
1

August 8-12, 2008 Middelfart, Denmark 
Bio-Math Summer School

E I

A

Stochastic neuronal models
Laura Sacerdote*

* Dipartimento di Matematica Università di Torino, Via C. Alberto 10, 10123 
Torino
E-mail: laura.sacerdote@unito.it
URL: http://www.dm.unito.it/personalpages/sacerdote/

E I

A

August 8-12, 2008 Middelfart, Denmark 
Bio-Math Summer School

Summary
• Basic Introduction to Neurosciences

– Structure and function of the nervous system
– Elements of Neuroanatomy
– Neuronal signals

• Mathematical models for single units
– Aims of models

• First models 
• Hodgkin and Huxley type models
• Stochastic models 
• Diffusion type models

• Mathematical methods and related problems
• Usefullness of the single neuron models
• Models for assemblies of  neurons

– Aims of the models
• Models of jump diffusion type

– Mathematical methods and related problems
– Alternative approaches and new researches topics
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Usefullness of the models?

• Diffusion models oversimplify the neuronal structure, to 
what aims can we use them?
– To make light on the effect of particular external stimula (i.e. 

periodic stimula: next lessons by K.Pakdaman)
– To investigate relationships between input and output signal

• Methods: information measures (entropy, Fisher information)
• To investigate the role of noise in neural coding (unexpected 

features can be related to the noise)
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Optimal signal detection 1/3
• Interpret µ in the OU model as the input signal and the occurrence of a 

spike as the output signal. Our sample is then (T1 ,T2 ,…., Tn )

Recall the Cramer Rao inequality for an unbiased estimator of  µ : 

where J(µ) is the Fisher information

Larger values of the Fisher Information imply a better detection of the 
signal
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Optimal signal detection 2/3

Introduce the normalized Fisher Information

σ1

σ2

σ3>σ2 >σ1

σ3 Weak signals are better 
determined with higher noise 

(Lansky et al. 2006)

Ornstein-Uhlenbeck model
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Optimal signal detection 3/3
A signal at time t is recognized as happening at time ∆ = t+δ

σ1

σ2

σ3

σ3> σ2>σ1

∆ = ET/10
•All the shapes of I(µ) present a maximum 
that is located in the underthreshold region 
(where no detection is possible in absence of 
noise)

•Best estimation with the lowest noise
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Optimal signal detection in the presence 
of input dependent noise

To get the diffusion limit we set:

λΕ ,λΙ and e appear both in µ and σ2

There is an optimum level of 
signal that can be detected in 

correspondence to the assigned 
threshold (Lansky et al.2007)
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Examples on the role of noise

EX(t)

S

Without noise the signal 
may be not detected

Transfer function: f(µ)=1/ET. 
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From single neuron activity models to 
small network models

A

B

C

Rasters of spikes aligned on pattern start

A C B
lag (ms)
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Simultaneous recording of spike trains

time (ms)

Detection of statistically significant
spatiotemporal fir ing patterns

<A,C,B;  ²t
1
,²t

2
>

cell # B
cell # C

lag (ms)

cell # A

²t 1

²t 2

patterns found  n=3

expected count  N=0.02

significance of this pattern
  pr( 3, 0.02) -  1.3·10-6 < 0.001

Observed features: spatio-temporal patterns
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Spatio temporal patterns in the brain

• Self organizing networks
• Rhytmic activities
• Synchrony behavior

MATHEMATICS

?
Mathematical Models

Purpose:
• Detecting of different mechanisms, 
biologically compatible with pattern 
formation, rythmic activities
• Understanding their interaction to 
produce the wealth of rythms and 
synchronicity

Involved features
•Coding the information 
transmission
•Improvement of signal relialibility
•Relationship with various diseases

EXPERIMENTS
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Spatio-temporal patterns
Experimental evidence
1. Frequency of specific pattern cannot be casual
2. Periodic spiking activity may be observed in different instances:

– In the presence of external periodic inputs
– In absence of any external periodicity

Mathematical representation
1. Multimodality of ISI distribution

– With or without periodic inputs
2. Signal to noise ratio
3. Crosscorrelograms, autocorrelograms

A multimodal ISI distribution is an indicator of 
synchronicity between different neurons? 

