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1 Poisson processes

1.1 The Poisson process

In order to define the Poisson process, we need a definition of a continuous-time

stochastic process.

Definition 1 (Continuous-time stochastic process) A continuous-time stochas-

tic process, (X(t))t≥0, with state space E is a collection of random variables X(t) with

values in E.

With an at most countable state space, E, the distribution of the stochastic process,

(X(t))t≥0, is determined by the probabilities

P{X(t0) = i0, X(t1) = i1, . . . , X(tn) = in} (1)

for 0 ≤ t0 < t1 < . . . < tn, i0, i1, . . . , in ∈ E for all n ∈ N.

One of the fundamental continuous-time processes, and quite possibly the simplest

one, is the Poisson process, which may be defined as follows:

Definition 2 (Homogeneous Poisson process) Let S1, S2, . . . be a sequence of in-

dependent identically exponentially distributed random variables with intensity λ.

Put Tn =
∑n

k=1 Sk. Then

N(t) =
∞

∑

n=1

1{Tn≤t} t ≥ 0

is a homogeneous Poisson process with intensity λ.

Thus the Poisson process describes the number of “events” happened until time t
when the waiting time from one event to the next is exponential and independent of

all other waiting times.

Following Brémaud, we will use HPP as an abbreviation of homogeneous Poisson

process. We will not discuss inhomogeneous Poisson processes in these notes and will

therefore just say “Poisson process” when we mean “homogeneous Poisson process”.

The distribution of a Poisson process may in principle be derived from the definition.

For instance we have the following partial result:
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Theorem 3 If (N(t))t≥0 is a Poisson process with intensity λ > 0 then for each t > 0
N(t) ∼ Pois(λt).

Proof For each n ∈ N we have Tn ∼ Γ(n, 1/λ) and hence

P{N(t) ≥ n} = P{Tn ≤ t} = 1 −

∫ ∞

t

λn

Γ(n)
un−1e−λudu = 1 −

n−1
∑

k=0

(λt)k

k!
e−λt

where the last equality follows by partial integration. ¤

The following equivalent definition of a Poisson process is often useful.

Theorem 4 (Equivalent definition of a HPP) (N(t))t≥0 is a Poisson process with

intensity λ if and only if

1. P{N(0) = 0} = 1

2. ∀n ∈ N, 0 < t0 < t1 < . . . < tn: The increments N(t0), N(t1) − N(t0), . . . ,
N(tn) − N(tn−1) are independent.

3. ∀0 < s < t: N(t) − N(s) ∼ Pois(λ(t − s))

Proof1 By direct calculation, one sees that a process fulfilling 1–3 has independent

identically exponentially distributed waiting times between jumps; see the proof of

Brémaud Theorem 8.1.1. Thus a process fulfilling 1–3 is a Poisson process. On the

other hand, we have now shown that for any given Poisson process, (Nt)t≥0, with

intensity λ there is a process, (Ñt)t≥0, fulfilling 1–3, which is also a Poisson process

with intensity λ. Thus,

P{Ñ(t0) = i0, . . . , Ñ(tn) = in} = P{N(t0) = i0, . . . , N(tn) = in}

From this it follows that a Poisson process fulfils 1–3. ¤

The theorem gives an alternative definition of a Poisson process as a process with in-

dependent stationary Poisson distributed increments. Processes with independent

stationary increments are known as Levy processes. Another example of a Levy

process is the very important Brownian motion, which has independent stationary

Gaussian increments.

Note that the distribution of a Poisson process is easier to write down using Theorem

4 than by using Definition 2.

1This remark may be skipped. In our definition of the Poisson process we have imposed a certain

structure on the sample paths of the process: It starts in 0, stays there for an exponential time, then

jumps to 1, stays there for another (independent) exponential time, and so on. Due to measure-theoretic

subtleties, one may construct a process fulfilling 1–3 of Theorem 4 which does not have this structure.

On the other hand one may always choose a version of a process fulfilling 1–3 of Theorem 4 which has

the desired structure and it is this version that we prove is a Poisson process in our sense.
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1.2 Some properties of the exponential distribution

The exponential distribution is of course essential to the understanding of the Poisson

process but also for the Markov chains to be discussed next. Here we collect a few

useful results.

Theorem 5 (Memoryless property) If X ∼ Exp(1/λ) then X−t|X > t ∼ Exp(1/λ).
Conversely, if X is a non-negative random variable with a continuous distribution

such that the conditional distribution of X − t given X > t is the same as the distribu-

tion of X for all t > 0, then X is exponentially distributed.

Proof If X ∼ Exp(1/λ) then

P{X − t > s|X > t} =
P{X > t + s}

P{X > t}
= e−λs t, s > 0.

Conversely if for all s, t > 0 we have

P{X > s} = P{X − t > s|X > t} =
P{X > t + s}

P{X > t}

then

g(t) = log P{X > t}

is a decreasing linear function, g(s) = −λs for some λ > 0, say, and it follows that

P{X > s} = exp(−sλ) for some λ > 0. ¤

Lemma 6 Let X1, . . . , Xn be independent exponentially distributed random variables

with intensity λ1, . . . , λn. Then mini=1,...,n Xi is exponentially distributed with intensity

λ1 + · · · + λn.

Proof For any x > 0 we have

P{mini=1,...,n Xi > x} =
∏n

i=1 P{Xi > x} = exp (−x
∑n

i=1 λi)

proving the claim. ¤

Theorem 7 (Competition theorem) Let Xi i ∈ I be independent random variables

such that Xi ∼ Exp(1/λi), where I is an at most countable set. Suppose that λ =
∑

i∈I λi < ∞ and put

Z = infi∈I Xi and K = i if Xi = Z

Then Z and K are independent, Z ∼ Exp(1/λ) and

P{K = i} =
λi

λ
i ∈ I
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Proof First suppose that I is finite and pick an arbitrary i ∈ I. Put U = infj∈I\{i} Xj .

Then U ∼ Exp(1/
∑

j∈I\{i} λj) by Lemma 6. Then with f denoting the density of U
and using the fact that Xi and U are independent we get

P{K = i, Z > z} = P{z < Xi < U} =

∫ ∞

z

∫ ∞

x

f(u)du · λie
−λixdx

=

∫ ∞

z

e−x
P

j∈I\{i} λj · λie
−λixdx =

λi

λ

∫ ∞

z

λe−xλdx

=
λi

λ
· e−zλ

proving the result when I is finite. If I is infinite but countable we may choose finite

subsets In ↑ I and letting Zn = infi∈In
Xi and Kn = i if Xi = Zn we see that

P{K = i, Z > z} = lim
n→∞

P{Kn = i, Zn > z} = lim
n→∞

λi
∑

i∈In
λi

· e−z
P

i∈In
λi =

λi

λ
e−zλ

as {Kn = i, Zn > z} ↓ {K = i, Z > z}. ¤

Remark One may worry whether K is well-defined: Could we (in the infinite I case!)

have Z = Xi and Z = Xj for some i 6= j? If we in the proof let K = ∆ 6∈ I if more than

one Xi equals Z, then the proof may be repeated unchanged and we get

P{K = i} =
λi

λ
i ∈ I

From this we see that P{K = ∆} = 0 setting our minds at rest.

1.3 Some properties of the Poisson process

Theorem 8 (Sum of independent Poisson processes) Let (Ni)i∈I be an at most

countable family of independent Poisson processes with intensities (λi)i∈I . If λ =
∑

i∈I λi < ∞ then

N(t) =
∑

i∈I

Ni(t) t ≥ 0

is a Poisson process with parameter λ.

Proof See Brémaud, proof of Theorem 8.1.2. ¤

At first, summing independent Poisson processes may seem to be a strange idea.

However, suppose that we observe different types of events happen over time and

that each type of event occur according to its own Poisson process independently of

the other types; the different types could be different types of claims in an insurance

company or deaths due to different causes. Then ignoring the type of events, i.e.

summing the event processes, the resulting event process is still Poisson.

