 2.65E-5 2.50E-5 2.60E-5 2.69E-5 4.77E-7
10 3.08E-5 3.04E-5 3.04E-5 3.04E-5 3.00E-5 2.88E-5 4.25E-7
11 0.62E-5 0.59E-5 3.68E-8 3.68E-8 2.35E-8 3.68E-8 4.77E-7
12 1.44E-5 0.98E-5 1.36E-5 1.41E-5 1.47E-5 1.53E-5 8.47E-7
13 1.23E-5 0.82E-5 0.86E-5 0.74E-5 0.84E-5 0.87E-5 2.12E-7
14 1.73E-5 1.65E-5 1.64E-5 1.62E-5 1.56E-5 0.12E-5 7.21E-8
15 1.87E-5 1.23E-5 1.44E-5 1.86E-5 1.47E-5 1.50E-5 0.84E-5

In this table we notice that the σ estimates are stable when considered
in a reasonable region of the coefficient of variations values, that is
when considered in (CVG,CVI) ∈ [0.02,0.05]× [0.10,0.15] (i.e. from
σ̂(2) to σ̂(6)).
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Monte Carlo Confidence Intervals

Subjects σ̂(1) · 10−5 σ̂(4) · 10−5

1 estimates (mean [95% CI]) 1.60 (1.27 [0.61, 1.85]) 1.59 (1.39 [0.45, 2.63])
Skewness -0.2684 0.6751
Kurtosis 2.216 4.552

6 estimates (mean [95% CI]) 2.72 (2.26 [0.89, 3.01]) 2.71 (2.25 [1.15, 3.27])
Skewness -0.676 -0.273
Kurtosis 3.142 2.670

10 estimates (mean [95% CI]) 3.08 (1.92 [1.10, 3.17]) 3.04 (2.06 [0, 4.08])
Skewness 0.787 0.286
Kurtosis 3.084 3.961

Umberto Picchini www.math.ku.dk/~umberto ( Department of Mathematical Sciences University of Copenhagen, Denmark )SDEs models of the EHC Middelfart 3-16 August 2008 28 / 30



Conclusions

1 (from the ODE model) the level of error around the predicted
curve is very large, in particular it is much larger than the
(0.015,0.07) commonly accepted levels of measurement error in in
vitro repeated testing of the same laboratory preparation.

2 (SDE model) for any reasonable level of observation error, the
estimated diffusion has more or less the same value. For
“reasonable” it is here meant larger than pure measurement error
and smaller than the total error around the expected trajectory as
estimated by GLS. Having excluded these extreme cases, it can
be seen that, in the present situation, the estimation of the
diffusion is very robust to changes in the likely value of the
observation error.

3 the diffusion coefficient estimates are generally strictly positive:
this means that the dynamical process which most likely
represents the glycemia time-course (given the estimated ODE) is
a stochastic process with a non-negligible system noise.
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In the first lecture we considered the problem of approximating the
transition density pX (Xi+1; Xi , θ) of a Markovian process X . At least
three categories of possible strategies can be considered:

1 simulating many times the numerical solution of the process to
approximate the transition density via Monte Carlo techniques
(numerically intensive!)

2 deriving a closed-form Hermite expansion to the transition density
(Aït-Sahalia (2002,2008), Egorov(2003))(very fast but not always
applicable);

3 solving numerically the Kolmogorov partial differential equations
satisfied by the transition density (Lo (1988))(numerically
intensive!);

Today we consider (2).

