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Biological context

o Key property : adaptation. Transient frequency increase at (a)
the onset of stimulation 04 | ¥ ]

@ Intespike interval (ISI) correlations in experimental recordings J ‘ ||

o Correlations influence neural information transfer or signal S -2l | | ‘ |l .
detection E 40 \; il I‘ |

Modeling = 1 || li- i| |;|

@ Leaky integrate-and-fire (LIF) : elementary spiking model, '60.'- o

reproduces all-or-none response and postdischarge : :

refractoriness

@ Analytically tractable : no memory. Analysis with

orientation-preserving circle maps. Noisy LIF: renewal process,

characterized by the ISI distribution : no correlations. (Chacron, Lindner, Longtin J. Comput. Neurosci 2007)
@ Modified LIF : threshold depends on the past spiking history.

Memory parameter to adjust the level of fatigue. Leads to

adaptation property and ISI correlation.
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1.The model

‘ Plan

@ The model
@ The results

e adaptation
o ISl correlations

@ Discussion
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1.The model

dv % :

o = gt <v(n) (1)

ds Sr—S .

P if v(t) < s(t) (2)
v(tt) = wif v(t) = s(t) (3)
S(l’+) = so+ W(S(t), Oc) if V(t) = S(t) (4)

Notation : v volatge ; s threshold ; /(t) stimulation current ; 0
and 7, time constants for voltage and threshold dynamic ; s,
threshold resting value (without firing)

Reset rule : voltage vy, threshold sy + W(s(t), «), with

vo <0 < s, < sp. Memory parameter : « ; particular case :
Wi(s, ) = as
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s(t’ )=s,+W(s(t),o)
s(t)
> vit)=s(t) AV, )=l
v(t)
v V(tn*) =V0
(1] t t

1

t (arb. units)

Figure 1: Voltage (black solid line) and threshold (gray solid line) time series
obtained with the model. An action potential occurs when voltage and threshold
are equal. The firing times t, thus satisfy v(t,) = s(t;). Inmediately after an
action potential, the voltage is reset to zero while the threshold is set to a value
s(ty) =50+ W(s(ta), @).
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2.1 Adaptation under constant and step current stimulation
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Figure 2: Response of the model to a step increase in current. (A) The current
goes from subthreshold (1 = 0.1) tosuprathreshold (i = 0.9) at¢ = 50. Note the
adaptation in the threshold and the progressive lengthening of 1Ss to the new’
equilibrium value. Parameter values used were 7, = 2,7, = 1, a = 1,5, = 0.2,
so = 0.1, vy = 0. (B) The current goes from u = 0.4 to p = 0.9 with all other
parameters unchanged. (C) Hllustration of the effects of increased «. u goes from
04 to 0.9 but @ = 10 with all other parameters unchanged. Note the increased
rate of adaptation.

G. Wainrib - wainrib.gilles@ijm.jussieu.fr Integrate-and-fire model with threshold fatigue, adaptation and c

2.1 Adaptation under constant and step current stimulation

2.1 Adaptation under constant and step current stimulation

Assume W = W;(s,a) = as and /(t) = p constant.

Two cases:
@ if uf < s, : subthreshold stimulus and v(t) stabilizes at u6
o if uf > s, : generates sustained firing
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Assume W = Wji(s,a) = as and I(t)
Two cases:

= [ constant.
o if uf < s, : subthreshold stimulus and v(t) stabilizes at u6

e if uf > s, : generates sustained firing
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Assume W = W;(s,a) = as and /(t) = p constant.