The next theorem proves a kind of converse: If events arrive according to a Poisson

process and these events are of different types, then if the type of event is indepen-

dent of the arrival process, each type specific arrival process is Poisson.
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Theorem 9 (Thinning) Let (N(t))t≥0 be a Poisson process with parameter λ and let

(Xn)n∈N be a sequence of iid random variables with values in a at most countable set

I and distribution given by

P{Xn = i} = pi i ∈ I

Suppose that (Xn)n∈N is independent of (N(t))t≥0 and put

Ni(t) =
∞

∑

n=1

1{Xn=i} · 1{Tn≤t} t ≥ 0, i ∈ I

where T1, T2, . . . are the arrival times for the Poisson process (N(t))t≥0. Then the pro-

cesses (Ni(t))t≥0, i ∈ I are independent Poisson processes with parameters piλ, i ∈ I.

Proof For simplicity, consider the case where I = {1, 2}. Here

P{N1(t0) = n1,0, N1(t1) − N1(t0) = n1,1, N2(t0) = n2,0, N2(t1) − N2(t0) = n2,1}

= P{the same|N(t0) = n0, N(t1) − N(t0) = n1}P{N(t0) = n0, N(t1) − N(t0) = n1}

=

(

n0

n1,0

)

p
n1,0

1 p
n0−n1,0

2 ·

(

n1

n1,1

)

p
n1,1

1 p
n1−n1,1

2 ·
(λt0)

n0

n0!
e−λt0 ·

(λ(t1 − t0))
n1

n1!
e−λ(t1−t0)

=
(p1λt0)

n1,0

n1,0!
e−p1λt0 ·

(p1λ(t1 − t0))
n1,1

n1,1!
e−p1λ(t1−t0)

·
(p2λt0)

n2,0

n2,0!
e−p2λt0 ·

(p2λ(t1 − t0))
n2,1

n2,1!
e−p2λ(t1−t0)

from which it follows that the increments, N1(t0), N1(t1) − N1(t0), N2(t0), N2(t1) −
N2(t0), are independent and Poisson distributed. Moreover, we also obtain for in-

stance independence of N1(t1) and N2(t0) by summing over the possible values of

N1(t0) and N2(t1) − N2(t0). Clearly, all of this may be extended to any finite number

of increments and to any finite I proving the result for I finite. To obtain the re-

sult for an infinite I observe that for any finite subset In, Ni, i ∈ In are independent

Poisson processes, and this is exactly what is meant by the claim that Ni, i ∈ I are

independent Poisson processes. ¤

2 Continuous-time homogeneous Markov chains

2.1 Regular jump continuous-time Markov chains

Definition 10 (Continuous-time Markov chains) A continuous-time stochastic pro-

cess (X(t))t≥0 is a homogeneous Markov chain if for all 0 < t1 < . . . < tn, i0, i1, . . . , in ∈
E, n ∈ N

P{X(0) = i0, X(t1) = i1, . . . , X(tn) = in}

= ν(i0)pi0,i1(t1)pi1,i2(t2 − t1) · · · pin−1,in(tn − tn−1)
(2)
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We see directly from (2) that the distribution of a continuous-time HMC is determined

by the initial distribution

ν(i) = P{X(0) = i} i ∈ E

and the transition probabilities

P (t) = [pi,j(t)]i,j∈E t ≥ 0

where P (0) = I, the identity matrix. We note that

pi,j(t) = P{X(t) = j|X(0) = i} = P{X(t + s) = j|X(s) = i} for all s > 0

The “homogeneity” in the definition of homogeneous Markov chains is due to the fact

that the transition probabilities only depends on the difference t between s and s + t
and not on the actual times (s, s + t).

Moreover, we directly see that (2) is equivalent to

P{X(tn+1) = j|X(0) = i0, X(t1) = i1, . . . , X(tn) = i}

= P{X(tn+1) = j|X(tn) = i} = pi,j(tn+1 − tn)
(3)

so that continuous-time Markov chains have a Markov property similar to the discrete-

time Markov chains. Note that if X0 ∼ µ = (µi)i∈E then

µj(t) = P{X(t) = j} =
∑

i∈E

P{X(t) = j|X(0) = i}P{X(0) = i} =
∑

i∈E

µ(i)pij(t) j ∈ E

i.e. X ∼ µ(t) = (µ⊤P (t))⊤.

Theorem 11 (Chapman-Kolmogorov equations) For any t, s > 0 we have

P (t + s) = P (t)P (s)

Proof For any i, j ∈ E we have

pi,j(t + s) = P{X(t + s) = j|X(0) = i} =
∑

k∈E

P{X(t + s) = j, X(t) = k|X(0) = i}

=
∑

k∈E

P{X(t + s) = j|X(t) = k, X(0) = i}P{X(t) = k|X(0) = i}

=
∑

k∈E

pi,k(t)pk,j(s)
¤

The collection of transition matrices (P (t))t≥0 is called the transition semigroup of

the Markov chain.

Definition 10 does not ensure that the Markov chain is in any way “well-behaved”.

For instance, without additional assumptions the process may change state all the

time so that X(t) 6= X(s) for all s and t regardless of how small t − s is. So we will

impose the condition on all Markov chains to be considered from now on that they

are so-called “regular jump processes”:
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Definition 12 (Jump processes/Regular jump processes) A stochastic process

(X(t))t≥0 on an at most countable state space is a jump process if whenever X(t)
jumps from one state to another it will remain in the new state at least for a short

(random) while. It is a regular jump process if it is a jump process and it only has

finitely many jumps in [0; t] for any t > 0.

The critical reader will argue that this definition is not sufficiently precise (and such

a reader is referred to Brémaud’s Definition 8.2.5). However, for the present course it

is sufficient. A HMC which is not a regular jump process will (at least with positive

probability) jump from one state to another and then directly following this transition

jump again. Processes behaving in this manner are rarely useful in applications so

our restriction is not one that should cause us any concern.

Theorem 13 (HPP is a regular jump HMC) The Poisson process with intensity λ
is a regular jump homogeneous Markov chain with transition probabilities given by

pi,j(t) =







(λt)j−i

(j − i)!
e−λt for j ≥ i

0 for j < i

t > 0

Proof Note that by construction the Poisson process given by Definition 2 is a jump

process. It is regular as

P{N(t) = ∞} = 0 for all t > 0.

That it is also a Markov chain with the transition probabilities given above follows

easily from the alternative definition (Theorem 4; see Brémaud, Example 8.2.1 for

details). ¤

For a Markov chain (X(t))t≥0 with state space E the sequence of transition times,

(τn)n∈N, are the times when X(t) jumps i.e.

τn = inf{t ≥ τn−1 : X(t) 6= X(τn−1)} (with τ0 = 0 and inf ∅ = ∞)

Observe that τn = ∞ implies that τn+k = ∞ for all k ∈ N. The times between

transition times τn+1 − τn are called holding times or inter-arrival times. Note that

for a regular jump process τn → ∞ as n → ∞. The embedded process is given by

X0 = X(0) and

Xn =

{

X(τn) if τn < ∞

∆ if τn = ∞
n ∈ N

where ∆ is an arbitrary element not in E. Clearly the distribution of the Markov

chain is given by the joint distribution of the transition times (or equivalently the

sequence of holding times) and the embedded process. The following important result

gives such a characterisation:

Theorem 14 (Regenerative structure) Let (X(t))t≥0 be a continuous-time homo-

geneous Markov chain with state space E. Then there exists Q = [qij ]i,j∈E , (qi)i∈E such

that
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1. Given the embedded process (Xn)n∈N0 the sequence of holding times, (τn+1 −
τn)n∈N0 , are independent with distribution given by

P{τn+1 − τn > x|(Xk)k∈N0} =

{

exp (−qXn
x) if Xn 6= ∆

1 if Xn = ∆
x > 0

2. The embedded process (Xn)n∈N0 is a discrete-time homogeneous Markov chain

with state space E ∪ {∆} and transition probabilities given by

pij =















qij

qi

if i, j ∈ E, i 6= j, and qi 6= 0

0 if i, j ∈ E and i = j or qi = 0 or if i = ∆ 6= j

1 if i ∈ E, j = ∆ and qi = 0 or if i = j = ∆

Note that if Xn = ∆ or qXn
= 0 then the n’th holding time τn+1 − τn is infinitely long

and the embedded process is absorbed in ∆. Note also that for any i ∈ E with qi 6= 0
we have

1 =
∑

j∈E

pij =
∑

j∈E\{i}

qij

qi

so that qi =
∑

j∈E\{i} qij holds for all i ∈ E.