Is it related to spatio or to temporal patterns?
How to measure a temporal synchronicity
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Models for assemblies of neurons

Different approaches
– Small networks

• constituted HH model neurons interconnected 
• Jump diffusion models

– Large networks
• Object oriented simulation

– Training networks (weights determined through 
Hebbian rule: an increase in synaptic efficacy arises from 
the presynaptic cell's repeated and persistent stimulation 
of the postsynaptic cell). 

• Macroscopic description not related with microscopic one 
(nonlinear systems exhibiting multitude of different behaviours)
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LIF models for small networks

Strong contributions : modeled with 
counting processes characterized by 
constant amplitude jump sizes a>0 and 

i<0

( ) ( ) ( ) ( ) ( ) ( )tttttXt idNadNdNdNdtdX −+−+ ++++−= 21 ρδ
θ

Contributions small and highly 
frequent: approximated with a 
diffusion process

E: excitatory neuron
I: inhibitory neuron
A: reference neuron

Underthreshold membrane 
potential evolution:

Neuron A fires when X(t)>S FPT problem for a jump diffusion process
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Renewal process

• Alternative analysis of the model:
– Renewal process (the impinging neurons and the reference 

one are restarted after each spike): 
• jumps event are Poisson distributed (Markov process)
• jumps are Inverse Gaussian distributed but after each spike 

of the observed neuron the whole network is started again.

– We can 
• simulate the ISI distribution 
• Estimate synchronization probabilities between the reference 

neuron and the others
• analyse the crosscorrelation between spike trains of 

different neurons
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….versus time series 

– Time series process: 
• If jumps event are Poisson distributed  and the 

reference neuron is restarted after each spike the 
time series coincides with a renewal process

• If jumps are Inverse Gaussian distributed successive 
spikes time of the reference neuron are not 
independent

– We can 
• simulate the normalized count process but it is no more 

the estimation of a probability.
• estimate synchronization probabilities between the 

reference neuron and the others
• Analyze crosscorrelograms
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First passage time problems for jump-
diffusion processes

• Numerical methods: only in special instances (approximate 
formula for perfect integrate model with jumps)

• Reliable simulation method: generalizes existing ones for 
diffusion processes

– One first generates the jump time
– The process between two jump times is a diffusion and 

can be simulated with standard techniques

Analysis of the small network features via simulations
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Perfect integrator 1/2

Wiener with Poisson time distributed jumps 

Wiener with Inverse Gaussian time distributed jumps 
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Perfect integrator 2/2

/50.6524.981.00
/50.8524.680.75
/48.8926.790.50
14.4545.9429.430.15

III 
peak 
(%)

II peak 
(%)

I peak 
(%)σ2

23.1327.5237.234.00

26.8228.0035.402.00
30.3125.8836.291.00

34.0421.9238.430.50

III 
peak 
(%)

II peak 
(%)

I peak 
(%)σ2

Common feautures: 
1. the percentage of samples that builds the first peak decreases as σ2 increases
2.   the percentage of samples that builds the second peak increases as σ2 increases

Different feautures:
Poisson distributed jumps:

multimodality is determined by the composition of the randomness of the 
jumps with the Wiener process whose behavior is higly dominated by the 
drift term (the abscissae of the peaks correspond to the modes of the ISI 
distribution of a Wiener model with threshold S+ka, k=-1,0,1….)

Inverse Gaussian distributed jumps:
multimodality is dominated by the jumps distribution (the abscissae of the 
peaks are determined by the mode m of the IG distribution leading the jump 
process and occur at values km, k=1,2,..)