Two cases:
@ if uf < s, : subthreshold stimulus and v(t) stabilizes at uf
e if uf > s, : generates sustained firing

Spiking times : t, — postdischarge threshold s(t;) = S,

|S| . An+1 = tn_|_1 — t,.
Aim : construct a map F such that S, = F(S).
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2.1 Adaptation under constant and step current stimulation

@ Dynamic between discharges:
Initial conditions v(0) = vp and s(0,S5) =S

v(t) = (vo — p6)e % + 1o

s(t,S)=(S—s.)e /" +5,
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2.1 Adaptation under constant and step current stimulation

@ Dynamic between discharges:
Initial conditions v(0) = vg and s(0,S5) =S

v(t) = (vo — p6)e % + 1o
s(t,S)=(S—s.)e /" +5,
@ ISI A1 is such that:
s(Ant1, Sy ) = v(Ant1)

s(t,S7) > v(t) forall 0 <t < Apig

This defines A, 11 as a function of S;F
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2.1 Adaptation under constant and step current stimulation

@ Dynamic between discharges:
Initial conditions v(0) = vp and s(0,S) =S

—t/0

v(t) = (vo — pb)e + pd

s(t,S)=(S—s.)e /" + 5,

@ ISI Ap,41 is such that:
s(Ant1,Sy) = v(Dpta)

s(t,S7) > v(t) forall 0 <t < Apyq

This defines A, 11 as a function of S,
@ Defines a map F by:
Spr1 = S0 +as(Bn11(S)), S7) = F(S)
F concave monotonic increasing function— Unique fixed
point §*
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2.1 Adaptation under constant and step current stimulation

Consequences:

@ Stabilizes at a periodic firing with constant ISI

* Oé(V() _Me)
A* =01l
in {5* — 50 —a/w]
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2.1 Adaptation under constant and step current stimulation

Consequences:

@ Stabilizes at a periodic firing with constant ISI

* Oé(Vo _/“1’9)
A" =201l
n [5* — 50 — auG}

@ 5" and A* increases with « : firing slows down when fatigue
increases
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2.1 Adaptation under constant and step current stimulation

Consequences:

@ Stabilizes at a periodic firing with constant ISI

* Oé(VO _IUJQ)
A" =01l
ln {5* — 50 —aué’]

@ 5" and A* increases with « : firing slows down when fatigue
increases

@ Impact of the input current pu:

—sg+ S — s, el 4 voeA*/TSe_A*/e — avoe_A*/e

HAT) = O — B/ A" /Tse=AT/0 _ qe—0/0)

— —3%* < 0 : firing frequency increases with p
— if @ > 1, ISI A* remains greater than 75 In(«)
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2.1 Adaptation under constant and step current stimulation

Adaptation:

@ a modification p — p + dp with dp > 0 leads to a
modification(increase) of the discharge rate : S, increases

from S* to a new value 55, resulting in a new ISI value
A5 < A*.

2.1 Adaptation under constant and step current stimulation

Adaptation:

@ a modification p — p + dp with dp > 0 leads to a
modification(increase) of the discharge rate : S, increases

from S* to a new value S5, resulting in a new ISI value
A5 < A*.

49 50 51 82 5 54 %

@ Impact of parameter a: F is contracting for a > 1, but not
necessarily otherwise
— discharge rate adaptation more pronounced when « larger
:faster rate of adaptation.
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Adrian and Zotterman, 1926 2.2 ISI correlations with gaussian white noise stimulation

Assume W = Wi(s,a) = as and I(t) = p + o&(t), where p is
constant and £(t) is white gaussian noise with unit intensity.
ISI are defined as the first passage times (FTPs) of the voltage
through the threshlod.

Fig. 6. Exp. 1. Single end-organ. Decrease in frequency of response
as duration of stimulus is increased. 1 grm, weight.
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2.2 ISI correlations with gaussian white noise stimulation 2.2 ISI correlations with gaussian white noise stimulation
Assume W = Wj(s,a) = as and I(t) = p + o&(t), where p is Assume W = Wi(s,a) = as and I(t) = p + o&(t), where p is
constant and £(t) is white gaussian noise with unit intensity. constant and £(t) is white gaussian noise with unit intensity.
ISI are defined as the first passage times (FTPs) of the voltage ISI are defined as the first passage times (FTPs) of the voltage
through the threshlod. through the threshlod.