The Poisson process with intensity λ > 0 has iid exponential inter-arrival times with

intensity λ and embedded process with transition probabilities given by

pi,i+1 = 1 i ∈ N0

We shall not prove Theorem 14. Nor will we prove that a process with a distribution

given as in the theorem is actually a Markov chain. But a few comment may be in

order:

1. That the embedded process is a homogeneous Markov chain follows from a suit-

able strong Markov property.

2. That the holding times must be exponentially distributed with a parameter only

depending on the current state of the Markov chain follows from the Markov

property and the fact that the exponential distribution is only memoryless con-

tinuous distribution: If the time points t1, . . . , tn = t, . . . , tn+k = t + s are chosen

sufficiently close to each other then

P{τ1 > t + s|τ1 > t, X0 = i}

≈ P{X(tn+1) = . . . = X(tn+k) = i|X(0) = . . . = X(tn) = i}

= P{X(tn+1) = . . . = X(tn+k) = i|X(tn) = i}

which implies first that the distribution of τ1 may only depend on the past

through the value i of X(tn). Moreover as

P{X(tn+1) = . . . = X(tn+k) = i|X(tn) = i}

= P{X(tn+1 − tn) = . . . = X(tn+k − tn) = i|X(0) = i} ≈ P{τ1 > s|X(0) = i}

it follows that the conditional distribution of τ1 given X(0) = i must be expo-

nential.
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The theorem states that a continuous-time homogeneous Markov chain is just a dis-

crete time homogeneous Markov chain (the embedded process) with exponentially

distributed time spans between jumps (the holding times) only depending on the

current state. Equivalently, we may think of a continuous-time Markov chain as a

process with transitions given by the Competition theorem (Theorem 7) as follows:

As soon as we jump to state i we initiate independent exponential waiting times, one

for each state in the state space, with intensities qij , j 6= i. When the first waiting

time “runs out”, we jump to the state corresponding to this waiting time. Thus we

jump after an exponential time with intensity qi =
∑

j∈E\{i} qij and to state j with

probability qij/qi.

2.2 Infinitesimal generator

The diagonal elements of the matrix Q are not determined by Theorem 14. It is

customary to let qii = −qi. Thus the matrix Q = [qij ]i,j∈E has

qij ≥ 0 i 6= j and
∑

j∈E

qij = 0 (4)

This matrix is called the infinitesimal generator of the Markov chain. Clearly, this

matrix determines the transition probabilities of the Markov chain. Alternatively

(and equivalently) one may specify the distribution of the Markov chain by specifying

the jump matrix, containing the transition probabilities for the embedded chain, and

the qi’s. These are usually denoted by

Π = [πij ]i,j∈E and λ = (λi)i∈E (5)

where

πij = pij and λi = qi

are given in Theorem 14.

If (P (t))t≥0 is the transition semigroup for a regular jump HMC, then we must have:

pii(t) = P{X(t) = i|X(0) = i} ≥ P{τ1 > t|X0 = i} = e−tqi → 1 as t → 0 (6)

and for i 6= j

pij(t) = P{X(t) = j|X(0) = i} ≤ P{τ1 ≤ t|X0 = i} = 1 − e−tqi → 0 as t → 0 (7)

Thus the semigroup is continuous in the sense that

P (t) → P (0) component-wise as t → 0

From this it follows that for all t ≥ 0

P (t + s) → P (t) component-wise as s → 0

(see Brémaud, Problem 8.2.1).
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Returning to the infinitesimal generator, we see that

pii(t) = P{τ1 > t|X0 = i} + P{τ2 ≤ t, X(t) = i|X(0) = i}

= 1 − tqi + o(t) (8)

where o(t) denotes any term which divided by t goes to 0 as t → 0, since

P{τ2 ≤ t,X(t) = i|X(0) = i} ≤ P{τ2 ≤ t|X(0) = i} ≤ P{τ1 ≤ t, τ2 − τ1 ≤ t|X0 = i}

=
∑

j∈E

P{τ1 ≤ t, τ2 − τ1 ≤ t, X1 = j|X0 = i}

=
∑

j∈E

qij

qi

(1 − e−qit)(1 − e−qjt) = (1 − e−qit)
∑

j∈E

qij

qi

(1 − e−qjt) = o(t)

as

∑

j∈E

qij

qi

(1 − e−qjt) → 0 as t → 0.

by dominated convergence. Equation (8) may be written in a perhaps more familiar

manner

pii(t) − 1

t
→ −qi = qii as t → 0.

Similarly we get

pij(t) = P{X(t) = j, τ2 > t|X(0) = i} + P{X(t) = j, τ2 ≤ t|X(0) = i}

= P{τ1 ≤ t, τ2 > t, X1 = j|X0 = i} + P{τ2 ≤ t, X(t) = j|X(0) = i}

= P{τ1 ≤ t, X1 = j|X0 = i} − P{τ1 ≤ t, τ2 ≤ t, X1 = j|X0 = i}

+ P{τ2 ≤ t, X(t) = j|X(0) = i}

= (1 − e−tqi)
qij

qi

+ o(t) = qijt + o(t)

(9)

We see that the “parameters” Q not only determine the distribution of the Markov

chain but also have interpretations of “instantaneous risks” or intensities of jumping

from i to j. Hence, a common way of specifying a Markov chain model is to give the

intensities of various jumps.

A useful tool for obtaining insight into the structure of a continuous-time Markov

chain is the intensity diagram, which is just the transition graph of the underlying

embedded Markov chain (usually ignoring any transitions to ∆). If one puts numbers

next to the edges, then one would put the intensities, rather than the jump probabil-

ities, next to the edges in the intensity diagram.

2.3 Uniform Markov chains

Proving Theorem 14 is too involved for this course. However, there is a nice subset of

the regular jump Markov chains, which are easily seen to be Markov chains.
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Definition 15 (Uniform Markov chain) Let (Nt)t≥0 be a Poisson process with in-

tensity λ > 0 and let (X̂n)n∈N0 be a discrete-time homogeneous Markov chain, in-

dependent of (Nt)t≥0, with state space E and transition probabilities K = [kij ]i,j∈E .

The uniform Markov chain (Xt)t≥0 with clock (Nt)t≥0 and subordinated chain

(X̂n)n∈N0 is given by

Xt = X̂N(t) t ≥ 0

Observe that the subordinated chain of a uniform Markov chain is not generally the

embedded chain of the uniform Markov chain: The subordinated chain may have

kii > 0 for some i whereas the embedded chain will have pii = 0 for all i ∈ E. Thus

it is not clear that a uniform Markov chain is a Markov chain at all. Luckily we may

prove the following result.

Theorem 16 (A uniform Markov chain is a HMC) The uniform Markov chain

(Xt)t≥0 with clock (Nt)t≥0 with intensity λ and subordinated chain (X̂n)n∈N0 with

transition matrix K is a regular jump homogeneous Markov chain with transition

probabilities given by

P (t) =
∞

∑

n=0

(λt)n

n!
e−λt Kn (10)

and infinitesimal generator given by

Q = λ(K − I). (11)

Proof Clearly, the process is a regular jump process by construction: The regularity

follows by observing that the number of jumps made by Xt in finite time is less than

the number of jumps made by the underlying Poisson process, which is a regular jump

process. To show that it is a homogeneous Markov chain with transition probabilities

given by (10), it suffices to show that

P{X(t0) = i0, . . . , X(tn−1) = in−1, X(tn) = i, X(tn+1) = j}

= P{X(t0) = i0, . . . , X(tn−1) = in−1, X(tn) = i}pij(tn+1 − tn)

We may split the right hand side according to the number of jumps made by the clock

until time tn and the number of jumps made between time tn and tn+1:

P{X(t0) = i0, . . . , X(tn−1) = in−1, X(tn) = i, X(tn+1) = j}

=

∞
∑

k,l=0

P{X(t0) = i0, . . . , X(tn) = i, X(tn+1) = j, N(tn) = k, N(tn+1) − N(tn) = l}

Each of these terms may be rewritten in terms of the clock and the subordinated

chain:

P{X(t0) = i0, . . . , X(tn) = i, X(tn+1) = j, N(tn) = k, N(tn+1) − N(tn) = l}

= P

(

A ∩ {X̂k = i, X̂k+l = j, N(tn+1) − N(tn) = l}

)

