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Introduction

Biological context

Key property : adaptation. Transient frequency increase at
the onset of stimulation

Intespike interval (ISI) correlations in experimental recordings

Correlations influence neural information transfer or signal
detection

Modeling

Leaky integrate-and-fire (LIF) : elementary spiking model,
reproduces all-or-none response and postdischarge
refractoriness

Analytically tractable : no memory. Analysis with
orientation-preserving circle maps. Noisy LIF: renewal process,
characterized by the ISI distribution : no correlations.

Modified LIF : threshold depends on the past spiking history.
Memory parameter to adjust the level of fatigue. Leads to
adaptation property and ISI correlation.
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1.The model

dv

dt
= −v

θ
+ I (t) if v(t) < v(t) (1)

ds

dt
=

sr − s

τs
if v(t) < s(t) (2)

v(t+) = v0 if v(t) = s(t) (3)

s(t+) = s0 + W (s(t), α) if v(t) = s(t) (4)

Notation : v volatge ; s threshold ; I (t) stimulation current ; θ
and τv time constants for voltage and threshold dynamic ; sr

threshold resting value (without firing)
Reset rule : voltage v0, threshold s0 + W (s(t), α), with
v0 ≤ 0 < sr ≤ s0. Memory parameter : α ; particular case :
W1(s, α) = αs
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2.1 Adaptation under constant and step current stimulation

G. Wainrib - wainrib.gilles@ijm.jussieu.fr Integrate-and-fire model with threshold fatigue, adaptation and correlations

2.1 Adaptation under constant and step current stimulation

Assume W = W1(s, α) = αs and I (t) = µ constant.
Two cases:

if µθ < sr : subthreshold stimulus and v(t) stabilizes at µθ

if µθ > sr : generates sustained firing

Spiking times : tn → postdischarge threshold s(t+
n ) = S+

n .
ISI : ∆n+1 = tn+1 − tn.
Aim : construct a map F such that S+

n+1 = F (S+
n ).
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2.1 Adaptation under constant and step current stimulation

Dynamic between discharges:
Initial conditions v(0) = v0 and s(0, S) = S

v(t) = (v0 − µθ)e−t/θ + µθ

s(t,S) = (S − sr )e−t/τr + sr

ISI ∆n+1 is such that:

s(∆n+1, S
+
n ) = v(∆n+1)

s(t,S+
n ) > v(t) for all 0 ≤ t ≤ ∆n+1

This defines ∆n+1 as a function of S+
n

Defines a map F by:
S+

n+1 = s0 + αs(∆n+1(S+
n ),S+

n ) := F (S+
n )

F concave monotonic increasing function→ Unique fixed
point S∗
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2.1 Adaptation under constant and step current stimulation

Consequences:

Stabilizes at a periodic firing with constant ISI

∆∗ = θ ln

[
α(v0 − µθ)

S∗ − s0 − αµθ

]

S∗ and ∆∗ increases with α : firing slows down when fatigue
increases

Impact of the input current µ:

µ(∆∗) =
−s0 + sr − sr e∆∗/τs + v0e∆∗/τs e−∆∗/θ − αv0e−∆∗/θ

θ(α− e∆∗/τs + e∆∗/τs e−∆∗/θ − αe−∆∗/θ)

→ ∂µ
∂∆∗ < 0 : firing frequency increases with µ

→ if α > 1, ISI ∆∗ remains greater than τs ln(α)
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2.1 Adaptation under constant and step current stimulation

Adaptation:

a modification µ→ µ+ δµ with δµ > 0 leads to a
modification(increase) of the discharge rate : Sn increases
from S∗ to a new value S∗δ , resulting in a new ISI value
∆∗δ < ∆∗.

Impact of parameter α: F is contracting for α ≥ 1, but not
necessarily otherwise
→ discharge rate adaptation more pronounced when α larger
:faster rate of adaptation.
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Adrian and Zotterman, 1926
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2.2 ISI correlations with gaussian white noise stimulation

Assume W = W1(s, α) = αs and I (t) = µ+ σξ(t), where µ is
constant and ξ(t) is white gaussian noise with unit intensity.
ISI are defined as the first passage times (FTPs) of the voltage
through the threshlod.

when α = 0, no threshold fatigue, ISIs are i.i.d random
variables, completely determined by their probability density
function (pdf) g(t|s0).
g is the FTP pdf of the Ornstein-Uhlenbeck (O.U) process η
through the threshold s(t) with:

dη

dt
= (−η/θ + µ) + σξ(t) with η(0) = v0

s(t) = (s0 − sr ) exp(−t/τs) + sr

when α > 0 : need to take into account the variation of the
post discharghe threshold. Aim: establish a relation between
two consequent post discharge threshold thus constructing a
Markov chain.
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2.2 ISI correlations with gaussian white noise stimulation

The conditional pdf of S+
n+1 given S+

n can be written as:

Π1(u|S+
n ) =

τs
u − s0 − αsr

g

[
τs ln

α(S+
n − sr )

u − s0 − αsr
|S+

n

]

where g is the FTP pdf of the O.U process throught
s(t, S+

n ) = (S+
n − sr ) exp(−t/τs) + sr .

