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Summary
• Basic Introduction to Neurosciences

– Structure and function of the nervous system
– Elements of Neuroanatomy
– Neuronal signals

• Mathematical models for single units
– Aims of models

• First models 
• Hodgkin and Huxley type models
• Stochastic models 

• Mathematical methods and related problems 
• Usefullness of single neuron activity models
• Models for assemblies of  neurons

– Aims of the models
• Models of jump diffusion type

– Mathematical methods and related problems
– Alternative approaches and new researches topics
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Different mathematical approaches 
correspond to different models aims

• Focus on the membrane potential evolution, 
• Focus on the neuronal coding properties

– Most of the relavant information is contained in the mean firing rate

Interspike intervals as a code of the nervous system

Related problems:

Description of Interspikes Intervals 
Measures of the Information contained in the ISIs
Statistical estimations of the most important model parameters
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Lapique model

• Deterministic theories
– Equilibrium voltages

– Lapique model (1907)
Describes the underthreshold

membrane potential evolution.

1957: Eccles gives experimental 
values for C and R.

P_ Permeability

A threshold condition should be imposed
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Lapique model
• Lapique model: any initial value 
V(0) decays exponentially

• Assuming R= ∞
PERFECT INTEGRATOR MODEL

Remarks:
1. It is a non linear model
2. The output train is completely described

by the sequence ti , times at which action potentials occur
1. It is a point model: the entire cell is lumped together into a 

representative circuit. 
2. Mathematically: it implies the study of first order differential

equations in correspondence of different input current stimula.
• Suthreshold response to current steps or to repetitive excitation
• Condition for firing under different stimulations, strengh-duration curve
• Stability analysis and phase diagram

August 8-12, 2008 Middelfart, Denmark 
Bio-Math Summer School

Linear cable models
• Lapique model: disregards the neuronal structure
• Synapses close to the soma are more effective compared to those 

with the same strengh on distal parts of the dendritic tree.
• Integration effect of various inputs may vary the neuron response
• Linear cable models:  account for the geometry of the cell in 

subthreshold regime
– Variou portions of the dendritic tree and of the axon are regarded as 

passive nerve cylinders and equations for the electrical potential are the 
partial differential equations of the cable theory

A theorem allows to solve only one equation in spite
of several cable equations. Walsh and Tuckwell (1985) 
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Linear cable models

• Remarks
1. It is necessary to perform a selection of boundary conditions

between several choices (voltage clamp,killed end, current injection 
at the end,…)

2. Steady state solutions describe the effect of a current applied for 
a sufficient long time

3. The model holds only for subthreshold respenses. For stronger 
responses the membrane conductance changes too much to allow the
hypothesys of  passive nature of nerve cylinders. A threshold 
condition must be added.

4. Mathematically:
– Second order linear differential equations to describe steady- state 

response (current applied for a sufficiently long time): allow to get quick 
insights into the effect of various input patterns

– Solution of partial differential equations to obtain time-dependent 
behaviors (Green function method)
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Hodgkin Huxley  type models
• The Hodgkin–Huxley model is a scientific 

model that describes how action potentials in 
neurons are initiated and propagated. It is a 
set of nonlinear ordinary differential equations
that approximates the electrical characteristics
of excitable cells

• The major achivement in the experiments perfomed by 
Hodgkin Huxley and Kats (1952) was the division of the current 
into the components capacitive and ionic currents, so that for 
asmall patch of membrane the total current is

Leakeage current 
carried by other ions
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Hodgkin Huxley type models
• Replacing the RC circuits in the cable model representing 

patches of membrane by the HH type circuits we obtain the full 
Hodgkin Huxley system

Cm : membrane capacitance per unit area               ρι : intracellular resistivity
gNa gK, gl : conductances I: applied current per unit area 
m: sodium activation                                            n: potassium activation
h: sodium inactivation                                          a: fiber radius

Describes both suprathreshold
and subthreshold dynamics

Mathematically: their study is very difficult due to nonlinearities and 
to the high number of involved variables
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Stochastic models for neuronal activity
Basic assumptions:

• the input current I is a random process, i.e. {It,t ≥ 0} is a family of r.v. 
parametrized by the index t, then Vt is a random process too, related to I

• The action potential occur when Vt exceeds a threshold S=S(t).

• Usually after an action potential follows an absolute refractory period of 
duration tR, and after the membrane potential is reset to V0.

• The first interspike interval corresponds to the first passage time r.v. 

T=inf{t ≥ 0: Vt ≥S(t)}.

