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Abstract. We present a proof of the determinantal formula in Schubert calculus for general
schemes. The result may be viewed as an appendix to the article [LT2].

6.0 Setup. Work with the notation introduced in [LT2]. In particular,E is a locally free
module of rankn ≥ 1 over the base schemeX, andd ≤ n is a fixed positive integer.

Let
F := Flagd(E) and πF : F → X

be thed ’th partial flag schemeand its structure map, parametrizing flags of corankd in E .
OnF there is a universal flag of quotients ofEF ,

EF →→ Qd →→ Qd−1 →→ · · · →→ Q1, (6.0.1)

with Qi locally free of ranki. So, the successive kernelsLi := Ker(Qi → Qi−1) for
i = 1, . . . , d (andQ0 = 0) are locally free of rank 1.

Let
G := Grassd(E) and πG : G → X

be thed ’th Grassmannian and its structure map, parametrizing rank-d quotients ofE . OnG

there is a universal rank-d quotientQ of EG. It defines a short exact sequence,

0 → R → EG → Q → 0 (6.0.2)

with R locally free of corankd. On the flag schemeF , the quotientEF →→ Qd defines an
X-morphismg : F → G under which the quotientQd of EF is the pull-back of the quotient
Q of EG. In fact, it follows from the functorial properties of flags that the mapg : F → G

identifiesF and the complete flag scheme ofQ overG:

Flagd
X(E) = Flagd

G(Q). (6.0.3)
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Under this identification we have the equalityQF = Qd and the universal (complete) flag of
quotients ofQF is tail of the flag (6.0.1).

In the cased = 1, the two schemesF andG reduce to projective space: Let

P := IP (E) = Proj(SymE) and π : P → X

be the projective bundle and its structure map. OnP there is an exact sequence

0 → E1 → EP → OP (1) → 0. (6.0.4)

Clearly, the flag schemes may be defined inductively as a chainof schemes and maps,

Fd → · · · → F2 → F1 → X,

with F1 := IP (E), and the following inductive description: Assume thatF = Flagd(E) is
given with the universal flag (6.0.1). LetRd ⊆ EF be the corank-d submodule corresponding
to the quotientQd . SetF ′ := IP (Rd), letL′ := OF ′(1) be the universal rank-1 quotient of
Rd,F ′ , let Rd+1 ⊆ Rd,F ′ be the kernel of the canonical epimorphismRd,F ′ → L′, and let
Qd+1 := EF ′/Rd+1. ThenQd+1 is a rank-(d + 1) quotient ofEF ′ , and there is a canonical
quotientmorphismQd+1 →→ Qd,F ′ with kernelL′. Clearly, F ′ = Flagd+1(E), with the
corank-(d + 1) flag obtained fromQd+1 and the pull back toF ′ of the flag (6.0.1) as the
universal corank-(d + 1) flag.

6.1 Setup continued. Consider an increasing sequence ofd linear subschemes ofIP (E):

A1 ⊆ A2 ⊆ · · · ⊆ Ad ⊆ IP (E),

sayAi = IP (Ai) given by a decreasing sequence ofd locally free quotients ofE :

E →→ Ad →→ · · · →→ A2 →→ A1, (6.1.1)

sayAi := IP (E/Vi) with a decreasing sequenceE ⊇ V1 ⊇ · · · ⊇ Vd of d locally split
submodules ofE . The associatedSchubert subschemeis the closed subscheme of the Grass-
mannian,

�(A1, . . . , Ad) = �(A1, . . . ,Ad) ⊆ GrassdX(E),

defined informally, see [LT2], by the following conditions on a(d − 1)-planeQ in IP (E):

dimQ ∩ Ai ≥ i − 1 for i = 1, . . . , d.

Over the flag schemeF = Flagd(E) we have two decreasing sequences of quotients of
EF :

EF
- Ad,F

- Ad−1,F
- · · · - A1,F

ww

w

ww

EF
- Qd

- Qd−1 - · · · - Q1.

Denote byZ = Flag(A1, . . . ,Ad) = Flag(A1, . . . , Ad) the closed subschemeZ ⊆ F where
the top sequence dominates the bottom sequence, that is, thequotientEF →→ Ai,F dominates
the quotientEF →→ Qi for i = 1, . . . , d:

EF
- Ad,F

- Ad−1,F
- · · · - A1,F

ww

w

ww

? ? ?
EF

- Qd
- Qd−1 - · · · - Q1.
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So, if Ai = E/Vi , thenZ is the intersection of the zero schemes of thed compositions
Vi,F → EF → Qi .

In precise geometric terms, the flag schemeF represents the functor whose value at an
X-schemeT is the set of all flags,

Q1 ⊂ Q2 ⊂ · · · ⊂ Qd ⊆ IP (ET ), (6.1.2)

whereQi is a linear subspace of relative dimensioni − 1 in IP (ET ) = IP (E) ×X T , andZ

respresents the subfunctor whose value is the subset of flags(6.1.2) where

Qi ⊆ Ai ×X T for i = 1, . . . , d.