U. Picchini ( Department of Mathematical Sciences University of Copenhagen, Denmark)Efficient Est. of a SDE of the EHC Middelfart, 3-16 August 2008 2 / 22

With closed-form approximation we mean that a mathematical
expression for an approximation of pX is explicitly given. Thus:

there is no need to perform simulations of process trajectories;
the computations needed to obtain an estimator for θ are
extremely fast (just like when the exact pX is available);
the approximation of the likelihood obtained with this method is
extremely accurate, especially if compared to Monte Carlo based
methods (see e.g. Durham-Gallant (2002) and Jensen-Poulsen
(2002))
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The idea (Ait-Sahalia (2002))

consider the one-dimensional time-homogeneous Ito SDE:

dXt = µ(Xt , θ)dt + σ(Xt , θ)dWt

transform the original SDE into an equivalent SDE with unit
diffusion

dYt = µY (Yt , θ)dt + dWt

"standardize" the new process Yt to obtain another process Zt
having a transition density pZ close to a Gaussian one;
After obtaining an approximation for pZ , we can get the
corresponding approximation for pY and finally pX using the
Jacobian formula.
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Let’s start with the transformation Xt → Yt .
consider the function

Yt = γ(Xt , θ) =

∫ Xt 1
σ(u, θ)

du ⇒ Xt = γ−1(Yt , θ)

using the Ito’s formula on our SDE (where γ(·) plays the role of the
function g) we get

dYt = µY (Yt , θ)dt + dWt

as desired, where

µY (Yt , θ) =
µ(γ−1(Yt , θ))

σ(γ−1(Yt , θ))
− 1

2
∂σ

∂Xt
(γ−1(Yt , θ));

notice that the vector θ is the same vector of the original SDE;
the transition density of Y is much closer to a Gaussian
distribution than that of X (thanks to the unit diffusion), i.e. when
∆ = ti+1 − ti → 0 the magnitude of the tails of pY is similar to the
magnitude of the tails of a Gaussian distribution (Prop. 2 in
Ait-Sahalia (2002)).
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Notation: we denote with pW (w |w0) the transition density of a generic
process W at w conditionally on w0.

With a further transformation Z = ∆−1/2(Y − y0) we get a process Z
which is close enough to a N (0,1) variable to make it possible to
create a convergent series of expansions for its density pZ around a
N (0,1), see the next slides for details.

By denoting with pY (y |y0; θ) the conditional density of Yt+∆|Yt , we
have the following relation

pZ (z|y0; θ) = ∆1/2pY (∆1/2z + y0|y0; θ)

and now we are going to show how to approximate pZ .
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For a Hilbert space L2(P) with measure P, density φ and inner product
< ·, · > a density g(w) on the real line can be represented by an
expansion with respect to an orthogonal base {H1,H2, ...}, i.e.:

g =
∞∑

j=0

< g,Hj >

< Hj ,Hj >
Hj , < g,Hj >=

∫ +∞

−∞
g(w)Hj(w)φ(w)dw .

For any density p(w) on the real line if we expand the ratio p(w)/φ(w)
we get

p(w)

φ(w)
=

+∞∑

j=0

< p/φ,Hj >

< Hj ,Hj >
Hj ⇒ p(w) = φ(w)

∞∑

j=0

η(j)Hj

where

η(j) =
< p/φ,Hj >

< Hj ,Hj >
=

∫ +∞
−∞ p(w)Hj(w)dw

∫ +∞
−∞ Hj(w)Hj(w)φ(w)dw
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Now if we choose P to be the standard normal distribution and
{H1,H2, ...} as the Hermite base, we have

Hj(w) = φ(w)−1 d j

dw j φ(w) (Hermite polynomials)

where φ(w) is the standard normal pdf and we have the following
properties:

1 (j + 1)Hj(w) = (d/dw)Hj+1(w)

2
∫ +∞
−∞ Hi(w)Hj(w)φ(w)dw =

{
i!, if j = i
0, otherwise

and we can write the transition density for Z as:

pZ (z|y0; θ) = φ(z)
+∞∑

j=0

η
(j)
Z (y0; θ)Hj(z)

where (see the previous relations)

η
(j)
Z (y0; θ) =

1
j!