@ when a = 0, no threshold fatigue, ISls are i.i.d random @ when a = 0, no threshold fatigue, ISls are i.i.d random
variables, completely determined by their probability density variables, completely determined by their probability density
function (pdf) g(t|so). function (pdf) g(t|so).

g is the FTP pdf of the Ornstein-Uhlenbeck (O.U) process 7 g is the FTP pdf of the Ornstein-Uhlenbeck (O.U) process 7
through the threshold s(t) with: through the threshold s(t) with:

dn . dn .

¢ = (70/0+ p) + o&(t) with 1(0) = vo ¢ = (70/0+ p) + o&(t) with 1(0) = vo

s(t) = (so — sr) exp(—t/7s) + s/ s(t) = (so — sr) exp(—t/7s) + s/
@ when a > 0 : need to take into account the variation of the
post discharghe threshold. Aim: establish a relation between

two consequent post discharge threshold thus constructing a
Markov chain.
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2.2 ISI correlations with gaussian white noise stimulation

2.2 ISI correlations with gaussian white noise stimulation

@ The conditional pdf of S;FH given S can be written as:

a(SF —s,)
My(u|SH)= ———— In —= 7 |S+F
1(ulSy) u—so—as,g 7—snu—so—asr ”1

Ts

where g is the FTP pdf of the O.U process throught
s(t,57) = (S — s;) exp(—t/7s) + s
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@ The conditional pdf of S;LH given S can be written as:

Ts a(St —s,) o+

M = In —2—=
1(ulSy) u—so—asrg Tsnu—so—as, n
where g is the FTP pdf of the O.U process throught
s(t,57) = (S} — s;) exp(—t/7s) + s

@ This defines the transition probability of an irreductible
Markov chain. Denote h*(S) its stationary distribution.
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2.2 ISI correlations with gaussian white noise stimulation

@ The conditional pdf of S;FH given St can be written as:

Ts

a(St —s,)

u— sy — Qas,

M (ulS;) = - g|rin 5]
where g is the FTP pdf of the O.U process throught
s(t,SF) = (S — s/)exp(—t/7s) + st

@ This defines the transition probability of an irreductible
Markov chain. Denote h*(S) its stationary distribution.

o The pdf of the ISI distribution g*(t) = [ g(t|S)h*(S)dS

— 50 — &Sy
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2.2 ISI correlations with gaussian white noise stimulation

ISls correlations for n large:

@ Serial correlation coefficients of ISls:

< DA, > — <Ay >?
PP A2 <A, 2
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2.2 ISI correlations with gaussian white noise stimulation

2.2 ISI correlations with gaussian white noise stimulation

ISls correlations for n large: ISls correlations for n large:

@ Serial correlation coefficients of ISls: @ Serial correlation coefficients of ISls:

<DpDpyp > — < Ay >2
<AZ>— <A, >?

<DpDpyp > — < A, >2
<AZ>— <A, >?

Pp = Pp =

o Moments: < A, >= [ tg*(t)dt and < A2 >= [ t2g*(t)dt o Moments: < A, >= [ tg*(t)dt and < A2 >= [ t2g*(t)dt

@ Covariation:

< Bolpip > [ AN g[S, S (5, A)] glAIS] K (S)
where (S, A,) = (S — s;) exp(—t/7s) + s =
Mir1(ulS) = [o M1(u]S")N(S'|S)dS'.

Find p, = 0 for « = 0. Not a renewal process for o > 0.

