The Determinantal Formula in Schubert calculus

DAN LAKSOV & ANDERS THORUP

Department of Mathematics, KTH & Department of Mathematics, University of Copenhagen

17 March 2008

ABSTRACT. We present a proof of the determinantal formula in Schubert calculus for general schemes. The result may be viewed as an appendix to the article [LT2].

6.0 Setup. Work with the notation introduced in [LT2]. In particular, \mathcal{E} is a locally free module of rank $n \ge 1$ over the base scheme *X*, and $d \le n$ is a fixed positive integer.

Let

$$F := \operatorname{Flag}^d(\mathcal{E}) \quad \text{and} \quad \pi_F \colon F \to X$$

be the *d*'th *partial flag scheme* and its structure map, parametrizing flags of corank *d* in \mathcal{E} . On *F* there is a universal flag of quotients of \mathcal{E}_F ,

$$\mathcal{E}_F \twoheadrightarrow \mathcal{Q}_d \twoheadrightarrow \mathcal{Q}_{d-1} \twoheadrightarrow \cdots \twoheadrightarrow \mathcal{Q}_1,$$
 (6.0.1)

with Q_i locally free of rank *i*. So, the successive kernels $\mathcal{L}_i := \text{Ker}(Q_i \to Q_{i-1})$ for $i = 1, \ldots, d$ (and $Q_0 = 0$) are locally free of rank 1.

Let

$$G := \operatorname{Grass}^{d}(\mathcal{E}) \text{ and } \pi_{G} \colon G \to X$$

be the *d*'th Grassmannian and its structure map, parametrizing rank-*d* quotients of \mathcal{E} . On *G* there is a universal rank-*d* quotient \mathcal{Q} of \mathcal{E}_G . It defines a short exact sequence,

$$0 \to \mathcal{R} \to \mathcal{E}_G \to \mathcal{Q} \to 0 \tag{6.0.2}$$

with \mathcal{R} locally free of corank d. On the flag scheme F, the quotient $\mathcal{E}_F \twoheadrightarrow \mathcal{Q}_d$ defines an X-morphism $g: F \to G$ under which the quotient \mathcal{Q}_d of \mathcal{E}_F is the pull-back of the quotient \mathcal{Q} of \mathcal{E}_G . In fact, it follows from the functorial properties of flags that the map $g: F \to G$ identifies F and the complete flag scheme of \mathcal{Q} over G:

$$\operatorname{Flag}_X^d(\mathcal{E}) = \operatorname{Flag}_G^d(\mathcal{Q}). \tag{6.0.3}$$

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

¹⁹⁹¹ Mathematics Subject Classification. 14N15, 14M15, 05E05.

Under this identification we have the equality $Q_F = Q_d$ and the universal (complete) flag of quotients of Q_F is tail of the flag (6.0.1).

In the case d = 1, the two schemes F and G reduce to projective space: Let

$$P := I\!P(\mathcal{E}) = \operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \text{ and } \pi : P \to X$$

be the projective bundle and its structure map. On P there is an exact sequence

$$0 \to \mathcal{E}_1 \to \mathcal{E}_P \to \mathcal{O}_P(1) \to 0. \tag{6.0.4}$$

Clearly, the flag schemes may be defined inductively as a chain of schemes and maps,