Clearly, the canonical morphismg : Flagd(E) → Grassd(E) induces a morphism of closed
subschemes,

f : Flag(A1, . . . , Ad) → �(A1, . . . , Ad) (6.1.3)

6.2 Lemma. The morphism(6.1.3)induces an isomorphism between the open dense subset
of Flag(A1, . . . , Ad) whereAi ∩ Qd = Qi for i = 1, . . . , d, and the open dense subset of
�(A1, . . . , Ad) whereAi ∩ Q is a linear subscheme of dimensioni − 1 for i = 1, . . . , d.

Proof. The assertion is obvious.

6.3 Iterative construction. Generalizing the inductive definition of the flag scheme, the
subschemeZ = Flag(A1, . . . , Ad) of thed ’th flag schemeF = Flagd(E) may be constructed
inductively as follows:

First, if d = 0, thenZ = F = X. To describe the inductive step, passing fromd to
d + 1, assume thatZ andF are constructed ford linear subspacesA1, . . . , Ad of IP (E), and
consider an additional linear subspaceAd ⊆ Ad+1 ⊆ IP (E), sayAd+1 = IP (E/Vd+1) with
Vd+1 ⊆ Vd . Consider the universal flag onF :

EF →→ Qd →→ · · · →→ Q1, (6.3.1)

whereQi is locally free of ranki. Assume that the quotientQd corresponds to the submodule
Rd , sayQd = EF /Rd . Consider the projective schemeh : F ′ := IP (Rd) → F , and onF ′

the tautological exact sequence,

0 - R′ - Rd,F ′ - OF ′(1) - 0. (6.3.2)

Then the quotientQ′ := EF ′/R′ dominates the quotientQd,F ′ = EF ′/Rd,F ′ , andL′ :=
OF ′(1) is the kernel of the surjectionQ′ →→ Qd,F ′ . Clearly,F ′ = Flagd+1(E) with

EF ′ →→ Q′ →→ Qd,F ′ →→ · · · →→ Q1,F ′

as the universal flag.
OverF ′ we have two(d + 1)-flags of quotients,

EF ′ - Ad+1,F ′ - Ad,F ′ - · · · - A1,F ′
ww

w

ww

EF ′ - Q′ - Qd,F ′ - · · · - Q1,F ′ .
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OverZ, and hence over the preimageh−1Z, we have thatE →→ Ai dominatesE →→ Qi for
i = 1, . . . , d:

Eh−1Z
- Ad+1,h−1Z

- Ad,h−1Z
- · · · - A1,h−1Z

ww

w

ww

? ? ?
Eh−1Z

- Q′ - Qd,h−1Z
- · · · - Q1,h−1Z.

Moreover, for any schemeT overh−1Z we have thatAd+1,T dominatesQ′
T if and only if the

compositionVd+1,T → ET → Q′
T vanishes. SinceVd+1,T ⊆ Vd,T , the composition maps

into the kernelL′
T of Q′

T →→ Qd,T . So the composition defines over the preimageh−1Z of
Z in F a natural morphism,

Vd+1,h−1Z → L′

h−1Z
,

or a section,
Oh−1Z → V∗

d+1,h−1Z
⊗ Ld+1,h−1; (6.3.3)

clearly,Z′ = Flag(A1, . . . , Ad+1) is the scheme of zeros of the latter section.
The section (6.3.3) is regular, since the structure maph−1Z → Z identifiesh−1Z with

IP (Rd,Z) andRd,h−1Z →→ L′

h−1Z
with the universal rank-1 quotient(?). As a consequence,

the class ofZ′ in A(h−1Z) is obtained by applying the top Chern classctop(V
∗
d+1 ⊗ L′) to

[h−1Z]. The top Chern class is, as a consequence of the Splitting Principle, equal to the
value of the Chern polynomialCVd+1 at the first Chern classx = c1Ld+1. Hence, under the
inclusionj : Z′ → h−1Z,

j∗[Z′] = CVd+1(x)[h−1Z]. (6.3.4)

6.4 Proposition. Consider thed ’th flag schemeF = Flagd(E) with its universal flag(6.0.1),
let Li := Ker(Qi → Qi−1) andξi := c1Li for i = 1, . . . , d. LetZ := Flag(A1, . . . , Ad)

and, more generally, letZi be the preimage inF of Flag(A1, . . . , Ai) under the natural map
F = Flagd(E) → Flagi(E). Then, fori = 1, . . . , d, we have the equation inA(F ):

[Zi ] =

i
∏

j=1

CVj
(ξj ) ∩ [F ].

Note that, by the Whitney Sum formula,CVj
(T ) = CE(T )/CAj

(T ).

6.5 Conclusion. Recall that for the Chow group of thed ’th flag schemeF = Flagd(E) there
is a canonical identification,

A(F ) = A∗(F ) ⊗A∗(X) A(X) = SplitdA∗(X)(CF ) ⊗A∗(X) A(X), (6.5.1)

where SplitdA(p) denotes thed ’the splitting algebrafor the polynomialp overA in d linear
factorsp(T ) = (T − ξ1) · · · (T − ξd)p̃(T ), whereξ1, . . . , ξd are theuniversal rootsin
SplitdA(p). By the identification (6.5.1), the Chern classesxi ∈ A∗(X) correspond to the
universal rootsξi .