_|_
SnJr1 and
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2.2 ISI correlations with gaussian white noise stimulation
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2.2 ISI correlations with gaussian white noise stimulation

Simulation results: Simulation results:
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Figure 3: (A) ISI distribution obtained for & = 1 in the presence of gaussian
white noise of standard deviation 0.1. (B) Correlation coefficients o, as a function
of lag. Note that only s = ~0.38 is negative and that all coefficients are zero for
higher lags. (C) 181 distribution obtained for & = 4. (D) Correlation coefficients.
Note that p, = —0.48 is lower than for & = 1. Other parameter values were

L=8r,=1u=

Ls=0s5=1
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Figure4: p, asa function of the noise standard deviation. p, exhibits a minimum
for the noise intensity around 0.2. Tt is at this noise level that the noise is most
effective at perturbing the map without itself destroying the ISI correlations.
Parameter values were the same as in Figure 3 with @ = 1. Twenty thousand
ISIs were used in each case.
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3.Discussion : correlations

Performance enhancement

@ Detection of weak signal : reduce variance of pulse number
distribution while keeping mean unchanged (signal detection

theory) (Ratnam Nelson, J.Neurosci2000 - Chacron, Longtin,
Maler, J.Neurosci 2001)

@ Information transfer by noise shaping (PSD low frequency)
(Chacron Lindner Longtin, PRL, 2004)

@ Through short-term synaptic plasticity (Ludtke Nelson, Neural 0.00 ;b(zmv) 004 0 %0 f:G{DHz)m 260
Comp., 2006)

Figure 3. (a): Mutual information rates for the LIFDT and Nelson models as a function of ¢ and fe = 100 Hz.

Mutual information rates as a function of cutoff frequency fe for ¢ = 0,03 mV. The LIFDT model consistently |
greater information rates than the Nelson model. Parameter values were previously given.*?
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Figure 6. (a): Power spectrum of an experimentally obtained spike train from a receptor afferent under baseline activity

(black). We randomly shuffled the ISI sequence and plotted the power spectrum of the resulting spike train (grey). This Figure 7. PNDs obtained for both models for various counting times: (a)
procedure eliminates ISI correlations and the spike train is now a renewal process. (b) 181 SCC's of the r: a (black 20-_(!1') 90, (c) 255, (d) _300” EQD cycles. IS8T correlations T_L‘d“CC ﬂ‘}‘
squares) and the shuffled data (grey circles) showing that negative 1SI correlations are indeed removed by the shuffling variance of the PND }"']“[C_RWP{“.% the mean }’115113_‘1595!- ?r]'“-\ effect is
procedure. maximal at counting times in which the Fano factor is minimal.
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3.Discussion : correlations

Neuronal populations and coding : questions about correlations

@ Neuron response is sensitive to noise properties : neural
coding by correlation? (Holden, Nature, 2004) information in
correlations?

@ Interplay between spatial correlations and temporal
correlations?

o Correlations propagation? Role in percepetion and memory?
(Longtin Laing Chacron, 2003)

Develop appropriate measures for coupling/dependance
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Introduction

Biological questions:

Periodically forced noisy leaky integrate-and-fire

@ Response of a neuron to periodic and noisy stimulation

model e ISl distribution, autocorrelation, power spectral density of the
spike train
G. Wainrib - wainrib.gilles@ijm_jussieu.fr @ impact of noise intensity versus input frequency

Institut J. Monod - LPMA Univ. Paris 6 - Polytechnique

August, 2008
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Introduction References

o A first passage time analysis of the periodically forced noisy
leaky integrate and fire model, T.Shimokawa, K.Pakdaman,

Biological questions: T.Takahata, S.Tanabe, S.Sato, Biological Cybernetics,
83,327-340 (2000)

@ Time-scale matching in the response of a leaky
integrate-and-fire neuron model to periodic stimulus with
additive noise. Shimokawa T, Pakdaman K, Sato S (1999a)
Phys Rev E 59: 3427- 3443

@ Response of a neuron to periodic and noisy stimulation

@ |ISI distribution, autocorrelation, power spectral density of the
spike train

@ impact of noise intensity versus input frequency

Modeling @ Stochastic resonance and spike-timing precision in an
o Leaky integrate-and-fire model ensemble of leaky integrate and fire neuron
e Input : periodic stimulation + noise models.Shimokawa T, Rogel A, Pakdaman K, Sato S (1999b)