∫ +∞

−∞
pZ (z|y0)Hj(z)dz
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In practice we trunk the expansion to an integer J

p(J)
Z (z|y0; θ) = φ(z)

J∑

j=0

η
(j)
Z (y0; θ)Hj(z)

thus obtaining the corresponding approximations for the transition
densities of Y and X , using the Jacobian formula:

p(J)
Y (y |y0; θ) = ∆−1/2p(J)

Z (∆−1/2(y − y0)|y0; θ)

p(J)
X (x |x0; θ) = σ(x ; θ)−1p(J)

Y (y |y0; θ)

Notice that (Ait-Sahalia (2002), Theorem 1) p(J)
X (x |x0; θ) → pX (x |x0; θ)

as J → +∞ for every θ ∈ Θ and for every (x , x0) in D2
X (where DX is

the state space of X ).
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Of course the main problem is computing the η(j)
Z ’s: we note that

η
(j)
Z (y0; θ) = 1/j!

∫ +∞

−∞
Hj(z)pZ (z|y0, θ)dz

= 1/j!
∫ +∞

−∞
Hj(z)∆1/2pY (∆1/2z + y0|y0, θ)dz

= 1/j!
∫ +∞

−∞
Hj(∆

−1/2(y − y0))pY (y |y0; θ)dy

= 1/j!E[Hj(∆
−1/2(Yt+∆ − y0))|Yt = y0]

As usual we may calculate the expectation using, e.g. Monte Carlo
methods, but in this case we want to find some more elegant and
efficient solution.
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Ait-Sahalia (2002) expands the expectation using a Taylor series of
order K in powers of ∆ and thus, in the end, he gets Taylor
approximations of η(j)

Z which we denote by η(j,K )
Z (j = 1, ..., J), e.g. the

following are the first 3 coefficients for the case K = 3:

238 yacine aït-sahalia

Taylor’s Theorem applied to the function s �→ E'f �Yt+s� y0	�Yt = y0( yields

E
[
f �Yt+�� y0	

∣∣Yt = y0
]= K∑

k=0
Ak��	 · f �y0� y0	

�k

k!(4.3)

+E[AK+1��	 · f �Yt+B� y0	
∣∣Yt = y0

] �K+1

�K+1	!
where A��	 is the infinitesimal generator of the diffusion Y , defined as the opera-
tor A��	M f �→�Y �·� �	,f /,y+�1/2	,2f /,y2. The following proposition provides
sufficient conditions under which the series (4.3) is convergent:

Proposition 4: Under Assumptions 1–3, suppose that for the relevant bound-
aries of DY = �y� ȳ	, near ȳ = +
M �Y �y��	 ≤ −Ky5 for some 5 > 1; near
y =−
M �Y �y��	≥K�y�5 for some 5 > 1; near y = 0M �Y �y��	≥ /y−0 for some
0 > 1 and / > 0; and near ȳ = 0 �Y �y��	 ≤ −/�y�−0 for some 0 > 1 and / > 0.
Then the diffusion Y is stationary with unconditional density 6Y and the series (4.3)
converges in L2�6Y 	 for fixed � > 0.

Now let p�J �K	Z denote the Taylor series up to order K in � of p�J	Z . The
series for the first seven Hermite coefficients �j = 0� � � � �6	 are given by =�0	Z = 1,
and to order K = 3 by:

=
�1�3	
Z =−�Y�1/2−

(
2�Y�

'1(
Y +�'2(Y

)
�3/2

/
4(4.4)

− (
4�Y�

'1(2
Y +4�2Y�'2(Y +6�'1(Y �'2(Y +4�Y�'3(Y +�'4(Y

)
�5/2

/
24�

=
�2�3	
Z = (

�2Y +�'1(Y
)
�
/
2+ (

6�2Y�
'1(
Y +4�'1(2Y +7�Y�'2(Y +2�'3(Y

)
�2

/
12(4.5)

+ (
28�2Y�

'1(2
Y +28�2Y�'3(Y +16�'1(3Y +16�3Y�'2(Y +88�Y�'1(Y �'2(Y

+21�'2(2Y +32�'1(Y �'3(Y +16�Y�'4(Y +3�'5(Y
)
�3

/
96�

=
�3�3	
Z =−(�3Y +3�Y�'1(Y +�'2(Y

)
�3/2

/
6− (

12�3Y�
'1(
Y +28�Y�'1(2Y(4.6)