This defines the transition probability of an irreductible
Markov chain. Denote h∗(S) its stationary distribution.

The pdf of the ISI distribution g∗(t) =
∫

g(t|S)h∗(S)dS
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2.2 ISI correlations with gaussian white noise stimulation

ISIs correlations for n large:

Serial correlation coefficients of ISIs:

ρp =
< ∆n∆n+p > − < ∆n >

2

< ∆2
n > − < ∆n >2

Moments: < ∆n >=
∫

tg∗(t)dt and < ∆2
n >=

∫
t2g∗(t)dt

Covariation:

< ∆n∆n+p >=

∫
∆∆′ g [∆′|S ′]Πp−1[S ′|f (s,∆)] g [∆|S ] h∗(S)

where f (S+
n ,∆n) = (S+

n − sr ) exp(−t/τs) + sr = S+
n+1 and

Πk+1(u|S) =
∫
S ′ Π1(u|S ′)Πk(S ′|S)dS ′.

Find ρp = 0 for α = 0. Not a renewal process for α > 0.
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2.2 ISI correlations with gaussian white noise stimulation

Simulation results:

G. Wainrib - wainrib.gilles@ijm.jussieu.fr Integrate-and-fire model with threshold fatigue, adaptation and correlations

2.2 ISI correlations with gaussian white noise stimulation

Simulation results:

G. Wainrib - wainrib.gilles@ijm.jussieu.fr Integrate-and-fire model with threshold fatigue, adaptation and correlations



3.Discussion : correlations

Performance enhancement

Detection of weak signal : reduce variance of pulse number
distribution while keeping mean unchanged (signal detection
theory) (Ratnam Nelson, J.Neurosci2000 - Chacron, Longtin,
Maler, J.Neurosci 2001)

Information transfer by noise shaping (PSD low frequency)
(Chacron Lindner Longtin, PRL, 2004)

Through short-term synaptic plasticity (Ludtke Nelson, Neural
Comp., 2006)
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3.Discussion : correlations

Neuronal populations and coding : questions about correlations

Neuron response is sensitive to noise properties : neural
coding by correlation? (Holden, Nature, 2004) information in
correlations?

Interplay between spatial correlations and temporal
correlations?

Correlations propagation? Role in percepetion and memory?
(Longtin Laing Chacron, 2003)

Develop appropriate measures for coupling/dependance
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Introduction

Biological questions:

Response of a neuron to periodic and noisy stimulation

ISI distribution, autocorrelation, power spectral density of the
spike train

impact of noise intensity versus input frequency

Modeling

Leaky integrate-and-fire model

Input : periodic stimulation + noise

Input phase not reset upon firings
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1.The leaky integrate and fire (LIF) model

Consider standard LIF model, with a noisy periodic stimulation:

dv(t) =

[
−v(t)

τ
+ µ+ I (t)

]
dt + σdW (t) if v(t) < s0 (1)

v(t+) = v0 if v(t) = s0 (2)

Notation : v volatge ; s0 threshold (constant) ; v0 reset potential ;
θ membrane time constant ; I (t) deterministic input signal
(periodic); σ noise intensity ; W (t) standard Wiener process.
Remark : can also assume a Poisson noise source.
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2. Analysis of the model

We want to derive a stochastic phase transition operator

1 Change of variable → Ornstein-Uhlenbeck process with
time-dependent boundary

2 First-passage time probability density

3 Phase transition operator : knowing the probability density for
the phase at the n-th spike, what is the probability density for
the phase at the n + 1th spike?
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2. Analysis of the model

1.Change of variable → Ornstein-Uhlenbeck process with
time-dependant boundary
Solution in the absence of noise, given that the last firing occured
at time t ′. When I (t) is T -periodic, with u = t − t ′ and
θ = 2πt ′/T mod 2π:

v 1
m(t, t ′) = v0e−u/τ +µτ(1− e−uτ ) +

∫ u

0
I (s + Tθ/2π)e−(u−s)/τds

→:Intesrpike interval u determined by phase θ at the previous
discharge.

X (t) = V (t)− v 1
m(t, t ′) (3)

S1
m(t, t ′) = s0 − v 1

m(t, t ′) (4)

New dynamic equations:

dX (t) = −X (t)

τ
dt + σdW (t) if X (t) < Sm(t, t ′) (5)

X (t+) = 0 if X (t) = Sm(t, t ′) (6)
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1.Change of variable → Ornstein-Uhlenbeck process with
time-dependant boundary
Solution in the absence of noise, given that the last firing occured
at time t ′. When I (t) is T -periodic, with u = t − t ′ and
θ = 2πt ′/T mod 2π:

v 1
m(t, t ′) = v0e−u/τ +µτ(1− e−uτ ) +

∫ u

0
I (s + Tθ/2π)e−(u−s)/τds

→:Intesrpike interval u determined by phase θ at the previous
discharge.

