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ABsTrACT. We present a proof of the determinantal formula in Schutsdutus for general
schemes. The result may be viewed as an appendix to theedtfi@].

6.0 Setup. Work with the notation introduced in [LT2]. In particulaf, is a locally free
module of rank: > 1 over the base schem& andd < n is a fixed positive integer.
Let
F:=Flag' () and np:F — X

be thed'th partial flag schemend its structure map, parametrizing flags of cordnk £.
On F there is a universal flag of quotients &f,

EF = Qg —> Qu_1—> - = Qy, (6.0.1)

with Q; locally free of ranki. So, the successive kernefs = Ker(Q;, — Q,_1) for
i=1,...,d (andQg = 0) are locally free of rank 1.
Let
G:=Gras€(€) and 7g:G— X

be thed’th Grassmannian and its structure map, parametrizing-dagiotients of€. OnG
there is a universal ran&-quotientQ of £;. It defines a short exact sequence,

0>R—>E —>Q—0 (6.0.2)

with R locally free of coranki. On the flag schem#, the quotien€r — 9, defines an
X-morphismg: F — G under which the quotiern®; of £ is the pull-back of the quotient
Q of &;. In fact, it follows from the functorial properties of flagsat the mag: F — G
identifiesF and the complete flag scheme@foverG:

Flag} (€) = Flad.(9Q). (6.0.3)
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Under this identification we have the equalidy: = 9, and the universal (complete) flag of
quotients ofQ is tail of the flag (6.0.1).
In the casel = 1, the two schemeB andG reduce to projective space: Let

P:=1IP() =ProjSym¢é) and n:P — X
be the projective bundle and its structure map. there is an exact sequence
0—->&&—>&p—> 0Op1) — 0. (6.0.4)
Clearly, the flag schemes may be defined inductively as a diachemes and maps,
Fp— > F,—> F— X,

with F, := IP (), and the following inductive description: Assume tifat= Flag (£) is
given with the universal flag (6.0.1). L&, < £r be the coranki submodule corresponding
to the quotienQ,. SetF’ := IP(Ry), let L' := Of/(1) be the universal rank-1 quotient of
Ra.r, 1€t Ray1 € Ry p be the kernel of the canonical epimorphi®p »» — £/, and let
Qu+1 = Er/Ra+1- ThenQgy1 is a rankéd + 1) quotient of€x/, and there is a canonical
quotientmorphisnQ,,1 — Qg r with kernel £'. Clearly, F’ = Flag'*1(&), with the
corank{d + 1) flag obtained fromQ,,1 and the pull back t&x’ of the flag (6.0.1) as the
universal corankd + 1) flag.

6.1 Setup continued. Consider an increasing sequencel/dinear subschemes @ (£):
A1 CA2C---C AL CIPE),
sayA; = IP(A;) given by a decreasing sequencel/dbcally free quotients of:
E—> Ag—> -+ —> A > A, (6.1.1)

sayA; = IP(E/V;) with a decreasing sequenée> Vi D --- D V; of d locally split
submodules of. The associate8chubert subschengthe closed subscheme of the Grass-
mannian,

Q(A1, ..., Ag) = QA1 ..., Ay) C Grasé(E),

defined informally, see [LT2], by the following conditione @a(d — 1)-planeQ in IP(&):
dmQnA; >i—1 fori=1,...,d.

Over the flag schem& = Flag’ (£) we have two decreasing sequences of quotients of

Er:
&r—Aur —A4g—1r— -+ — A F

EF - Qu ~ Q-1 - - Q1.
Denote byZ = Flag( A1, ..., Ay) = Flag(A1, ..., Ay) the closed subschen®eC F where
the top sequence dominates the bottom sequence, thatagidtienttr — A; r dominates
the quotien€r — Q; fori =1,...,d:

&r—Aur—A4g—1r— -+ — A F

; ; ;
Er - Qu > Qd2—1 - - Q1.