+22�2Y�'2(Y +24�'1(Y �'2(Y +14�Y�'3(Y +3�'4(Y
)
�5/2

/
48�

=
�4�3	
Z = (

�4Y +6�2Y�'1(Y +3�'1(2Y +4�Y�'2(Y +�'3(Y
)
�2

/
24(4.7)

+ (
20�4Y�

'1(
Y +50�3Y�'2(Y +100�2Y�'1(2Y +50�2Y�'3(Y +23�Y�'4(Y

+180�Y�'1(Y �'2(Y +40�'1(3Y +34�'2(2Y +52�'1(Y �'3(Y +4�'5(Y
)
�3

/
240�

=
�5�3	
Z =−(�5Y +10�3Y�'1(Y +15�Y�'1(2Y +10�2Y�'2(Y(4.8)

+10�'1(Y �'2(Y +5�Y�'3(Y +�'4(Y
)
�5/2

/
120�

=
�6�3	
Z = (

�6Y +15�4Y�'1(Y +15�'1(3Y +20�3Y�'2(Y +15�'1(Y �'3(Y +45�2Y�'1(2Y(4.9)

+10�'2(2Y +15�2Y�'3(Y +60�Y�'1(Y �'2(Y +6�Y�'4(Y +�'5(Y
)
�3

/
720�

where µ[k ],m
Y denotes (∂kµY (y0; θ)/∂yk

0 )m.
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Using the coefficients η(j,K )
Z we can finally write an explicit closed-form

approximation for pZ :

p(J,K )
Z (z|y0; θ) = φ(z)

J∑

j=0

η
(j,K )
Z (y0; θ)Hj(z)

and using the Jacobian formula we can obtain the corresponding p(J,K )
Y

and p(J,K )
X ,

p(J,K )
Y (y |y0; θ) = ∆−1/2p(J,K )

Z (∆−1/2(y − y0)|y0; θ)

p(J,K )
X (x |x0; θ) = σ(x ; θ)−1p(J,K )

Y (y |y0; θ),

thus if we have a sample X0, ...,Xn of observations from the process X
we get

l(J,K )
n (θ) =

n−1∑

i=0

log p(J,K )
X (Xi+1|Xi ; θ)
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Merits:
1 Accurate approximations of the true transition density (an order of

approximation K = 1 or 2 is often sufficient);
2 Fast computations for the approximated transition density;
3 Theory available for multidimensional SDEs (both

time-homogeneous and time-inhomogeneous, see also Egorov et
al. (2003))

Drawbacks:
1 In practice it may be difficult to apply the method to

multidimensional SDEs, especially when the noise is
non-reducible (Ait-Sahalia (2008));

2 The tails of the true transition density may be estimated
inadequately when ∆ is not "small enough" (Stramer-Yan (2007))

3 a symbolic calculus program may be necessary
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Let’s see some simulations...
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In the previous lecture we considered a SDE model of the EHC for
glycemia and insulinemia dynamics (Picchini et al. (2006))

dG(t) =

[
(Tgx(t − τg) + Tgh(t))

Vg
− Txg

G(t)
0.1 + G(t)

− KxgIG(t)I(t)
]
dt

+σG(t)I(t)dW (t)

dI(t) =

[
(TiGG(t) + Tix(t))

Vi
− Kxi I(t)

]
dt

but we noticed that estimating ALL the 12 parameters (structural +
measurement error-covariance) by simulating thousands of
trajectories to approximate the transition densities was
numerically unfeasible, especially if bootstrap approaches are
needed to compute confidence intervals.