Recall in addition that theA-subalgebra of SplitdA(p) generated by the elementary sym-
metric polynomials in theξ1, . . . , ξd is the factorization algebraFactdA(p), universal with

4



respect to factorizationsp = qq̃ into factors of degreed andn−d. The Chern ringA∗(G) of
thed ’th GrassmannianG = Grassd(E) is in fact thed ’th factorization algebra ofCE , and the
equationCE = CQCR in A∗(G)[T ] resulting from the exact sequence (6.0.2) is the universal
factorization. Moreover the pull back of the morphismg : F → G and the inclusion of the
factorization algebra into the splitting algebra induce a commutative diagram,

A(F) - Splitn
A∗(X)

(CE) ⊗A∗(X) A(X)

6g∗ 6

A(G) - Factn
A∗(X)

(CE) ⊗A∗(X) A(X)

(6.5.2)

6.6 Theorem. Consider over the base schemeX a locally free moduleE and a flag ofd
locally free quotients,

E →→ Ad →→ · · · →→ A2 →→ A1, (6.6.1)

with rk Ai ≥ i, sayAi := IP (E/Vi) with a decreasing sequence,

Vd ⊆ · · · ⊆ V1 ⊆ E, (6.6.2)

of d locally split submodulesVi . Form the GrassmanianG := Grassd(E) parametrizing
rank-d locally free quotients ofE with the universal quotientEG →→ Q, fitting into an exact
sequence,

0 → R → EG → Q → 0. (6.6.3)

Let� = �(A1, . . . ,Ad) be the corresponding Schubert subscheme ofG. Then the class of
� in the Chow groupA(G) is given by the determinantal formula,

[�] = Res
(CV1

CQ

, . . . ,
CVd

CQ

)

[G] = Res
( CR

CA1

, . . . ,
CR

CAd

)

[G]. (6.6.4)

Proof. The Laurent series in the two resultants are the same since, by the Whitney Formula,
CE(T ) = CVi

(T )CAi
(T ) = CR(T )CQ(T ) in A∗(G)[T ]. Note also that the Segre series is

the inverse of the Chern polynomial so thatCVi
/CQ = CVi

SQ = CRSAi
.

Let F be thed ’th flag scheme,F = Flagd(E); under the induced morphismg : F → G,
the flag schemeF is identified with the complete flag scheme Flagd(Q) of Q. LetZ ⊆ F be
the closed subschemeZ = Flag(A1, . . . ,Ad). Consider the following diagram,

A(Z) -i∗ A(F ) ==== Splitd(CQ) ⊗A∗(G) A(G)

?
f∗

?
g∗

?
∂⊗1

A(�) -j∗ A(G) ===== A∗(G) ⊗A∗(G) A(G).

The left square of Chow groups corresponds to the natural commutative diagram of schemes.
Hence the first square is commutative. The right vertical map∂ in the second square is the map
∂ = ∂1,...,d considered in [LT1, Section 6]. It is a map from the splittingalgebra Splitd(CQ) of
the Chern polynomialCQ ∈ A∗(G) to the base ringA∗(G); the splitting algebra Splitd(CQ)

is the full splitting algebra sinceCQ is of degreed.
The inductive constrution of full flag schemeF = Flagd(Q) with the mapg : F → G is

recalled in Section 6.1. The inductive construction of the splitting algebra Splitd(CQ) over
5



the ring A∗(G) with its map Splitd(CQ) → A∗(G) is given in [LT1, Section 6]. It follows
from the two constructions that the second diagram is commutative under the top horizontal
identification given in [LT2, Formula (4.9.1)] withX := G andE := Q.

To prove the formula in (6.6.4), consider the fundamental class [Z] ∈ A(Z) and its image
in A(G). First,f∗[Z] = [�] since the mapf : Z → � is birational by Lemma 6.2. Hence
the image of [Z] in A (G) is equal to the class [�] in A(G).

Next, the inclusioni : Z → F is, by the iterative construction 6.3, a composition ofd

regular embeddings defined by zero schemes of regular sections correspoding to the one
considered in (6.3.3). Hence,

j∗[Z] = CVd
(ξd) · · ·CV1(ξ1)[F ]. (6.6.5)

Under the identifications in the diagram, the product of Chern classes in (6.6.5) may be
viewed as a product in the splitting algebra Splitd(CQ). By the fundamental result in [LT1,
Proposition 6.3], the image of the product under the map∂ is the resultant in (6.6.4),

∂
(

CVd
(ξd) · · ·CV1(ξ1)

)

= Res
(CV1

CQ

, . . . ,
CVd

CQ

)

.

Thereforeg∗i∗[Z] is equal to the resultant applied to [G]. Thus formula (6.6.4) has been
proved.
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