So, if A; = £/V;, thenZ is the intersection of the zero schemes of dheompositions
Vir = & — Q.

In precise geometric terms, the flag schefmeepresents the functor whose value at an
X-schemef is the set of all flags,

01C Q2C---C Qu C IP(ET), (6.1.2)

whereQ; is a linear subspace of relative dimension 1 in IP(E7) = IP(£) xx T, andZ
respresents the subfunctor whose value is the subset of 8dg2) where

Q; CA xxTfori=1...,d.

Clearly, the canonical morphisgn Flag! (£) — Grasé(€) induces a morphism of closed
subschemes,
f: FlagAg, ..., Ag) = Q(A1, ..., Ag) (6.1.3)

6.2 Lemma. The morphisn{6.1.3)induces an isomorphism between the open dense subset
of Flag(A1, ..., Ay) whereA, N Q; = Q,; fori = 1,...,d, and the open dense subset of
Q(A1, ..., Ay) whereA; N Q is alinear subscheme of dimensioa 1fori =1,...,d.

Proof. The assertion is obvious.

6.3 Iterative construction. Generalizing the inductive definition of the flag scheme, the
subschem& = Flag(Ay, ..., Ay) ofthed'th flag scheme” = Flag’ () may be constructed
inductively as follows:

First, if d = 0, thenZ = F = X. To describe the inductive step, passing frano
d + 1, assume thaf andF are constructed faf linear subspacess, ..., A; of IP(£), and
consider an additional linear subspate C Ag+1 C IP(E), sayAg+1 = IP(E/Vi41) with
Vaii1 C V4. Consider the universal flag an:

whereQ; is locally free of rank. Assume that the quotie@,; corresponds to the submodule
Ra, sayQu = Er/Ry4. Consider the projective scheme F’ := IP(R;) — F, and onF’
the tautological exact sequence,

0—>R —» Ry p — Op (1) — 0. (6.3.2)

Then the quotien®’ := £//R’ dominates the quotie®, r» = Ep/ /Ry rr, and L' =
Or(1) is the kernel of the surjectio®’ — Qg j. Clearly, F’ = Flag+1(£) with

Epr—> Q = Qupr—>» -+ —>» Q1

as the universal flag.
Over F’ we have twaod + 1)-flags of quotients,

EF/—>Ad+1,F/—>Ad,F’—> —»ALF/

|
E,'F/ =Q/ =Qd,F/—> ---—»—QLF/,
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Over Z, and hence over the preimatjel Z, we have thaf — A; dominatess — Q; for
i=1...,d:

-1z —> Agpip-1z — Agpiz — - — Aq -1z

| : | |

5h—lz - Q' > Qd,h—lz - > T Ql,h—lz'

Moreover, for any scherrig overh—1Z we have thaids,1,7 dominategY’, if and only if the
compositionVy1,7 — & — QF vanishes. Sinc®;,17 S V4 1, the composition maps
into the kernell’. of Q7 — Q4 r. So the composition defines over the preimagéZ of
Z in F a natural morphism,

/
Visin-1z = ﬁh—lz,

or a section,
Ohflz —> V;—l—l,h_lz X Ld—l—l,h*l; (633)

clearly,Z’ = Flag(A1, ..., Az+1) is the scheme of zeros of the latter section.