$$F_d \to \cdots \to F_2 \to F_1 \to X,$$

with $F_1 := I\!P(\mathcal{E})$, and the following inductive description: Assume that $F = \operatorname{Flag}^d(\mathcal{E})$ is given with the universal flag (6.0.1). Let $\mathcal{R}_d \subseteq \mathcal{E}_F$ be the corank-*d* submodule corresponding to the quotient \mathcal{Q}_d . Set $F' := I\!P(\mathcal{R}_d)$, let $\mathcal{L}' := \mathcal{O}_{F'}(1)$ be the universal rank-1 quotient of $\mathcal{R}_{d,F'}$, let $\mathcal{R}_{d+1} \subseteq \mathcal{R}_{d,F'}$ be the kernel of the canonical epimorphism $\mathcal{R}_{d,F'} \to \mathcal{L}'$, and let $\mathcal{Q}_{d+1} := \mathcal{E}_{F'}/\mathcal{R}_{d+1}$. Then \mathcal{Q}_{d+1} is a rank-(*d* + 1) quotient of $\mathcal{E}_{F'}$, and there is a canonical quotientmorphism $\mathcal{Q}_{d+1} \twoheadrightarrow \mathcal{Q}_{d,F'}$ with kernel \mathcal{L}' . Clearly, $F' = \operatorname{Flag}^{d+1}(\mathcal{E})$, with the corank-(*d* + 1) flag obtained from \mathcal{Q}_{d+1} and the pull back to F' of the flag (6.0.1) as the universal corank-(*d* + 1) flag.

6.1 Setup continued. Consider an increasing sequence of *d* linear subschemes of $I\!P(\mathcal{E})$:

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_d \subseteq I\!\!P(\mathcal{E}),$$

say $A_i = I\!\!P(A_i)$ given by a decreasing sequence of d locally free quotients of \mathcal{E} :

$$\mathcal{E} \twoheadrightarrow \mathcal{A}_d \twoheadrightarrow \cdots \twoheadrightarrow \mathcal{A}_2 \twoheadrightarrow \mathcal{A}_1,$$
 (6.1.1)

say $A_i := I\!P(\mathcal{E}/\mathcal{V}_i)$ with a decreasing sequence $\mathcal{E} \supseteq \mathcal{V}_1 \supseteq \cdots \supseteq \mathcal{V}_d$ of *d* locally split submodules of \mathcal{E} . The associated *Schubert subscheme* is the closed subscheme of the Grassmannian,

$$\Omega(A_1,\ldots,A_d) = \Omega(\mathcal{A}_1,\ldots,\mathcal{A}_d) \subseteq \operatorname{Grass}^d_X(\mathcal{E}),$$

defined informally, see [LT2], by the following conditions on a (d-1)-plane Q in $I\!P(\mathcal{E})$:

$$\dim Q \cap A_i \ge i - 1 \quad \text{for } i = 1, \dots, d.$$

Over the flag scheme $F = \operatorname{Flag}^{d}(\mathcal{E})$ we have two decreasing sequences of quotients of \mathcal{E}_{F} :

$$\begin{array}{c} \mathcal{E}_F \longrightarrow \mathcal{A}_{d,F} \longrightarrow \mathcal{A}_{d-1,F} \longrightarrow \cdots \longrightarrow \mathcal{A}_{1,F} \\ \| \\ \mathcal{E}_F \longrightarrow \mathcal{Q}_d \longrightarrow \mathcal{Q}_{d-1} \longrightarrow \cdots \longrightarrow \mathcal{Q}_1. \end{array}$$

Denote by $Z = \operatorname{Flag}(\mathcal{A}_1, \ldots, \mathcal{A}_d) = \operatorname{Flag}(\mathcal{A}_1, \ldots, \mathcal{A}_d)$ the closed subscheme $Z \subseteq F$ where the top sequence dominates the bottom sequence, that is, the quotient $\mathcal{E}_F \twoheadrightarrow \mathcal{A}_{i,F}$ dominates the quotient $\mathcal{E}_F \twoheadrightarrow \mathcal{Q}_i$ for $i = 1, \ldots, d$:

So, if $\mathcal{A}_i = \mathcal{E}/\mathcal{V}_i$, then Z is the intersection of the zero schemes of the d compositions $\mathcal{V}_{i,F} \to \mathcal{E}_F \to \mathcal{Q}_i$.