Phys Rev E 59: 3461-3470

@ Mean discharge frequency locking in the response of a noisy
neuron model to subthreshold periodic stimulation.
Shimokawa T, Pakdaman K, Sato S (1999c) Phys Rev E 60:
R33-R36

@ Input phase not reset upon firings
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1.The leaky integrate and fire (LIF) model

Consider standard LIF model, with a noisy periodic stimulation:
. . t
© The leaky integrate and fire model dv(t) = _M + 4+ 1(t)| dt + odW(t) if v(t) < so (1)
© Analysis of the model 4
© Computation of the spike train characteristics

@ Applications Notation : v volatge ; sp threshold (constant) ; vy reset potential ;
6 membrane time constant ; /(t) deterministic input signal
(periodic); o noise intensity ; W(t) standard Wiener process.
Remark : can also assume a Poisson noise source.

v(tt) = wif v(t) = s (2)
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1.The leaky integrate and fire (LIF) model 2. Analysis of the model

We want to derive a stochastic phase transition operator

© Change of variable — Ornstein-Uhlenbeck process with
time-dependent boundary

© First-passage time probability density

Voltage [mV]

© Phase transition operator : knowing the probability density for
the phase at the n-th spike, what is the probability density for
the phase at the n + 1th spike?

0 a0 60 90 120 150 18O
time [ms]
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2. Analysis of the model

1.Change of variable — Ornstein-Uhlenbeck process with
time-dependant boundary

Solution in the absence of noise, given that the last firing occured
at time t’. When /(t) is T-periodic, with u =t — t’ and

0 =2nt’'/T mod 27:

V;(t’ Z‘/) — Voe*“/T+,uT(1 _ eUT)_|_/ /(S—|— T@/Qﬂ')e*(uis)ﬁds
0

—:Intesrpike interval u determined by phase 6 at the previous
discharge.
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‘ 2. Analysis of the model

1.Change of variable — Ornstein-Uhlenbeck process with
time-dependant boundary

Solution in the absence of noise, given that the last firing occured
at time t’. When /(t) is T-periodic, with u =t — t’ and

0 =2xt'/T mod 27

V;(t’ t/) — VoeilJ/T‘{_MT(l _ eu7)+/ /(S+ T9/27T)ef(ufs)/7ds
0

—:Intesrpike interval u determined by phase 6 at the previous

discharge.
X(t) = V(t) = vn(t,t) (3)
Sh(t,t') = sp—vi(t,t) (4)
New dynamic equations:
ax(t) = —XO g odw(e) if X(1) < Sm(t. ) (5)

X(tT) = 0 if;(t) = Sm(t,t") (6)
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. Analysis of the model

. Analysis of the model

2.First-passage time probability density
Vm(u,8) = vi(t,t') and Sp(u,0) = Sk(t,t))

FPT =inf{u: X(u) > Sm(u,0) | X(0) =0 < Sy(0,0)

Random variable with coniditional probability density function
(pdf) g(Sm(u, 0), u|X(0) = 0) satisfying:

p(x, t|0,0) = /Ot g(Sm(u,0), ul0)p(x, t|Sm(u,8), u)du

for X(t) = x > Sp(t,0) and X(0) =0 < 5,(0,0), and with p the
transition pdf of the O.U process X(t).

Periodically forced noisy leaky integrate-and-fire model
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2.First-passage time probability density
Vm(u,0) = vi(t,t') and Sp(u,0) = SL(t,t)

FPT =inf{u: X(u) > Sm(u,0) | X(0) =0 < Sp(0,0)

Random variable with coniditional probability density function
(pdf) g(Sm(u, 0),u|X(0) = 0) satisfying:

p(x, t0,0) = /Ot g(Sm(u,0), ul0)p(x, t|Sm(u,0), u)du

for X(t) = x > Sp(t,0) and X(0) =0 < 5,(0,0), and with p the
transition pdf of the O.U process X(t).