12



where

A ∩ {X̂k = i} = {X(t0) = i0, . . . , X(tn) = i, N(tn) = k}

=
{(

(X̂m)m=0,...,k, N(t0), N(t1) − N(t0), . . . , N(tn) − N(tn−1)
)

∈ B
}

The set B may be written out explicitly but it is complicated and all we need is the

fact that it can be done. Using the Markov property of the subordinated chain, the

independent increments of the clock, and the fact that the subordinated chain and

the clock are independent we may proceed as follows:

P

(

A∩{X̂k = i, X̂k+l = j, N(tn+1) − N(tn) = l}

)

= P{X̂k+l = j, N(tn+1) − N(tn) = l|X̂k = i} · P

(

A ∩ {X̂k = i}

)

= P{X̂k+l = j|X̂k = i} · P{N(tn+1) − N(tn) = l} · P

(

A ∩ {X̂k = i}

)

= kij(l) ·
(λ(tn+1 − tn))l

l!
e−λ(tn+1−tn) · P

(

A ∩ {X̂k = i}

)

It follows that

P{X(t0) = i0, . . . , X(tn−1) = in−1, X(tn) = i, X(tn+1) = j}

=
∞

∑

k,l=0

kij(l)
(λ(tn+1 − tn))l

l!
e−λ(tn+1−tn)P

(

A ∩ {X̂k = i}

)

=
∞

∑

k=0

P

(

A ∩ {X̂k = i}

) ∞
∑

l=0

kij(l)
(λ(tn+1 − tn))l

l!
e−λ(tn+1−tn)

= P{X(t0) = i0, . . . , X(tn−1) = in−1, X(tn) = i}pij(tn+1 − tn)

proving that a uniform Markov chain is a regular jump Markov chain and that the

transition probabilities are given by (10). To find the infinitesimal generator, note

that the embedded chain of the uniform Markov chain is the Markov chain

Xn =

{

X̂τ̂n
if τ̂n < ∞

∆ (6∈ E) if τ̂n = ∞
n ∈ N0

where τ̂0 = 0 and

τ̂n = inf{k > τ̂n−1 : X̂k 6= X̂τ̂n−1} n ∈ N (with inf ∅ = ∞)

It is easily shown (see Brémaud, Problem 2.7.1) that the transition probabilities of

(Xn)n∈N0 are given by

pij = P{X1 = j|X0 = i} =
∞

∑

l=1

P{X̂l = j, τ1 = l|X̂0 = i} =
∞

∑

l=1

kijk
l−1
ii =

kij

1 − kii

when kii 6= 1. Moreover, the transition times of the uniform Markov chain are given

by

τn =

{

Tτ̂n
if τ̂n < ∞

∞ if τ̂n = ∞

13



where 0 = T0 < T1 < T2 < . . . are the arrival times of the clock. Now

P{τ1 > t|X0 = i} =
∞

∑

l=1

P{Tl > t, τ̂1 = l|X0 = i}

=
∞

∑

l=1

P{Tl > t|τ̂1 = l, X0 = i}P{τ̂1 = l|X0 = i}

=

∞
∑

l=1

l−1
∑

j=0

(λt)j

j!
e−λtkl−1

ii (1 − kii) = e−λt

∞
∑

j=0

∞
∑

l=j+1

kl−1
ii (1 − kii) ·

(λt)j

j!

= e−λt

∞
∑

j=0

kj
ii

(λt)j

j!
= e−t·λ(1−kii)

from which is follows that qi = λ(1 − kii). Thus

qii = −qi = λ(kii − 1)

and

qij = pijqi =
kij

1 − kii

λ(1 − kii) = λkij

proving (11). ¤

We may think of a uniform Markov chain as a Markov chain where the time between

transitions are iid exponentially distributed –there is a uniform rate of transitions–

but where some of these transitions –when the subordinated chain “moves” from one

state to the same state– are unobservable. The uniform rate of transitions makes

the uniform Markov chain easy to handle mathematically; the price to pay is that we

need to include unobservable transitions.

A natural question is which regular jump Markov chains are uniformisable, i.e may

be constructed as a uniform Markov chain. The answer is given by

Theorem 17 (Uniformisation) A regular jump Markov chain with state space E
and infinitesimal generator Q such that supi∈E qi < ∞ is uniformisable.

Proof Put λ ≥ supi∈E qi and construct a uniform Markov chain with clock with inten-

sity λ and subordinated chain with transition probabilities given by

kij =







qij

λ
if i 6= j

1 −
qi

λ
if i = j

Then this uniform Markov chain has the same distribution as the regular Markov

chain with infinitesimal generator Q. ¤

In particular, any regular jump Markov chain on a finite state space is uniformisable.
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2.4 Differential equations

2.4.1 Transition probabilities

Equations (8) and (9) may be interpreted as the derivatives of the transition proba-

bilities at 0. We may write them more compactly as

P ′(0) = Q

Using the Chapman-Kolmogorov equations (Theorem 11), it is tempting to write

P ′(t) ≈
1

h
(P (t + h) − P (t)) =











1

h
(P (h) − P (0)) · P (t) ≈ QP (t)

P (t) ·
1

h
(P (h) − P (0)) ≈ P (t)Q

Here the first “≈” should be interpreted as if the left hand side has a (component-

wise) limit as h → 0, then this limit is the matrix of derivatives of the transition

probabilities at t. The second “≈” represents something which we would hope to be

true as h → 0. If the state space E is infinite then each element of the various matrix

products is (potentially) an infinite sum and our “≈” is a question of whether we may

interchange summation and taking the limit as h → 0. If E is finite, the sums are

finite and we obtain two systems of differential equations. Well, almost: So far we

have only obtained right-hand derivatives as h > 0 has been implicitly assumed.

It turns out that for regular jump Markov chains, both system of differential equa-

tions are true, though we need an additional assumption to prove the second one.

Theorem 18 (Kolmogorov’s differential systems) If (X(t))t≥0 is a regular jump

Markov chain on a at most countable state space E with infinitesimal generator Q,

then Kolmogorov’s backward differential system

P ′(t) = QP (t) t ≥ 0 (12)

i.e.

p′ij(t) =
∑

k∈E

qikpkj(t) = −qipij(t) +
∑

k 6=i

qikpkj(t) i, j ∈ E, t ≥ 0 (13)

is satisfied. If moreover,
∑

j∈E

pij(t)qj < ∞ (14)

then also Kolmogorov’s forward differential system

P ′(t) = P (t)Q t ≥ 0 (15)

i.e.

p′ij(t) =
∑

k∈E

pik(t)qkj = −pij(t)qj +
∑

k 6=j

pik(t)qkj i, j ∈ E, t ≥ 0 (16)

is satisfied.
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Note that assumption (14) is satisfied for Markov chains on finite state spaces as

well as uniformisable Markov chains. Note also that the assumption ensures that
∑

k∈E pik(t)qkj is well-defined.

Before giving the proof we state the following lemma without proof:

Lemma 19 Let f : R → R be a continuous function. Suppose that the limit

f ′(t) = lim
h↓0

1

h
(f(t + h) − f(t))

exists for all t ∈ R and is continuous. Then f is differentiable and has derivative f ′.

Thus it suffices to find right-hand derivatives and show that these are continuous.

Proof of Theorem 18 For the backward equations we wish to show that for an

arbitrary i ∈ E

pij(t + h) − pij(t)

h
=

pii(h) − 1

h
pij(t) +

∑

k 6=i

pik(h)

h
pkj(t) →

∑

k∈E

qikpik(t) as h → 0

Let EN ↑ E \ {i} with each EN finite. Then

∑

k∈EN

pik(h)

h
pkj(t) ≤

∑

k 6=i

pik(h)

h
pkj(t) ≤

∑

k∈EN

pik(h)

h
pkj(t) +

∑

k 6∈EN∪{i}

pik(h)

h

≤
∑

k∈EN

pik(h)

h
pkj(t) +

1 − pii(h)

h
−

∑

k∈EN

pik(h)

h

Letting h → 0 we obtain

∑

k∈EN

qikpkj(t) ≤ lim inf
h→0

∑

k 6=i

pik(h)

h
pkj(t)

≤ lim sup
h→0

∑

k 6=i

pik(h)

h
pkj(t) ≤

∑

k∈EN

qikpkj(t) − qii −
∑

k∈EN

qik

Letting N → ∞ gives the desired result. As
∑

k 6=i qikpik(t) ≤
∑

k 6=i qik = qi < ∞,

t →
∑

k∈E qikpik(t) is continuous, and the right-hand derivative is also the left-hand

derivative.

