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Summary
• Basic Introduction to Neurosciences

– Structure and function of the nervous system
– Elements of Neuroanatomy
– Neuronal signals

• Mathematical models for single units
– Aims of models

• First models 
• Hodgkin and Huxley type models
• Stochastic models 
• Diffusion type models

• Mathematical methods and related problems
• Usefullness of single neuron activity models 
• Models for assemblies of  neurons

– Aims of the models
• Models of jump diffusion type

– Mathematical methods and related problems
– Alternative approaches and new researches topics
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Diffusion type models  
• Describe underthreshold membrane potential time 

evolution
– Wiener process (Perfect Integrator)

– Ornstein- Uhlenbeck process (Leaky Integrate and Fire)

– Feller process (Leaky Integrate and Fire with inferior 
reversal potential)

– Reversal potentials Leaky Integrate and Fire
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Analytical results: underthreshold
behaviour 1/3

• Transition probability density: it is solution of the 
Kolmogorov diffusion equation. 
– Perfect integrator model

As time increases: 
1. a large range of values can be attained,
2. the distribution moves toward right if 

µ>0 (the opposite if µ<0)
3. No stationary distribution is attained
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Analytical results: underthreshold
behaviour 2/3

• Ornstein-Uhlenbeck process (only process simultaneously 
Markov, Gaussian and admitting stationary distribution)
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Analytical results: underthreshold
behaviour 3/3

• Feller process (model with reversal potential)

• Comments
– Transition probability densities of temporary homogeneous processes are 

generally available although sometimes have “unpleasant” expressions 
– More refined models may introduce serious mathematical difficulties without 

important consequences on the results.
– A good model should be a good compromise between realism and mathematical 

tractability
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Introduction of the boundary

• The diffusion process describes the under-threshold behavior
• To describe the inter-times between action potentials (spikes)

– We introduce a boundary assuming that a spike is elicited as soon 
as the diffusion process attains the boundary

Mathematically this means to switch to a nonlinear problem: the 
FIRST PASSAGE TIME PROBLEM

– After each spike we assume that the membrane potential is 
instantaneously reset to its resting value

Mathematically this implies to assume that Inter-spikes 
Intervals (ISIs) constitute a renewal process.
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Shape of the boundary

• Constant boundary: mathematical simplification 
• Time dependent boundary

– To consider the absolute and relative refractoriness (the 
threshold attains very high values immediately after a spike then decreases 
under the constant reference value and oscillates toward this constant)

– Threshold with fatigue (responsible for progressive decrease of 
excitability during high frequency firing, as observed experimentally
Chacron et al. 2003, 2004)      No renewal property

– To introduce variability of the input (i.e. periodic threshold )
• Noisy boundary

Time dependent boundaries: the constrained process 
is no more time homogeneous. Furthermore the 

renewal hypothesis loses significance
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The first passage time problem

• Analytical methods
– A few closed form solution (of scarce interest for 

application)
• Wiener process with linear boundary or Daniels boundary
• OU process with hyperbolic boundary

– Laplace transform of FPT density is available in many 
instances when the boundary is constant (but it is rarely 
invertible)

– Various methods allow to determine analitical expression for 
the moments (but the results are very complex)

– Approximate solutions
• Numerical methods

– Numerically solve suitable integral equations
• Simulation methods

– Present unexpected difficulties
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Integral equations for FPT probability 
densities

• Fortet equation: a Volterra integral equation with weakly 
singular kernel

Cammino casuale p=1/2
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It holds also when x=S(t) (Fortet, 1943)
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Fortet equation
constant boundary

• Fortet equation is a first kind Volterra equation 
– If the boundary is constant S(t)=S it is a convolution integral

• Laplace transform of first passage time probability dansity may 
be obtained for the involved process
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Fortet equation and other integral equations
constant or time varying boundary

– Numerical solution

• Alternative diffusion processes:

The kernel is weakly singular: numerical difficulties arise!
Alternative integral equations (Ricciardi et. Al., Buonocore et 

al.)