In precise geometric terms, the flag scheme F represents the functor whose value at an X-scheme T is the set of all flags,

$$Q_1 \subset Q_2 \subset \cdots \subset Q_d \subseteq I\!\!P(\mathcal{E}_T), \tag{6.1.2}$$

where Q_i is a linear subspace of relative dimension i - 1 in $I\!P(\mathcal{E}_T) = I\!P(\mathcal{E}) \times_X T$, and Z respresents the subfunctor whose value is the subset of flags (6.1.2) where

$$Q_i \subseteq A_i \times_X T$$
 for $i = 1, \ldots, d$.

Clearly, the canonical morphism $g: \operatorname{Flag}^{d}(\mathcal{E}) \to \operatorname{Grass}^{d}(\mathcal{E})$ induces a morphism of closed subschemes,

$$f: \operatorname{Flag}(A_1, \dots, A_d) \to \Omega(A_1, \dots, A_d) \tag{6.1.3}$$

6.2 Lemma. The morphism (6.1.3) induces an isomorphism between the open dense subset of $\operatorname{Flag}(A_1, \ldots, A_d)$ where $A_i \cap Q_d = Q_i$ for $i = 1, \ldots, d$, and the open dense subset of $\Omega(A_1, \ldots, A_d)$ where $A_i \cap Q$ is a linear subscheme of dimension i - 1 for $i = 1, \ldots, d$.

Proof. The assertion is obvious.

6.3 Iterative construction. Generalizing the inductive definition of the flag scheme, the subscheme $Z = \text{Flag}(A_1, \ldots, A_d)$ of the *d*'th flag scheme $F = \text{Flag}^d(\mathcal{E})$ may be constructed inductively as follows:

First, if d = 0, then Z = F = X. To describe the inductive step, passing from d to d + 1, assume that Z and F are constructed for d linear subspaces A_1, \ldots, A_d of $I\!P(\mathcal{E})$, and consider an additional linear subspace $A_d \subseteq A_{d+1} \subseteq I\!P(\mathcal{E})$, say $A_{d+1} = I\!P(\mathcal{E}/\mathcal{V}_{d+1})$ with $\mathcal{V}_{d+1} \subseteq \mathcal{V}_d$. Consider the universal flag on F:

$$\mathcal{E}_F \twoheadrightarrow \mathcal{Q}_d \twoheadrightarrow \cdots \twoheadrightarrow \mathcal{Q}_1,$$
 (6.3.1)

where Q_i is locally free of rank *i*. Assume that the quotient Q_d corresponds to the submodule \mathcal{R}_d , say $Q_d = \mathcal{E}_F / \mathcal{R}_d$. Consider the projective scheme $h: F' := IP(\mathcal{R}_d) \to F$, and on F' the tautological exact sequence,

$$0 \longrightarrow \mathcal{R}' \longrightarrow \mathcal{R}_{d,F'} \longrightarrow \mathcal{O}_{F'}(1) \longrightarrow 0.$$
(6.3.2)

Then the quotient $Q' := \mathcal{E}_{F'}/\mathcal{R}'$ dominates the quotient $\mathcal{Q}_{d,F'} = \mathcal{E}_{F'}/\mathcal{R}_{d,F'}$, and $\mathcal{L}' := \mathcal{O}_{F'}(1)$ is the kernel of the surjection $Q' \twoheadrightarrow \mathcal{Q}_{d,F'}$. Clearly, $F' = \operatorname{Flag}^{d+1}(\mathcal{E})$ with

$$\mathcal{E}_{F'} \twoheadrightarrow \mathcal{Q}' \twoheadrightarrow \mathcal{Q}_{d,F'} \twoheadrightarrow \cdots \twoheadrightarrow \mathcal{Q}_{1,F'}$$

as the universal flag.