Here we simplify the model to a one-dimensional SDE, restricting
attention to glucose dynamics after the steady state of insulin
concentration has been reached and disregarding measurement error.
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Consider the glycemia state variable Xt , we simplify the diffusion part
of the SDE in order for it to not contain insulinemias It , since

after 40 min from the start of the EHC, It should be nearly constant, so
we fix It ≡ I∗ and in the sequel we assume t ≥ t0 = 40

dXt = µ(Xt , t)dt + σ(Xt)dWt , t ≥ t0
where

µ(Xt , t) =
Tgx(t − τg) + Tghnet

Vg
− KxgI I∗Xt ,

σ(Xt) = σI∗Xt

Tgx(t) =
∑

νj≤t

(λj − λj−1) · (t − νj)
5

νj + (t − νj)5 , t > 0, λ0 = 0, j = 1, ...,m,

The function Tgx(t), which modelizes the glucose infusion rates {λj}j
measured at times {νj}j , depends explicitly on t and so the SDE is
time-inhomogeneous.
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The extension of the Ait-Sahalia’s method for time-inhomogeneous
diffusions is given in Egorov et al. (2003): in this case an expansion of
order 2 (in powers of ∆) for the transition density pZ of Z is given by:

p(2)
Z (z, t |ys, s) = φ(z)

4∑

k=0

β
(2)
k (t , ys, s)Hk (z)

β
(2)
0 (t , ys, s) = 1

β
(2)
1 (t , ys, s) = −∆1/2ψ − ∆3/2

4
(2ψ01 + 2ψψ10 + ψ20)

β
(2)
2 (t , ys, s) =

∆

2
(ψ2 + ψ10) +

∆2

12
(6ψψ01 + 6ψ2ψ10

+ 4ψ2
10 + 4ψ11 + 7ψψ20 + 2ψ30)

β
(2)
3 (t , ys, s) = −∆3/2

6
(ψ3 + 3ψψ10 + ψ20)

β
(2)
4 (t , ys, s) =

∆2

24
(ψ4 + 6ψ2ψ10 + 3ψ2

10 + 4ψψ20 + ψ30)

where the ψ’s are partial derivatives of µY w.r.t. y and s.
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Using the Jacobian transformation, given p(2)
Z it is straightforward to

retrieve p(2)
X , and then

L(2)
n (θ) =

n∑

i=1

ln p(2)
X (xi , ti |xi−1, ti−1)

is the order 2 Hermite approximation of the likelihood function.
So we estimate ALL parameters entering the SDE

θ = {KxgI ,Tghnet ,Vg , σ}

(τg has been fixed to 1 min.)
via

θ(2) = arg min
θ
−L(2)

n (θ),

which is a consistent estimate of θ.
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K̂xgI × 104 [min−1/pM] T̂ghnet [mmol/min/kgBW] V̂g [L/kgBW] σ̂ × 105 [pM]−1[min]−1/2

2.951 [2.874, 3.028] 0.175 0.463 [0.451, 0.474] 7.542 [7.395, 7.688]
5.782 [5.658, 5.906] 0.085 0.117 [0.115, 0.120] 12.213 [12.023, 12.402]
5.553 [5.519, 5.587] 0.346 0.211 [0.210, 0.213] 5.878 [5.856, 5.900]
3.594 [3.472, 3.714] 1.051 0.99 [0.952, 1.028] 13.891 [13.588, 14.194]
2.531 [2.455, 2.607] 0.192 0.371 [0.359, 0.383] 6.717 [6.585, 6.849]
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Figure: Observed glycemias (o), mean and 95% confidence intervals of 2000
trajectories.
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Improvements and limitations

In the previous lecture a two-dimensional SDE model with 12
parameters considering simultaneously the dynamics of glucose
and insulin was analyzed (Picchini et al., JMB 2006) but...
parameter estimation proved difficult (several hours for the
estimations of the diffusion coefficient σ only).
In the present work all the parameters can be estimated in few
seconds (the time required for a single evaluation of the likelihood
function is of the order of milliseconds)...
using a single common PC.
limitations: we needed to consider a much simpler model in order
to apply the closed-form estimation method; furthermore
measurement error has not been modelized.
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