For the forward equations we wish to show that

pij(t + h) − pij(t)

h
=

∑

k∈E

pik(t)
pkj(h) − δkj

h
→

∑

k∈E

pik(t)qkj as h → 0

However, since by (6) and (7), we have

∣

∣

∣

∣

pkj(t) − δkj

h

∣

∣

∣

∣

≤
1 − e−hqk

h
≤ qk

the result follows by dominated convergence. As qkj ≤ qk, t →
∑

k∈E pik(t)qkj is con-

tinuous, and the right-hand derivative is also the left-hand derivative. ¤
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It may be useful to write the differential equations as integral equations. The back-

ward equations may be written as

pij(t) = δije
−qit +

∫ ⊤

0

∑

k 6=i

qike
−qi(t−s)pkj(s)ds i, j ∈ E, t ≥ 0, (17)

where δij is Kronecker’s delta, and the forward equations as

pij(t) = δije
−qjt +

∫ ⊤

0

∑

k 6=j

pik(s)qkje
−qj(t−s)ds i, j ∈ E, t ≥ 0. (18)

(Differentiate (17) and (18) to obtain (13) and (16)). Thus an interpretation of the

backward equations is that to move from i to j in time t we first stay in i until time

t− s (λie
−λi(t−s)), then jump to k (qik/qi) and finally move from k to j in the remaining

time (pkj(s)); if i = j then an extra term (e−qit) is added to account for the fact that

we can “move” from i to i by not changing state at all. In the forward equations we

instead move from i to k in time s, jump to j and stay there. Thus in the backward

equation we look back to the first state change; in the forward we look ahead to the

last change of state.

2.4.2 Finite state space: Matrix exponentials

In practice, the differential equation will often have to be solved numerically. If the

Markov chain is uniformisable, using (10) may be numerically better than solving the

differential equations. It is tempting to rewrite (10) formally as

P (t) = e−λt

∞
∑

n=0

(tλK)n

n!
= e−λtetλK = etQ

Indeed when Q is an infinitesimal generator on a finite state space E, defining

etQ =
∞

∑

n=0

(tQ)n

n!
t ≥ 0 (19)

turns out to be unproblematic, and it is easily shown that

P (t) = etQ t ≥ 0

is the unique solution to the forward and backward differential equations (see

Brémaud, appendix 2.2 for details).

Note that if u is a left eigenvector for Q corresponding to the eigenvalue of λ , i.e.

u⊤Q = λu⊤ (or equivalently Q⊤u = λu)

then

u⊤P (t) = u⊤ exp(tQ) =
∞

∑

n=0

tn

n!
u⊤Qn =

∞
∑

n=0

tn

n!
λnu⊤ = etλu⊤

17



Hence if we can find eigenvectors u1, . . . , uk with eigenvalues λ1, . . . , λk such that the

i’th unit vector ei can be written as
∑k

l=1 clul then

(pij(t))j∈E = e⊤i P (t) =
k

∑

l=1

clu
⊤
l P (t) =

k
∑

l=1

cl exp(tλl)u
⊤
l

More generally, if Q is diagonalisable in the sense that there exist matrices U and

V such that V U⊤ = I and Λ = U⊤QV is a diagonal matrix with elements λ1, . . . , λk,

then (e.g.)

P (t) = V diag
(

eλ1t, . . . , eλkt
)

U⊤

If Q has k distinct eigenvalues, then the columns of U are the left eigenvectors, the

columns of V the right eigenvectors and λ1, . . . , λk the eigenvalues (of which one is 0);

see Brémaud, Example 8.3.1 and appendix 2.

2.4.3 Distribution

We can also give a system of differential equations for the distribution of the Markov

chain at time t:

Theorem 20 (Kolmogorov’s global differential system) Let µ(t) denote the dis-

tribution of Xt when (X(t))t≥0 is a continuous-time Markov chain with infinitesimal

generator Q and initial distribution µ = µ(0). If

∑

i∈E

qiµi(t) < ∞

then µ(t) satisfy Kolmogorov’s global differential system

µ′(t)⊤ = µ(t)⊤Q

i.e.

µ′
i(t) = −µi(t)qi +

∑

j 6=i

µj(t)qji i ∈ E, t ≥ 0

Proof Since

µ(t + h)⊤ − µ(t)⊤ = µ(t)⊤(P (h) − I)

we obtain
µi(t + h) − µi(t)

h
=

∑

j∈E

pij(h) − δij

h
µj(t) →

∑

j∈E

qijµj(t)

by dominated convergence as in the proof of the forward differential equations. ¤
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2.5 Explosion

Given a matrix Q satisfying (4) we can construct a process using the construction

in Theorem 14. Clearly this process will be a jump process; it will even be Markov,

though that is less obvious and difficult to show. The question is whether it will be a

regular jump process? Stated differently, the question is if limn→∞ τn is finite or not.

If it is finite with positive probability, then there is positive probability of infinitely

many jumps in finite time, and the process is not a regular jump process.

Example Let qij = 0, j 6∈ {i, i + 1}, and qi,i+1 > 0. Thus the embedded chain has

transition probabilities given by pi,i+1 = 1. By monotone convergence,

Ei[ lim
n→∞

τn] = lim
n→∞

Ei[τn] = lim
n→∞

Ei[
n

∑

k=1

Sk] = lim
n→∞

n
∑

k=1

1

qi+k−1
=

∞
∑

k=i

1

qk

(20)

where Sk is the kth holding time. We see that Ei[limn→∞ τn] is finite if qi → ∞ suf-

ficiently fast as i → ∞ (for instance if qi = i2). Hence if the waiting times between

transitions become shorter and shorter sufficiently fast, then there will (with proba-

bility 1) be infinitely many transitions in finite time.

We say that Q is non-explosive if for any initial distribution

P
{

lim
n→∞

τn = ∞
}

= 1 (21)

or equivalently

Pi

{

lim
n→∞

τn = ∞
}

= 1 for all i ∈ E

The example above shows that explosion may occur if the intensities are chosen in a

certain way. Note that even if Ei[limn→∞ τn] = ∞ we may still have P{limn→∞ τn =
∞} < 1. Thus, calculating the expectation of limn τn may prove that the Markov chain

explodes but it cannot (on its own) ensure non-explosion.

Writing

lim
n→∞

τn =
∞

∑

k=1

Sk

where Sk = τk − τk−1, then Q is non-explosive if and only if
∑∞

k=1 Sk = ∞ with

probability 1. As

exp

(

−λ

∞
∑

k=1

Sk

)

∈ [0; 1]

for all λ > 0 and only equal to 0 when
∑∞

k=1 Sk = ∞ we see that if for all i ∈ E and

some λ > 0

Ei

[

exp

(

−λ
∞

∑

k=1

Sk

)]

= 0 (22)

then the chain is non-explosive. And if the chain is non-explosive, then (22) holds for

all i ∈ E and all λ > 0. The following result translates this criterion for non-explosion

into a condition on the infinitesimal generator.

Theorem 21 (Reuter’s criterion) Let Q be an infinitesimal generator satisfying (4).

Then the following are equivalent:
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1. Q is non-explosive

2. There is a λ > 0 such that the only non-negative bounded solution to

λx = Qx (23)

is the trivial solution x = 0

3. For all λ > 0, the only non-negative bounded solution to (23) is the trivial solu-

tion x = 0

Proof We prove that 2 ⇒ 1 and 1 ⇒ 3; that 3 ⇒ 2 is of course trivial.

2 ⇒ 1: We prove that “not 1” implies “not 2”. Suppose that Pi{limn→∞ τn = ∞} < 1
for some i ∈ E. Then for any λ > 0

xi = Ei

[

exp

(

−λ
∞

∑

k=1

Sk

)]

≤ 1 i ∈ E.

Note that xi > 0 for some i ∈ E, since there is a positive probability of explosion.