It depends from transition probability 
densities and from its derivatives

The kernel is regular: standard numerical methods can be applied
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Numerical solution of FPT problem
constant or time varying boundary

g(
t)

t

FPT of an OU process 
through a periodic 

boundary

FPT of a Wiener process 
through a constant boundary 

for different values of σ

g(
t)

t
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Numerical methods for FPT problem
Difficulties of numerical methods: 
• they request the knowledge of the transition probability density
• Numerical problems may arise for large t

• Adaptive step methods
• Asymptotic properties of first passage time distribution have been studied 

for large S or large t.
If the process admits steady state distribution the first passage time 

distribution, for large S it holds (Nobile et al., 1985)

August 8-12, 2008 Middelfart, Denmark 
Bio-Math Summer School

dz

FPT moments 1/3
constant boundary

• Different methods can be applied to determine mean and 
variance of T, when S is constant
– Derivation of FPT Laplace transform   

– Siegert method (if steady state distribution W(x) exists)

Wiener If m 0 ⇒ ET diverges
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FPT moments 2/3
Orstein-Uhlenbeck

Computational problems may arise

σ2=2

σ2=4
σ2=3

θ=1 µ=0

θ=1 µ=0

X0=0
X0=-2

X0=1

X0=-1
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FPT moments 3/3
• Moments computation difficulties

– The analytic expression obtained deriving the Laplace transform 
involves sums and differences of infinite sums. Truncation problems 
arise in correspondence of some parameters ranges (negative 
variance can result from these differences!)

– The Siegert method request the integration of lower order 
moments

– The complexity of moments expression descourage the use of 
moment method for parameter estimation purposes

Practical rules:
– Use different methods and compare results to guarantee reliability
– Check analitic monotonicity properties of the obtained values
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Simulation methods for FPT problems 1/3
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Simulation algorithm for FPT problems 2/3

1. t1=h, k=1

2. Simulate          , if                 stop T=t1/2  else
– Check for the presence of an hidden crossing in (t0,t1): if an 

hidden crossing has happened stop T=ti/2
– else . tk+1=tk+h and go to 2.

• To check for an hidden crossing: 
– estimate the crossing probability P for the Bridge
– Generate a random number u from U~U[0,1]
– if P< u recognize an hidden crossing 

Estimation of hidden crossing probabilities:
• Approximate formulae for numerical evaluation 
• totally simulative algorithm: generate N paths of the Bridge and count the 

number L of paths that crossed S:  L/N gives a MonteCarlo estimation of 
hidden crossings.
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Simulation algorithm for FPT problems 3/3

• Difficulties
– The case of time depending drift and diffusion coefficient 

request special care
– The case of rare crossings request very long simulation time 

(one should use adaptive step methods)

• Disadvantages of the simulation approach:
– Detection of multimodal distribution requests more attention
– Histograms are only approximations of the FPT distribution, 

sensibility analysis is made difficult
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Model study: numerical, analytical or simulative
Which method use for the analysis?

A merge of all the possibilities

Analitycal methods are available only for specific instances 
but they allow to check reliability of other methods

Asymptotic methods: allow a better understanding of the 
role of each parameter

Numerical methods: give precise evaluations  of FPT 
distribution (i.e. they allow to recognize the values from 
which an asyptotic behavior holds)

Simulation: the most used approach but care should be 
devoted to the study of the reliability of the algorithms
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Comparison between different diffusion models
• To compare features of different models one has to fix the 

parameters of the 2 models according to suitable criteria 
(Lansky et al 1995)
– Parameters of the diffusion deduced from identical mean membrane

potential behavior
– Parameters of the diffusion deduced from their discontinuos

models
– Parameters  induced by the same ISI densities

• Stochastic ordering of FPT allows:
– To compare different diffusion models features 
– To perform a sensibility analysis on the parameters 

characterizing the processes
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Comparison between FPT cumulative distributions 
of the OU and the reversal potential model (equal 

mean membrane potential behavior)
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Model parameter estimation
Two types of parameters
• Intrinsic parameters: S, x0, VI, θ can be estimated with direct 

measures
• Input parameters µ,σ2: estimation from samples

Two types of samples:
• Intracellular membrane recordings
• ISIs time series

Intracellular membrane recordings
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Estimation problems
Intracellular recordings
• The process is observed on discretized times
• The data describe the time evolution of sample paths of 

diffusion processes in the presence of an absorbing 
boundary. Standard estimation methods cannot be 
directly applied

FPT recordings:
• Lack of closed form expressions for FPT distribution 

limites the use of maximum likehood approach (cf. Paninski
et al. 2008 for a numerical likelihood approach)

• Moments expression are very complex (cf Inoue et al. 
1995). Alternative functions less complex can be used for 
the moment method (Ditlevsen et al. 2007)



7

August 8-12, 2008 Middelfart, Denmark 
Bio-Math Summer School

Solution of the Kolmogorov equation 
(Wiener process µ=0,σ2 =2) 1/2
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Solution of the Kolmogorov equation 
(Wiener process µ=0,σ2 =2) 2/2
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Solution of the Kolmogorov equation 
(Ornstein-Uhlenbeck process µ=0,σ2 =2)

• The transformation

with

changes the Kolmogorov eq. For the O.U. process with delta 
initial condition into the Kolmogorov eq. for a Wiener 
process (Ricciardi, 1977)