• The r.v. T1, …, Tn are i.i.d. (i.e. the process is a renewal process)

• Different hypotheses about the process Vt and the boundary S give 
different models
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Aim of these models

• Theoretically describe input-output relationships
– For neurons under spontaneous activity
– For neurons stimulated by specific inputs

– Investigate neuronal coding rules (in a model the input can be 
specified while in experiments is often unknown or noisy)

• Information transmission mechanisms
• Reliability of the transmission
• Phenomena involved in an optimization of the transmission
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Poisson process and input events
• We can mimic the input-output relationships exhibited by certain 

biological neurons under suitable assumptions on the input process 
– It is customary to assume Poisson processes as approximation of the 

input event sequences when the number of synapses involved in the 
transmission is high enough

Motivation for the Poisson hypothesis:
– The membrane potential is continuos in time even during the action 

potential but if we believe that the information is carried by the time of 
the spike we can extract the sequence of interspike times (a spike is 
read as an event)

– If there are nE excitatory channels and   ni inhibitory channels the total 
input sequence is a superposition of n= nE + nI point processes that we 
approximate with a Poisson process thanks to the following theorem
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…A theorem
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Stochastic models: Perfect Integrator

Simplest model: Perfect Integrator without inhibition

T
e

S

V(t)

Spontaneous decay and inhibitory inputs are disregarded
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Stochastic models: randomized random walk 1/2
Gerstein (1962) and Gerstein and Mandelbrot (1964)

• Consider both inhibitory and excitatory Poisson time 
distributed inputs of parameters λE and λI respectively:

V(t)=NE(t)-NI(t);        NE(0)= NI(0)=0

T

e

S
V(t)

i
e=-i=1   in absence of boundary:

Modified Bessel functions

Very simple model: it allows to determine 
analytical results

(birth and death process)
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Stochastic models: randomized random walk 2/2
Gerstein (1962) and Gerstein and Mandelbrot (1964)

Renewal equation

T

e
S

V(t) i

m

1. Solution (through Laplace transform)

2, Moments 3. Probability to elicite a spike
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Stein’s model 1/2
(Stein 1965)

Extends the randomized random walk to include the spontaneous decay 
of the membrane potential

Underthreshold dynamic:

T= inf {t: Xt>S}

After each spike the membrane 
potential is reset to V0:

Renewal process
S

T1
1 T1

2

S
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Stein’s model 2/2
(Stein 1965)

• Analytical results:
– In absence of threshold it is possible to calculate mean 

depolarization and its variance 

• As t → ∞ mean and variance approach steady state values in 
absence of a threshold

– In presence of threshold
• No closed form expression for the first passage time 

distribution is available (only available approach: simulations);
• If λE >0 and e>0 the probability to attain the threshold in a 

finite time can be proven to be one;
• In the case of pure excitation with ad hoc procedures one 

can compute ET and Var T.
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Diffusion approximations
• Stein model: mathematically difficult due to the presence 

of discontinuities in the samples
– Brownian motion: many closed form results. Mathematically 

more manageable than its discontinuos counterpart, the 
random walk

– Idea: to determine a continuos approximation of the Stein 
model, i.e. a diffusion process for the process Vt

We perform the following limit for n→ ∞, increasing the rates of 
the Poisson processes while the size of the jumps decrease:

en → 0  i n → 0  λn
E→ ∞ λn

I→ ∞ in such a way to get:

µn= en λn
E + in λn

I →µ < +∞ σn
2= en

2 λn
E + in 

2 λn
I → σ2 < +∞

August 8-12, 2008 Middelfart, Denmark 
Bio-Math Summer School

Diffusion limit: the Ornstein Uhlenbeck process

Cammino casuale p=1/2
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Stein model

Ornstein-Uhlenbeck process

Diffusion limit
•Convergence Kolmogorov eq.

Roy Smith, 1969
Capocelli Ricciardi, 1971
Tuckwell Cope, 1980

•Weak convergence
Lansky 1984
Lansky Lanska 1987
Kallianpur Wolpert, 1987
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Diffusion type models
the boundary is not naturally implied in the model

Underthreshold membrane potential time evolution
– Wiener process (Perfect Integrator)

– Ornstein- Uhlenbeck process (Leaky Integrate and Fire)

– Feller process (Leaky Integrate and Fire with inferior 
reversal potential)

– Reversal potentials Leaky Integrate and Fire
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Diffusion models ( Wiener Process) 1/5

Σ>S
e

i
Action potential

Consider the underthreshold membrane potential evolution
• due to the arrival of inhibitory (i<0) and excitatory (e>0) contributions 
the membrane potential can be described by a random walk with 
continuos time. Let f(x,t|y,τ) be the transition probability density, we 
have

f(x,t+∆t |y,t) = [1-(λE+λI)∆t]δ(x-y)+λE∆tδ(x-(y+e))+λI∆tδ(x-(y+i))

Probability to have an 
excitatory input in (t,t+∆t)

Probability to have an 
excitatory input in (t,t+∆t)
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Diffusion models ( Wiener Process) 2/5
• It holds Smolukowsky equation (Markov process)

That in our case becomes
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Diffusion models ( Wiener Process) 3/5

• Subtract in the last equation f(x,t|x0) and divide by ∆t, we 
get

• In the limit ∆t→0 and developing the square brackets 
inTaylor series:

with
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Diffusion models ( Wiener Process) 4/5

• Different assumptions can be done in the limit ∆t→0:

a.

b

+ Condiz. iniziale

c

m>0

m<0x0

t

Vt
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Diffusion models ( Wiener Process) 5/5

• Alternative choices for the parameter relationships give:

• While inserting the membrane potential spontaneous 
exponential decay in absence of external input one gets 
the Ornstein-Uhlenbeck process

Kolmogorov equation 
for the 

Wiener Process 
with drift µ
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Randomized random walk 1/2

August 8-12, 2008 Middelfart, Denmark 
Bio-Math Summer School

Randomized Random Walk 2/2