Moreover,

xi = Ei

[

e−λS1 exp

(

−λ
∞

∑

k=2

Sk

)]

=
∑

j 6=i

Ei

[

e−λS11{X1=j} exp

(

−λ
∞

∑

k=2

Sk

)]

=
qi

qi + λ
·
∑

j 6=i

qij

qi

E

[

exp

(

−λ

∞
∑

k=2

Sk

)
∣

∣

∣

∣

∣

X1 = j

]

=
1

qi + λ

∑

j 6=i

qijxj

showing that (xi)i∈E is a solution to (23).

1 ⇒ 3: We prove that “not 3” implies “not 1”. Assume that there is a non-trivial,

non-negative bounded solution to (23) for some λ > 0; call this (xi)i∈E . Then

Ei

[

exp(−λS1)xX1

]

= Ei [exp(−λS1)]
∑

j 6=i

qij

qi

xj =
qi

qi + λ

∑

j 6=i

qij

qi

xj = xi

as (xi)i∈E solves (23). Thus

xi = Ei

[

exp(−λS1)xX1

]

i ∈ E

By induction and the Markov property, we see that for any i ∈ E

Ei

[

exp

(

−λ
n

∑

k=1

Sk

)

x
Xn

]

=
∑

j 6=i

Ei

[

exp (−λS1) 1{X1=j} exp

(

−λ
n

∑

k=2

Sk

)

x
Xn

]

=
qi

qi + λ

∑

j 6=i

qij

qi

Ei

[

exp

(

−λ
n

∑

k=2

Sk

)

x
Xn

∣

∣

∣

∣

X1 = j

]

=
1

qi + λ

∑

j 6=i

qijEi

[

exp

(

−λ
n−1
∑

k=1

Sk

)

x
Xn−1

]

=
1

qi + λ

∑

j 6=i

qijxj = xi
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Since xi is bounded (in i ∈ E), it follows that

xi ≤ Ei

[

exp

(

−λ
n

∑

k=1

Sk

)]

· sup
j∈E

xj → Ei

[

exp

(

−λ
∞

∑

k=1

Sk

)]

· sup
j∈E

xj as n → ∞.

As xi > 0 for some i we must have Pi{limn→∞ τn = ∞} < 1. ¤

Reuter’s criterion has a number of useful corollaries:

Corollary 22 If E is finite, then any generator is non-explosive.

Proof It follows from Reuter’s criterion since a k × k matrix has at most k eigenval-

ues. Thus for any λ > 0, which is not an eigenvalue, the only solution to Qx = λx is

x = 0. ¤

Corollary 23 Suppose that supi∈E qi < ∞. Then the generator is non-explosive.

Of course, this corollary contains the former.

Proof The chain is uniformisable and a uniform Markov chain does not explode, since

its clock does not allow more that finitely many jumps in finite time. ¤

Corollary 24 Suppose that all qi > 0. Then the generator is non-explosive if the

corresponding jump matrix is irreducible and recurrent.

Proof Suppose that x = (xi)i∈E is a bounded, non-negative solution to (23) for some

λ > 0. Then

Πx = x + λz where zi = xi/qi

and Π is the jump matrix. By induction we obtain

Πn+1x = x + λ

n
∑

k=0

Πk · z

As Π is irreducible and recurrent, each element in
∑n

k=0 Πk tends to infinity as

n → ∞. On the other hand, each element in Πn+1 is bounded by 1. It follows that z
must be 0, proving that Q is non-explosive. ¤

2.6 State space decomposition

2.6.1 Communication, transience and recurrence

Similarly to the discrete-time Markov chains we say that a state j is accessible from

the state i if pij(t) > 0 for some t > 0. For pij(t) > 0 for some t > 0, there must be an
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n ∈ N such that πij(n) > 0, i.e. j must be accessible from i for the embedded process

too. Moreover, we have for this choice of n that

pij(t) ≥ P{Xn = j, τn ≤ t, τn+1 > t|X0 = i}

= πij(n)P{τn ≤ t, τn+1 > t|X0 = i, Xn = j} > 0

Since the joint distribution of (τn, τn+1 − τn) is continuous with support equal to R
2
+,

the right hand side is positive for all t > 0 if it is for one value of t > 0. Thus we

see that j is accessible from i if and only if pij(t) > 0 for all t > 0 and if and only if

i → j for the embedded chain. The latter condition is of course the more useful one

for practical application. As in discrete-time we write i → j if j is accessible from

i and if also j → i we write i ↔ j and say that i and j communicate. If all states

communicate, then the Markov chain is irreducible.

The fact that pij(t) > 0 for some t > 0 implies that pij(t) > 0 shows that periodicity is

not an issue for continuous-time Markov chains (even though the embedded process

may be periodic).

Since the communication structure is the same for the continuous-time Markov chain

and its embedded process, the state space is decomposed into the union of the set of

transient states (for the embedded process) and a number of closed, recurrent (for the

embedded process) communication classes:

E = T
⋃

∪kRk

Clearly, if a state is transient for the embedded process, it is visited only finitely

often and this is inherited by the continuous-time Markov chain. Similarly, if a state

is recurrent for the embedded process, it is visited infinitely often by the embedded

process and therefore also by the continuous-time process. Thus it makes sense to

define:

Definition 25 (Recurrence and transience) For a continuous-time Markov chain

a state is recurrent if it is recurrent for the embedded process; if not recurrent, it is

transient.

Note that for continuous-time Markov chains recurrence and transience are class

properties since they are class properties for the embedded process. Note also that an

absorbing state for a continuous-time Markov chain is transient, not recurrent. This

is due to the fact that a continuous-time Markov chain never leaves an absorbing

state and therefore cannot return.

Theorem 26 If i is recurrent for a continuous-time Markov chain, then the return

time

Ri = inf{t ≥ Ei : X(t) = i}, (24)

where Ei = inf{t ≥ 0 : X(t) 6= i} is the escape time, is finite almost surely given

X(0) = i, and the time spent in state i

∫ ∞

0
1{X(s)=i}ds
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is almost surely infinite. If i is transient and not absorbing, then

Pi{Ri < ∞} < 1 and Pi

{
∫ ∞

0
1{X(s)=i}ds = ∞

}

= 0.

Proof We see that

Ri =

{

τTi
if Ti < ∞

∞ if Ti = ∞

where Ti is the return time to i for the embedded process. Clearly Ri = ∞ if and only

if Ti = ∞. Moreover
∫ ∞

0
1{X(s)=i}ds =

Ni
∑

k=1

Yk

where Y1, Y2, . . . are independent exponentially distributed random variables with in-

tensity λi, independent of Ni the number of visits to i made by the embedded process.

If i is transient and consequently Ni is finite almost surely, then so is the integral. If

i is recurrent and hence Ni = ∞ then the sum (and hence the integral) is infinite. If

the sum is finite, the Yks would have to be smaller than 1 eventually and this hap-

pens with probability 0. ¤

2.6.2 Positive and null recurrence

We define positive and null recurrence similarly to the discrete-time case:

Definition 27 (Positive recurrence) A recurrent state i is positive recurrent for

a continuous-time Markov chain if Ei[Ri] < ∞. If not positive recurrent, it is null

recurrent.

When it comes to positive and null recurrence, matters are a bit more complicated. It

is quite possible to have Ei[Ti] < ∞ and Ei[Ri] = ∞ or vice versa as we shall see.

Definition 28 (Invariant measure) A non-trivial vector ν = (ν(i))i∈E is an invari-

ant measure if

ν⊤P (t) = ν⊤ for all t ≥ 0

If an invariant measure is a probability measure it is called an invariant distribu-

tion or a stationary distribution.

It follows immediately from Theorem 20 that an invariant distribution, π, for a

Markov chain with infinitesimal generator Q satifies the equations

π⊤Q = 0

provided that
∑

i∈E qiπi < ∞.
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Theorem 29 (Regenerative form of invariant measure) Let (X(t))t≥0 be an ir-

reducible, recurrent continuous-time Markov chain with infinitesimal generator Q.

1. Then there is an invariant measure ν with ν(i) > 0 for all i ∈ E and any other

invariant measure is proportional to ν.

2. The invariant measure ν is a solution to

ν⊤Q = 0

and it is given by

ν(i) =























E0

[
∫ R0

0
1{X(s)=i}ds

]

1

qi

E0

[

T0
∑

n=1

1{Xn=i}

] (25)

3. The Markov chain (X(t))t≥0 is positive recurrent if and only if the invariant

measure is finite and in this case the invariant distribution of (X(t))t≥0 is given

by

π(i) =
1

Ei[Ri]qi

i ∈ E.