Over F' we have two (d + 1)-flags of quotients,

$$\begin{array}{c} \mathcal{E}_{F'} \longrightarrow \mathcal{A}_{d+1,F'} \longrightarrow \mathcal{A}_{d,F'} \longrightarrow \cdots \longrightarrow \mathcal{A}_{1,F'} \\ \| \\ \mathcal{E}_{F'} \longrightarrow \mathcal{Q}' \longrightarrow \mathcal{Q}_{d,F'} \longrightarrow \cdots \longrightarrow \mathcal{Q}_{1,F'} \\ 3 \end{array}$$

Over Z, and hence over the preimage $h^{-1}Z$, we have that $\mathcal{E} \twoheadrightarrow \mathcal{A}_i$ dominates $\mathcal{E} \twoheadrightarrow \mathcal{Q}_i$ for i = 1, ..., d:

Moreover, for any scheme T over $h^{-1}Z$ we have that $\mathcal{A}_{d+1,T}$ dominates \mathcal{Q}'_T if and only if the composition $\mathcal{V}_{d+1,T} \to \mathcal{E}_T \to \mathcal{Q}'_T$ vanishes. Since $\mathcal{V}_{d+1,T} \subseteq \mathcal{V}_{d,T}$, the composition maps into the kernel \mathcal{L}'_T of $\mathcal{Q}'_T \twoheadrightarrow \mathcal{Q}_{d,T}$. So the composition defines over the preimage $h^{-1}Z$ of Z in F a natural morphism,

$$\mathcal{V}_{d+1,h^{-1}Z} \to \mathcal{L}'_{h^{-1}Z}$$

or a section,

$$\mathcal{O}_{h^{-1}Z} \to \mathcal{V}_{d+1,h^{-1}Z}^* \otimes L_{d+1,h^{-1}};$$
 (6.3.3)

clearly, $Z' = Flag(A_1, \ldots, A_{d+1})$ is the scheme of zeros of the latter section.

The section (6.3.3) is regular, since the structure map $h^{-1}Z \to Z$ identifies $h^{-1}Z$ with $I\!P(\mathcal{R}_{d,Z})$ and $\mathcal{R}_{d,h^{-1}Z} \to \mathcal{L}'_{h^{-1}Z}$ with the universal rank-1 quotient(?). As a consequence, the class of Z' in $A(h^{-1}Z)$ is obtained by applying the top Chern class $c_{top}(\mathcal{V}^*_{d+1} \otimes \mathcal{L}')$ to $[h^{-1}Z]$. The top Chern class is, as a consequence of the Splitting Principle, equal to the value of the Chern polynomial $C_{\mathcal{V}_{d+1}}$ at the first Chern class $x = c_1 \mathcal{L}_{d+1}$. Hence, under the inclusion $j: Z' \to h^{-1}Z$,

$$j_*[Z'] = C_{\mathcal{V}_{d+1}}(x)[h^{-1}Z].$$
(6.3.4)

6.4 Proposition. Consider the d'th flag scheme $F = \operatorname{Flag}^{d}(\mathcal{E})$ with its universal flag (6.0.1), let $\mathcal{L}_{i} := \operatorname{Ker}(\mathcal{Q}_{i} \to \mathcal{Q}_{i-1})$ and $\xi_{i} := c_{1}\mathcal{L}_{i}$ for $i = 1, \ldots, d$. Let $Z := \operatorname{Flag}(A_{1}, \ldots, A_{d})$ and, more generally, let Z_{i} be the preimage in F of $\operatorname{Flag}(A_{1}, \ldots, A_{i})$ under the natural map $F = \operatorname{Flag}^{d}(\mathcal{E}) \to \operatorname{Flag}^{i}(\mathcal{E})$. Then, for $i = 1, \ldots, d$, we have the equation in A(F):

$$[Z_i] = \prod_{j=1}^i C_{\mathcal{V}_j}(\xi_j) \cap [F].$$

Note that, by the Whitney Sum formula, $C_{\mathcal{V}_i}(T) = C_{\mathcal{E}}(T)/C_{\mathcal{A}_i}(T)$.