Poisson IG
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Multimodal ISI distribution

Main features:

Peak heights go through maxima as 
function of the noise

2σ Anti-resonant behavior: the height at the mode of the density 
function goes through a minimum as a function of noise

2σ

Diffusion models with deterministic periodic stimulation.

In the case of Wiener
underlying diffusion tt dWdttqdX σωµ ++= ))cos((
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Periodic versus Strong excitatory-
inhibitory stimula
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Jump diffusion model explains observed multimodal ISI 
distributions in absence of external periodic stimula
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FPT for jump diffusions processes

multimodality

• characteristic times for a single neuron
• possible cause of sinchronization

The merging of two causes of randomness determine the arising of
multimodal FPT distributions

The regularity of the Wiener process seems to be one of the causes of the 
multimodality of the ISI distribution in the case of Wiener process with jumps

Can the modulation appear also when we consider more complex models?

Ornstein-Uhlenbeck with jumps
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OU with IG jumps (renewal process)

Resonant-like behavior:
the height of the ISI distribution

at the modes goes through
a maximum with increasing σ
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OU with Poisson jumps (renewal process)

Inverse Gaussian distribution is sufficiently regular to allow 
multimodality also with the Ornstein-Uhlenbeck process.

What happens when jumps are Poisson distributed?

Very often For suitable tuning of the parameters
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IG jumps: histograms versus normalized counts
Poisson jumps

Poisson jumps: 
multimodal 

histograms arise 
in a different 
range of the 
parameters

µ=0.7 σ2=0.1 θ=10  σ±=0.01
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IG jumps: syncronization estimates 

Sinchronization probability decreases when µ± increases while multimodality increases
when µ± increases: multimodality and sinchronicity are two different features
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Renewal versus time series: resonance like 
phenomena

RenewalTime series

Ranges of  “resonance like phenomena” are different in the two models 
(renewal/time series)

August 8-12, 2008 Middelfart, Denmark 
Bio-Math Summer School

Small network features

As the frequency of 
inhibitory strong inputs 
λI increases the 
efficiency of the 
excitatory unit E (i.e. 
the number of spikes in 
the spike train of cell E 
that excite cell A) 
increases too. 

The result is robust with 
respect to changes of 
excitatory distribution
(Sacerdote et al. 2007)
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Jump-diffusion network

• Positive :
– Allow to qualitatively recover (and hence “explain”) some observed 

phenomena:
• Multimodal behaviour in absence of periodic input
• Role of inhibition that increases excitation efficiency
• Synchronization 
• Stochastic like resonance (role of noise)

• Negative 
– No analytic or numeric approach (except for perfect integrator 

model)
– Long simulation times
– Large networks request too long computational times 
– Time series simulation request to follow the entire history of the 

involved neurons: one can deal network of more than 3 units but not 
larger ones

– Statistical estimators request further studies
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Further approaches toward large 
networks

• Use of Copulae should be investigated
• Mean field studies using LIF models
• Object oriented networks using LIF models

• …..  UP TO YOU!!!!  
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Integral equation for perfect integrate 
model

Holds if the parameters values avoid the occurrence of multiple 
jumps before the mean spike time of the diffusion

Diffusion parameters
Small *)10( 1212 −−≅ msmVDσ

Large *)1( 1−≅ mVmsDµ

Jump process parameters
*)95( mVe ÷≅

*)10(, 12 −−≅ msωλ
10* =Sif

γ=λΕ+λI

Wiener process 
transition PDF 
with absorbing 
boundary

Small

Large

+λI

E
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Approximate formula for perfect 
integrate model

The single terms account for crossings happening:
1. Before the first jump

2. After the first excitatory jump

3. After the first inhibitory jump

4. In the instant when an excitatory jump occurs

≈

For 
diffusion

The relative maxima correspond to the modes of the densities 
)|,(),|,(),|,( 000 xteSgxtSgxteSg +−

+λI

E

(Giraudo2008)