Proof We will only prove the result for uniformisable chains; see Brémaud, proof of

Theorems 8.5.1 and 8.5.2, for a proof of the generel result.

If ν is invariant for (P (t))t≥0, then ν⊤P (1) = ν⊤. Hence ν is invariant for the skeleton

chain (X(n))n∈N0 . Since irreducibility and recurrence of (X(t))t≥0 implies irreducibil-

ity and recurrence of (X(n))n∈N0 (see Brémaud, Problem 8.5.3), ν is unique up to

multiplication by a constant.

Let

N
(0)
i =

T0
∑

n=1

1{Xn=i}

be the number of visits to state i for the subordinated chain before the first return to

0. Then
∫ R0

0
1{X(s)=i}ds =

N
(0)
i

∑

k=1

Yk

where (Yk)k∈N are iid, exponentially distributed random variables with intensity qi.

It follows that

E0

[
∫ R0

0
1{X(s)=i}ds

]

= E0







N
(0)
i

∑

k=1

Yk






= E0

[

N
(0)
i

]

E0 [Y1] =
1

qi

E0

[

T0
∑

n=1

1{Xn=i}

]

We conclude that the two expression (25) for ν(i) are the same. Moreover, we see that

with ν(i) given by either of these two expressions we obtain

∑

i∈E

ν(i)qij =
∑

i6=j

µ(i)
qij

qi

+ µ(j)
qjj

qj

= µ(j) − µ(j) = 0
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as (µ(i))i∈E = (ν(i)qi)i∈E is an invariant measure for the embedded chain. We con-

clude that ν is a solution to ν⊤Q = 0.

Now write Q = λ(K − I). We see that ν⊤Q = 0 if and only if ν⊤K = ν⊤, i.e. ν⊤Q = 0 if

and only if ν is an invariant measure for K, the transition matrix for the subordinated

chain. From (10) we see that if ν⊤Q = 0 then ν is invariant for (P (t))t≥0. In particular,

an invariant measure exists and is given by (25).

The final claim of the theorem follows by the observation that
∑

i∈E ν(i) = E0 [R0].
Hence positive recurrence (of the arbitrary state 0) is equivalent to the existence of a

finite invariant measure. Moreover, when positive recurrent, the invariant distribu-

tion is given by

π(0) =
ν(0)

E0 [R0]
=

1

q0E0 [R0]
¤

Note that the theorem gives the relationship

µ(i) = qiν(i)

between the invariant measure µ of the embedded process and the invariant measure

ν of the continuous-time Markov chain.

As in discrete time, we see that positive and null recurrence are also class properties

so that in the state space decomposition

E = T
⋃

∪kRk

each Rk is either positive or null recurrent for the continuous-time chain. But we

repeat that the embedded process does not in itself determined whether a recurrent

communication class is positive or null recurrent.

Finally, we have the following useful result:

Theorem 30 (Stationary distribution criteria) An irreducible continuous-time

Markov chain with infinitesimal generator Q is positive recurrent if and only if there

is a distribution π such that π⊤Q = 0.

Proof Again we will only give a proof for uniformisable chains. By Theorem 29,

if a continuous-time Markov chain is positive recurrent, then it has an invariant

distribution satifying π⊤Q = 0.

Suppose conversely that there is a distribution π satisfying π⊤Q = 0. Then π⊤K =
π⊤, where K is the transition matrix for the subordinated chain. If follows that K
is positive recurrent. If we let T0 denote the return time to 0 for the subordinated

chain, then

R0 =

T0
∑

k=1

Yk

where the Yk ’s (the holding times for the clock) are iid exponential random variables

with intensity λ. By the independence of the clock and the subordinated chain

E0 [R0] = E0

[

T0
∑

k=1

Yk

]

= E0 [T0] /λ < ∞
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implying that the continuous-time Markov chain is positive recurrent. ¤

2.6.3 Stationarity and reversibility

As in the discrete-time case we see that if π is an invariant distribution for a continuous-

time Markov chain (X(t))t≥0 then the Markov chain is stationary in the sense that

P{X(t0) = i0, X(t1) = i1 . . . , X(tn) = in}

= P{X(t0 + s) = i0, X(t1 + s) = i1, . . . , X(tn + s) = in}

for all n ∈ N0, 0 < t0 < t1 < . . . < tn, i0, i1, . . . , in and all s > 0. Hence (X(t))t≥0 and

the time-shifted chain (X(t + s))t≥0 have the same distribution.

If the Markov chain is stationary, then

p̃ij(s) = P{X(t) = j|X(t + s) = i} =
pji(s)π(j)

π(i)
i, j ∈ E, t ≥ 0

are the transition probabilities for the time reversed chain

X̃(s) = X(T − s) s ∈ [0;T ]

where T is fixed but arbitrary. The infinitesimal generator for this chain Q̃ is given

by

q̃ij =
π(j)qji

π(i)
i, j ∈

It follows that if Q = Q̃ or equivalently P (t) = P̃ (t) for all t ≥ 0 then the reversed

chain has the same distribution as the original chain and the Markov chain is said to

be reversible.

Theorem 31 (Reversal test) If (X(t))t≥0 is a continuous-time Markov chain with

infinitesimal generator Q and there is a strictly positive distribution π such that for

all i, j ∈ E
π(i)qij = π(j)qji

then (X(t))t≥0 is positive recurrent with invariant distribution π.

Proof It suffices to show that π⊤Q = 0. But the ith element of this vector is
∑

j∈E

π(j)qji =
∑

j∈E

π(i)qij = π(i)
∑

j∈E

qij = 0
¤

2.7 Long-run behaviour

2.7.1 Ergodicity

Theorem 32 (Ergodic theorem) If (X(t))t≥0 is an irreducible positive recurrent Markov

chain then

pij(t) → π(j) as t → ∞ for any i, j ∈ E
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where π is the invariant distribution. Moreover,

1

t

∫ t

0
h(X(s))ds

P
−→

∑

i∈E

h(i)π(i)) as t → ∞

for any h : E → R for which
∑

i∈E |h(i)|π(i) < ∞.

Proof The proof of the first part may be found in Brémaud (Theorem 8.6.1); the proof

of the second part is omitted. ¤

2.7.2 Absorption

In the non-irreducible case, a continuous-time Markov chain is absorbed in a recur-

rent class if and only if the embedded process is absorbed in the same class, and the

probability of this happening is the same for the continuous-time Markov chain and

its embedded process. Recall, however, that an absorbing state for a continuous-time

Markov chain (as well as for the embedded process) is transient, so in order to discuss

absorption in an absorbing state a little extra work is necessary.

Define a new discrete-time process, (X̆n)n∈N0 , by

X̆n =

{

X(τn) if τn < ∞

X̆n−1 if τn = ∞

Clearly X̆n = X̃n until the chain reaches an absorbing state; then X̆n stays in the

absorbing state, whereas X̃n moves on to ∆. It follows that (X̆n)n∈N0 is a discrete-

time Markov chain with transition probabilities

p̆ij =











qij

qi
if qi > 0

1 if qi = 0 and i = j

0 if qi = 0 and i 6= j

Moreover, absorbing states for the continuous-time Markov chain (X(t))t≥0 are ab-

sorbing for (X̆n)n∈N0 and vice versa. Also, recurrent states for (X(t))t≥0 are recur-

rent for (X̆n)n∈N0 (but not vice versa since absorbing states are not recurrent in a

continuous-time Markov chain). Hence to find the probability of absorption in an

absorbing state or a recurrent class for (X(t))t≥0 we may find the absorption prob-

abilities for (X̆n)n∈N0 ; the probabilities are the same. The probability of an infinite

sojourn in a given set of states A is also the same for (X(t))t≥0 and (X̆n)n∈N0 .

Note also that the if the continous-time Markov chain is uniformisable, then the

subordinated chain and the (X̆n)n∈N0-chain have the same absorbing states, recurrent

classes and transient states. Hence, absorption probabilities for uniformisable chains

can also be found by looking at the subordinated chain.