6.5 Conclusion. Recall that for the Chow group of the *d*'th flag scheme $F = \text{Flag}^d(\mathcal{E})$ there is a canonical identification,

$$A(F) = A^{*}(F) \otimes_{A^{*}(X)} A(X) = \text{Split}_{A^{*}(X)}^{d}(C_{\mathcal{F}}) \otimes_{A^{*}(X)} A(X),$$
(6.5.1)

where $\text{Split}_{A}^{d}(p)$ denotes the *d*'the *splitting algebra* for the polynomial *p* over *A* in *d* linear factors $p(T) = (T - \xi_1) \cdots (T - \xi_d) \tilde{p}(T)$, where ξ_1, \ldots, ξ_d are the *universal roots* in $\text{Split}_{A}^{d}(p)$. By the identification (6.5.1), the Chern classes $x_i \in A^*(X)$ correspond to the universal roots ξ_i .

Recall in addition that the A-subalgebra of $\text{Split}_A^d(p)$ generated by the elementary symmetric polynomials in the ξ_1, \ldots, ξ_d is the *factorization algebra* $\text{Fact}_A^d(p)$, universal with

respect to factorizations $p = q\tilde{q}$ into factors of degree d and n - d. The Chern ring $A^*(G)$ of the d'th Grassmannian $G = \text{Grass}^d(\mathcal{E})$ is in fact the d'th factorization algebra of $C_{\mathcal{E}}$, and the equation $C_{\mathcal{E}} = C_{\mathcal{Q}}C_{\mathcal{R}}$ in $A^*(G)[T]$ resulting from the exact sequence (6.0.2) is the universal factorization. Moreover the pull back of the morphism $g: F \to G$ and the inclusion of the factorization algebra into the splitting algebra induce a commutative diagram,

6.6 Theorem. Consider over the base scheme X a locally free module \mathcal{E} and a flag of d locally free quotients,

$$\mathcal{E} \twoheadrightarrow \mathcal{A}_d \twoheadrightarrow \cdots \twoheadrightarrow \mathcal{A}_2 \twoheadrightarrow \mathcal{A}_1,$$
 (6.6.1)

with $\operatorname{rk} A_i \geq i$, say $A_i := I\!P(\mathcal{E}/\mathcal{V}_i)$ with a decreasing sequence,

$$\mathcal{V}_d \subseteq \dots \subseteq \mathcal{V}_1 \subseteq \mathcal{E},\tag{6.6.2}$$

of d locally split submodules \mathcal{V}_i . Form the Grassmanian $G := \operatorname{Grass}^d(\mathcal{E})$ parametrizing rank-d locally free quotients of \mathcal{E} with the universal quotient $\mathcal{E}_G \twoheadrightarrow \mathcal{Q}$, fitting into an exact sequence,

$$0 \to \mathcal{R} \to \mathcal{E}_G \to \mathcal{Q} \to 0. \tag{6.6.3}$$

Let $\Omega = \Omega(A_1, ..., A_d)$ be the corresponding Schubert subscheme of G. Then the class of Ω in the Chow group A(G) is given by the determinantal formula,

$$[\Omega] = \operatorname{Res}\left(\frac{C_{\mathcal{V}_1}}{C_{\mathcal{Q}}}, \dots, \frac{C_{\mathcal{V}_d}}{C_{\mathcal{Q}}}\right)[G] = \operatorname{Res}\left(\frac{C_{\mathcal{R}}}{C_{\mathcal{A}_1}}, \dots, \frac{C_{\mathcal{R}}}{C_{\mathcal{A}_d}}\right)[G].$$
(6.6.4)

Proof. The Laurent series in the two resultants are the same since, by the Whitney Formula, $C_{\mathcal{E}}(T) = C_{\mathcal{V}_i}(T)C_{\mathcal{A}_i}(T) = C_{\mathcal{R}}(T)C_{\mathcal{Q}}(T)$ in A^{*}(G)[T]. Note also that the Segre series is the inverse of the Chern polynomial so that $C_{\mathcal{V}_i}/C_{\mathcal{Q}} = C_{\mathcal{V}_i}S_{\mathcal{Q}} = C_{\mathcal{R}}S_{\mathcal{A}_i}$.