— given that a discharge occured at time t’ (phase 0), the
following interspike interval v is distributed according to

8(Sm(u, ), u|0) := g(ul6).
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2. Analysis of the model ‘ 2. Analysis of the model

3.Stochastic phase transition operator 3.Stochastic phase transition operator
Probability density for the discharge phase ¢ knowing that the Probability density for the discharge phase ¢ knowing that the
previous discharge phase was 6: previous discharge phase was 6:
f(o]0) = Zg (kT + (¢ — 0)/2 ] 0) f(ol0) = Zg (kT + (¢ —0)/2 ] 0)
with Q =27/T. with Q =27/T.
The pdf of the phase at the n-th firing is, given hg the pdf for the
initial phase:

21
) = /0 F(616)n_1(6)d8 = (Pho_1)(6) = (P"h)(&)

P : stochastic phase transition operator.
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2. Analysis of the model . Analysis of the model

3.Stochastic phase transition operator 3.Stochastic phase transition operator

Properties of P Properties of P
@ P is a linear operator on L(]0,27]) (can be restricted to L?) @ P is a linear operator on L(]0,27]) (can be restricted to L?)
@ P is a Markov operator (unity preserving positive contraction) @ P is a Markov operator (unity preserving positive contraction)

— under the assumption that infy f(¢,0) > 0, {h,} is

asymptotically stable : there exists a unique h,, € L! such that
heo > 0, f027T heo = 1, and

Phy, = ho

P"ho — hoo converges in L' to 0. Better: if f is C!, uniform
convergence.
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3.Computation of the spike train characteristics 3.Computation of the spike train characteristics

2.Combining g(t|0) and hs(f) one can compute:

. . . . 27
1.Computation of the phase distribution hs o ISl distribution: i (t) =[5~ g(t0)heo(6)dO

Approximate P by finite ranked linear operators of L2. Let (u,) a
complete orthogonal family (ex: trigonometric functions) of L2. if

h(¢) = 2_&nun(®) and F(¢l0) = 55 Amntm(¢)um(6) then one

can approximate P by

N N
Pnh(@) =D > Amnalltnlls um()

m=1 n=1

To compute h, start with hy and iterate Py until convergence
criteria.
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3.Computation of the spike train characteristics 3.Computation of the spike train characteristics
2.Combining g(t|#) and h(0) one can compute: 2.Combining g(t]0) and hs(f) one can compute:
o IS distribution: ix(t) = [™ g(t0)hoo(d)db o IS| distribution: ix(t) = [™ g(t8)hoo(d)db
@ Autocorrelation function of the intervals: @ Autocorrelation function of the intervals:
ch =< tity > — < t2 > Ch =< tity > — < t? >

@ Autocorrelogram : probability L(t)dt for a discharge to occur
within a time interval (¢, t + dt) from another. L(t) periodic
for large t.
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3.Computation of the spike train characteristics 3.Computation of the spike train characteristics

2.Combining g(t|f) and hoo(€) one can compute: 2.Combining g(t|0) and hs(f) one can compute:

o IS distribution: ix(t) = [2™ g(t0)hoo(0)db o IS| distribution: ix(t) = [™ g(t0)hoo(6)db

@ Autocorrelation function of the intervals: @ Autocorrelation function of the intervals:
Ch =< tith > — < t2 > Ch =< tith > — < t>>

@ Autocorrelogram : probability L(t)dt for a discharge to occur @ Autocorrelogram : probability L(t)dt for a discharge to occur
within a time interval (t, t 4 dt) from another. L(t) periodic within a time interval (t, t 4 dt) from another. L(t) periodic
for large t. for large t.

@ Power spectral density : P(w) = %[1 + L(w) + [(—w)] @ Power spectral density : P(w) = %[1 + [(w) + [(—w)]
(Bartlett,1978). (Bartlett,1978).