X (t) = V (t)− v 1
m(t, t ′) (3)

S1
m(t, t ′) = s0 − v 1

m(t, t ′) (4)

New dynamic equations:

dX (t) = −X (t)

τ
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2. Analysis of the model

2.First-passage time probability density
vm(u, θ) = v 1

m(t, t ′) and Sm(u, θ) = S1
m(t, t ′)

FPT = inf{u : X (u) > Sm(u, θ) | X (0) = 0 < Sm(0, θ)

Random variable with coniditional probability density function
(pdf) g(Sm(u, θ), u|X (0) = 0) satisfying:

p(x , t|0, 0) =

∫ t

0
g(Sm(u, θ), u|0)p(x , t|Sm(u, θ), u)du

for X (t) = x > Sm(t, θ) and X (0) = 0 < Sm(0, θ), and with p the
transition pdf of the O.U process X (t).

→ given that a discharge occured at time t ′ (phase θ), the
following interspike interval u is distributed according to
g(Sm(u, θ), u|0) := g(u|θ).
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2. Analysis of the model

3.Stochastic phase transition operator
Probability density for the discharge phase φ knowing that the
previous discharge phase was θ:

f (φ|θ) =
1

Ω

∞∑

k=0

g (kT + (φ− θ)/Ω | θ)

with Ω = 2π/T .

The pdf of the phase at the n-th firing is, given h0 the pdf for the
initial phase:

hn(φ) =

∫ 2π

0
f (φ|θ)hn−1(θ)dθ := (Phn−1)(φ) = (Pnh)(φ)

P : stochastic phase transition operator.
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2. Analysis of the model

3.Stochastic phase transition operator
Properties of P

P is a linear operator on L1([0, 2π]) (can be restricted to L2)

P is a Markov operator (unity preserving positive contraction)

→ under the assumption that infθ f (φ, θ) > 0, {hn} is
asymptotically stable : there exists a unique h∞ ∈ L1 such that
h∞ ≥ 0,

∫ 2π
0 h∞ = 1, and

Ph∞ = h∞

Pnh0 − h∞ converges in L1 to 0. Better: if f is C 1, uniform
convergence.

G. Wainrib - wainrib.gilles@ijm.jussieu.fr Periodically forced noisy leaky integrate-and-fire model

2. Analysis of the model

3.Stochastic phase transition operator
Properties of P

P is a linear operator on L1([0, 2π]) (can be restricted to L2)

P is a Markov operator (unity preserving positive contraction)

→ under the assumption that infθ f (φ, θ) > 0, {hn} is
asymptotically stable : there exists a unique h∞ ∈ L1 such that
h∞ ≥ 0,

∫ 2π
0 h∞ = 1, and

Ph∞ = h∞

Pnh0 − h∞ converges in L1 to 0. Better: if f is C 1, uniform
convergence.

G. Wainrib - wainrib.gilles@ijm.jussieu.fr Periodically forced noisy leaky integrate-and-fire model



3.Computation of the spike train characteristics

1.Computation of the phase distribution h∞
Approximate P by finite ranked linear operators of L2. Let (un) a
complete orthogonal family (ex: trigonometric functions) of L2. if
h(φ) =

∑
ξnun(φ) and f (φ|θ) =

∑∑
Amnum(φ)um(θ) then one

can approximate P by

PNh(φ) =
N∑

m=1

N∑

n=1

Amnξn||un||22 um(φ)

To compute h∞, start with h0 and iterate PN until convergence
criteria.
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3.Computation of the spike train characteristics

2.Combining g(t|θ) and h∞(θ) one can compute:

ISI distribution: i∞(t) =
∫ 2π

0 g(tθ)h∞(θ)dθ

Autocorrelation function of the intervals:
cn =< t1tn > − < t2 >

Autocorrelogram : probability L(t)dt for a discharge to occur
within a time interval (t, t + dt) from another. L(t) periodic
for large t.

Power spectral density : P(ω) = 1
π<t> [1 + L̃(ω) + L̃(−ω)]

(Bartlett,1978).

Input-output cross-correlation : input x(t) = I (t) vs. output
y(t) =

∑
i δ(t − ti ) then: Rxy (u) :=

lim
t′→∞

1

t ′

∫ t′

0
x(t + u)y(t)dt =

1

< t >

∫ 2π

0
I (θ/Ω + u)h∞(θ)dθ
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3.Computation of the spike train characteristics
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4.Applications

1 Detection of a weak periodic signal goes through a max. as σ
increases ; single LIF or ensembles of LIF.

2 LIF performance improved by adding noise : for weak
subthreshold input, matching beween time-scales of the
intrinsic noise-induced discharge and modulation period

3 For large subthreshold input : response enhancement depends
upon the frequency response to a deterministic suprathreshold
signal near threshold.
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