Let *F* be the *d*'th flag scheme, $F = \operatorname{Flag}^d(\mathcal{E})$; under the induced morphism $g: F \to G$, the flag scheme *F* is identified with the complete flag scheme $\operatorname{Flag}^d(\mathcal{Q})$ of \mathcal{Q} . Let $Z \subseteq F$ be the closed subscheme $Z = \operatorname{Flag}(\mathcal{A}_1, \ldots, \mathcal{A}_d)$. Consider the following diagram,

$$\begin{array}{ccc} \mathbf{A}(Z) & \stackrel{i_{*}}{\longrightarrow} & \mathbf{A}(F) = = \operatorname{Split}^{d}(C_{\mathcal{Q}}) \otimes_{A^{*}(G)} A(G) \\ f_{*} & & & \downarrow^{\partial \otimes 1} \\ A(\Omega) & \stackrel{j_{*}}{\longrightarrow} & \mathbf{A}(G) = = \operatorname{A}^{*}(G) \otimes_{A^{*}(G)} A(G). \end{array}$$

The left square of Chow groups corresponds to the natural commutative diagram of schemes. Hence the first square is commutative. The right vertical map ∂ in the second square is the map $\partial = \partial^{1,...,d}$ considered in [LT1, Section 6]. It is a map from the splitting algebra Split^d(C_Q) of the Chern polynomial $C_Q \in A^*(G)$ to the base ring $A^*(G)$; the splitting algebra Split^d(C_Q) is the full splitting algebra since C_Q is of degree d.

The inductive construction of full flag scheme $F = \operatorname{Flag}^d(\mathcal{Q})$ with the map $g \colon F \to G$ is recalled in Section 6.1. The inductive construction of the splitting algebra $\operatorname{Split}^d(C_{\mathcal{Q}})$ over

the ring $A^*(G)$ with its map $\text{Split}^d(C_Q) \to A^*(G)$ is given in [LT1, Section 6]. It follows from the two constructions that the second diagram is commutative under the top horizontal identification given in [LT2, Formula (4.9.1)] with X := G and $\mathcal{E} := Q$.

To prove the formula in (6.6.4), consider the fundamental class $[Z] \in A(Z)$ and its image in A(G). First, $f_*[Z] = [\Omega]$ since the map $f: Z \to \Omega$ is birational by Lemma 6.2. Hence the image of [Z] in A(G) is equal to the class $[\Omega]$ in A(G).

Next, the inclusion $i: Z \to F$ is, by the iterative construction 6.3, a composition of d regular embeddings defined by zero schemes of regular sections correspoding to the one considered in (6.3.3). Hence,

$$j_*[Z] = C_{\mathcal{V}_d}(\xi_d) \cdots C_{\mathcal{V}_1}(\xi_1)[F].$$
(6.6.5)

Under the identifications in the diagram, the product of Chern classes in (6.6.5) may be viewed as a product in the splitting algebra $\text{Split}^d(C_Q)$. By the fundamental result in [LT1, Proposition 6.3], the image of the product under the map ∂ is the resultant in (6.6.4),

$$\partial \left(C_{\mathcal{V}_d}(\xi_d) \cdots C_{\mathcal{V}_1}(\xi_1) \right) = \operatorname{Res}\left(\frac{C_{\mathcal{V}_1}}{C_{\mathcal{Q}}}, \dots, \frac{C_{\mathcal{V}_d}}{C_{\mathcal{Q}}} \right).$$

Therefore $g_*i_*[Z]$ is equal to the resultant applied to [G]. Thus formula (6.6.4) has been proved.

References

- [LT1] D. Laksov and A. Thorup, A determinantal formula for the exterior powers of a polynomial ring, Indiana Univ. Math. J. 56 (2007), 825–845.
- [LT2] D. Laksov and A. Thorup, *Schubert calculus on Grassmannians and exterior powers*, Preprint 2007, to appear in ??.

S-100 44 Stockholm, Sweden & Universitetsparken 5, DK-2100 København Ø, Denmark

E-mail address: laksov@math.kth.se & thorup@math.ku.dk