@ Input-output cross-correlation : input x(t) = /(t) vs. output
y(t) =>;0(t — t;) then: Ry (u) :=

_ 1 t 1 27
jim —/0 x(t+ u)y(t)dt = x/0 1(6/9 + u)hou (6)d6

t'—oot!
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3.Computation of the spike train characteristics 3.Computation of the spike train characteristics

Fig. 3. Phase distribution (upper
panels) and interspike interval
distribution (fower panels). Solid
fine is calculated based on the
| method written in this paper, and
0 : ” we compare it with the

0 2 m-:m i . g[rud} 2 numerically estimated phase
distribution from the stochastic
0.08 i 04 differential equation. The box in

the left column (or right column) is
estimated by the same data as in
03 b the upper left (or right) panel in
Fig. 2. The number of the bin is
100 upper two panels. In the lower
3 row, the bin size is 1 ms (left

| panel) and 0.325 (right panel).

;- Input signal is one sinusoidal
|

function in left column, and sum
of two sinusoidal functions in

, 1 N 1. AR o right column. Both input signals
0 30 60 90 120 150 0 30 60 arc the same as in Fig. 2. Same
time [ms} time {ms] parameters as in Fig. 2
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3.Computation of the spike train characteristics 4.Applications

0.4

Fig. 4. Autocorrelation function
(upper panels) and power spectral
density of the spike train (fower . . . .
panels). In upper panels, solid line o DeteCtlon Of a Weak peI’IOdIC Slgna| goeS th I’OUgh a maX. as o
is calculated based on the method . .

written in this paper, and the hox increases ; single LIF or ensembles of LIF.

is numerically estimated from the

stochastic differential equation.

We use 2000 units of leaky inte- e

LIF performance improved by adding noise : for weak
grate-and-fire model (LIFM) for . . -
the latter case. Input signal is one subthreshold input, matching beween time-scales of the

sinusoidal functin'n in If‘fi‘ column, . ) i . ) . . .
okt e g intrinsic noise-induced discharge and modulation period
' ' ' 2 upper left panel, the number of the .
3 bin is 450 and discharges occur © For large subthreshold input : response enhancement depends
003 0.08 | |.3 3(;2 Fimcs during 4(1){'::?' ms w]i:Ih h f d .. h h Id
& simulation time step 0.01 ms. For
o e e upon the frequency response to a deterministic suprathresho
. of the bin is 800 and discharges 1
e 0.02 e occur 40 067 times during 400 ms Slgnal near th reShO|d .
0.04 4 with simulation time step
0.01 ms. In lower panels, the
001 } Dirac pulses at the harmonics are
| 0.02 represented by vertical segments

\ of the height equal to 2¢, in

| L_r—. Eq. (55). Both input signals are

s3 as ig. 2. Same
0 ur 2 3T 4T ST 0 ur T T ST the same as in Fig
nf‘“""e““'y [kHz] yﬂ'fqulﬂﬂ [kHz? parameters as in Fig. 2

time [ms]
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0.011 én.cm
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[ 0
| 1 0.004
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[{] 2
IS (0 900 300 D (mV)
%0.001
FIG. 11. Three-dimensional representations of the ISI distribu-
tion (in kilohertz) as a function of ISI in milliseconds and noise
intensity D in (millivolts)® for endogenous (upper panel) and exog- 5

enous (lower panel). The parameters are the same as in Fig. 10.
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FIG. 2. Mean ISI (¢) versus noise intensity D in [ (mV)?>/(ms) ]
for exogenous forcing. The lines show (7) for forcings with ampli-
tudes 4=0, 0.0225, 0.025, 0.0275, 0.029, 0.03, 0.0314, and 0.032
V/s from right to left. Only 4=0.032 V/s is suprathreshold. The
arrow indicates the noise intensity vielding (7) =17 for 4 =0 (where
T is the modulation period). Same parameters as in Fig. 1.
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