Similarly to the discrete time, if τ denotes the time to absorption, then for any i ∈ T̆

Pi{τ > t} = Pi{X(t) ∈ T̆} =
∑

j∈T̆

pij(t)
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Here T̆ denotes the non-absorbing, transient states of the continuous-time Markov

chain (X(t))t≥0; these are the transient states of the discrete-time process (X̆n)n∈N0 .

The continuous-time Markov chain (X(t))t≥0 and the discrete-time process (X̆n)n∈N0

will of course have different times until absorption, but if the chain is uniformisable,

then we may write

∑

j∈T̆

pij(t) =
∑

j∈T̆

∞
∑

n=0

kij(n)
(λt)n

n!
e−λt =

∞
∑

n=0

∑

j∈T

kij(n)
(λt)n

n!
e−λt

=
∞

∑

n=0

Pi{τ̂ > n}
(λt)n

n!
e−λt

where τ̂ is the absorption time for the subordinated chain. Putting K
T̆

= [kij ]i,j∈T̆
we

know (from Brémaud, Theorem 4.5.2) that

Pi{τ̂ > n} = e⊤i Kn

T̆
1

T̆

where ei is the ith unit vector and 1T is a vector of 1s. Thus, we can write

Pi{τ > t} =
∞

∑

n=0

e⊤i Kn

T̆
1

T̆

(λt)n

n!
e−λt = e⊤i

∞
∑

n=0

Kn

T̆

(λt)n

n!
e−λt1

T̆

= e⊤i etλ(I−K
T̆

)1
T̆

= e⊤i etQ
T̆ 1

T̆

where Q
T̆

= [qij ]i,j∈T̆
is the part of the infinitesimal generator corresponding to the

transient, non-absorbing states.

2.8 Birth-and-death processes

A much used class of continuous-time Markov chains are the so-called birth-and-

death processes. These Markov chains have state space N0 and infinitesimal genera-

tors of the form

qi,i−1 = δi (i > 0) qii = −(δi + βi) qi,i+1 = βi

(all other qijs are 0). The βis are the birth intensities and the δis are the death inten-

sities. Birth-and-death processes are used to describe populations, where births and

deaths never happen at the same time. Thus given a population of size i at time t,
i.e. X(t) = i, there is an exponential waiting time with intensity βi to the next “birth”

and an exponential waiting time with intensity δi to the next “death”. Hence the next

transition happens after an exponential waiting time with intensity βi + δi and it is a

birth with probability βi/(βi + δi). Naturally if X(t) = 0, no death can take place. In

many cases we would want 0 to be an absorbing state (in which case β0 = 0), but in

some cases we may want to let 0 be a reflecting barrier (β0 > 0).

2.8.1 Explosion

In the example on page 19 we see that a birth-and-death process (actually a pure

birth-process; see below) may explode if births occur with shorter and shorter time
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between them as the population grows. Generally, whether a birth-or-death process

explodes or not is a question of whether the birth intensities increase too fast for the

death intensities to compensate.

Reuter’s criterion (Theorem 21) tells us that we have to look at whether the system

of equations

λx = Qx

has a non-trivial, non-negative bounded solution for any/all λ > 0. Writing this sys-

tem of equations out in more detail, we get

λx0 = −β0x0 + β0x1

λxi = δixi−1 − (βi + δi)xi + βixi+1 i ∈ N
(26)

Recall that this system of equations have a bounded non-trivial non-negative solution

for all λ > 0 if and only if it does for some λ > 0. Hence we may look at the special case

λ = 1. In fact this is clear from (26): Assuming that λ = 1 corresponds to replacing

δi and βi by δi/λ and βi/λ, which is just a transformation of the time scale (as in

measuring time in weeks rather that in months); clearly if the process exploded on

one time-scale it explodes on every time scale.

Letting λ = 1 we can calculate the only solution for a fixed value of x0 by finding

first x1, then x2 and so on. We see that all solutions are obtained in this way and

may therefore assume that x0 = 1 as all other solutions are proportional to the one

obtained with x0 = 1. From (26) we obtain

y1 = x1 − x0 = 1/β0

yi+1 = xi+1 − xi =
δi

βi

yi +
xi

βi

i = 2, 3, . . .

from which it follows that the (xi)i∈N-sequence is strictly increasing and that

yi+1 =
xi

βi

+
δi

βi

(

xi−1

βi−1
+

δi−1

βi−1
yi−1

)

= . . .

=
1

βi

xi +
δi

βiβi−1
xi−1 + · · · +

δi · · · δ1

βi · · ·β0
x0

≥
1

βi

+
δi

βiβi−1
+ · · · +

δi · · · δ1

βi · · ·β0

Since

∞
∑

i=1

yi = lim
i→∞

xi − 1

the solution (xi)i∈N0 is unbounded and the process does not explode if

∞
∑

i=1

(

1

βi

+
δi

βiβi−1
+ · · · +

δi · · · δ1

βi · · ·β0

)

= ∞

On the other hand, we also have that

yi ≤

(

1

βi

+
δi

βiβi−1
+ · · · +

δi · · · δ1

βi · · ·β0

)

xi
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so that

xi+1 ≤

(

1 +
1

βi

+
δi

βiβi−1
+ · · · +

δi · · · δ1

βi · · ·β0

)

xi

≤ exp

(

1

βi

+
δi

βiβi−1
+ · · · +

δi · · · δ1

βi · · ·β0

)

xi ≤ . . .

≤ exp

(

i
∑

k=0

1

βk

+
δk

βkβk−1
+ · · · +

δk · · · δ1

βk · · ·β0

)

x0

We see that if
∞

∑

i=1

(

1

βi

+
δi

βiβi−1
+ · · · +

δi · · · δ1

βi · · ·β0

)

< ∞

then (xi)i∈N0 is a bounded solution and the process may explode.

Hence we have obtained

Theorem 33 (Reuter’s criterion for birth-and-death processes) Let Q be an in-

finitesimal generator for a birth-and-death process with all birth intensities strictly

positive. Then the process is non-explosive if and only if

∞
∑

i=1

(

1

βi

+
δi

βiβi−1
+ · · · +

δi · · · δ1

βi · · ·β0

)

= ∞ (27)

In the argument above we have used that all birth intensities are strictly positive. If

some of the birth intensities are 0, then the process can only explode if it starts in a

state larger than or equal to i0 = 1 + sup{i ∈ N0 : βi = 0} and then if and only if

∞
∑

i=i0

(

1

βi

+
δi

βiβi−1
+ · · · +

δi · · · δi0+1

βi · · ·βi0

)

< ∞

To see this, consider the process

Y (t) = min(X(t) − i0, 0)

where (X(t))t≥0 is the original birth-and-death process. This is a birth-and-death

process with infinitesimal generator [qi+i0,j+i0 ]i,j∈N0 and it explodes if and only if

(X(t))t≥0 does.

2.8.2 Linear birth-and-death processes

Consider a population of individuals where (at time t) the i individuals have indepen-

dent exponentially distributed life times (=times to death) with intensity δ. Then the

time until the next individual dies, is exponentially distributed with intensity iδ by

the Competition theorem (Theorem 7). If they similarly have iid exponential waiting

times until giving birth to a new individual and this is independent of the life times

then we obtain a birth-and-death process with intensities

βi = iβ δi = iδ i ∈ N0

This is known as a linear birth-and-death process.
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2.8.3 Birth-and-death processes with immigration

In some cases one would like the population size described by a birth and death

process to be able to increase not only by individuals in the population giving birth to

new individuals but also by new individuals from outside the population joining the

population; this is called immigration. If immigration takes place independently of

the population size, then we get birth intensities

qi,i+1 = α + βi i ∈ N0

where α is the rate of immigration (i.e. immigration happens independently of births

and deaths after an exponential waiting time with intensity α) and βi is the intensity

at which new individuals are born when the population size is i.

2.8.4 Pure birth and death processes

Birth and death process, where all death intensities are 0, are called (pure) birth

processes. Similarly, if all birth intensities are 0, we have a (pure) death process. A

Poisson process is a birth process; another example of a birth process was given on

page 19.

Whereas death processes cannot explode (the number of jumps in finite time is at

most equal to the initial value), birth processes explode if and only if

∞
∑

i=1

1

βi

< ∞

Compare this to the Poisson process and the birth process in the example on page 19.
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Reuter’s criterion, 19

for birth-and-death processes, 30

reversal test, 26
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