The section (6.3.3) is regular, since the structure wajZ — Z identifiesh~1Z with
IP(Ra,z) andR, -1, —> L;rlz with the universal rank-1 quotient(?). As a consequence,
the class oz’ in A(h~1Z) is obtained by applying the top Chern clagp(V;, 1 ® L)) to
[h~1Z]. The top Chern class is, as a consequence of the SplittingiPle, equal to the
value of the Chern polynomidly,,_ , at the first Chern class = c1£,1. Hence, under the
inclusionj: Z' — h=1z,

J«[Z'] = Cy, . 0)[12). (6.3.4)

6.4 Proposition. Consider thef'th flag scheme = Flag? () with its universal flag6.0.1)
let £; == Ker(Q; — Q;_1)and§; :=c1L; fori =1,...,d. LetZ .= Flag(A1, ..., Ay)
and, more generally, IX; be the preimage i of Flag(A1, ..., A;) under the natural map
F = Flag'(§) — Flag (£). Then, fori = 1, ..., d, we have the equation ih(F):

[z]=]]Cv,E) NIF]

j=1

Note that, by the Whitney Sum formul@y,, (7)) = Ce(T)/C 4, (T).

6.5 Conclusion. Recall that for the Chow group of thth flag schemeF = Flad! (£) there
is a canonical identification,

A(F) = A*(F) @ a+(x) A(X) = Split]. v, (Cr) ®a+x) AX), (6.5.1)

where Splig(p) denotes the’the splitting algebrafor the polynomialp over A in d linear
factorsp(T) = (T — &) ---(T — &;)p(T), whereé, ..., &; are theuniversal rootsin
Splitﬁ(p). By the identification (6.5.1), the Chern classgse A*(X) correspond to the
universal roots; .
Recall in addition that thel-subalgebra of Splj‘t(p) generated by the elementary sym-
metric polynomials in théq, ..., &; is thefactorization algebra:actj (p), universal with
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respect to factorizations = g¢ into factors of degreé andrn — d. The Chern ringd*(G) of
thed’th Grassmannia® = Grasé (€) is in fact thed'th factorization algebra of ¢, and the
equationCe = CoCxr in A*(G)[T] resulting from the exact sequence (6.0.2) is the universal
factorization. Moreover the pull back of the morphigmF — G and the inclusion of the
factorization algebra into the splitting algebra induc@mmutative diagram,

A(F) — Split, ) (Ce) ®axx) AX)
¢ T (6.5.2)
A(G) — Fact,, ) (Ce) ®ax(x) A(X)

6.6 Theorem. Consider over the base scheriea locally free module€ and a flag ofd

locally free quotients,

withrk A; > i, sayA; := IP(£/V;) with a decreasing sequence,
VgC--- SV CE, (6.6.2)

of d locally split submodule®;. Form the Grassmaniag := Gras€ () parametrizing
rank-d locally free quotients of with the universal quotieric — O, fitting into an exact
sequence,

O>R—>&E — Q—0. (6.6.3)

LetQ = Q(A1, ..., Ay) be the corresponding Schubert subschem@&.of hen the class of
Q in the Chow groufA (G) is given by the determinantal formula,

[Q] = Res((é—‘;l,..., %)[G] - Res(gz, L CCZ>[G]. (6.6.4)

Proof. The Laurent series in the two resultants are the same sip¢keetWhitney Formula,
Ce(T) = Cy,(T)Cy,(T) = Cr(T)Co(T) in A*(G)[T]. Note also that the Segre series is
the inverse of the Chern polynomial so tligf, /Co = Cy,Sgo = CrS 4.

Let F be thed'th flag schemeF = Flag(£); under the induced morphisgt F — G,
the flag schemé is identified with the complete flag scheme Fle@) of Q. LetZ C F be
the closed subschen®e= Flag(Ay4, ..., A;). Consider the following diagram,

A(Z) 1+ A(F) == Split?(Co) ®a+c) A(G)
f*l g*l l8®1
A(Q) L A(G) == A*(G) ®:) A(G).

The left square of Chow groups corresponds to the naturahugative diagram of schemes.
Hence the first square is commutative. The right vertical fnaghe second square is the map
d = 919 consideredin [LT1, Section 6]. Itis a map from the splittaigebra Split(Co) of
the Chern polynomial’o € A*(G) to the base ringt*(G); the splitting algebra Spii(Co)
is the full splitting algebra sinc€ is of degreei.

The inductive constrution of full flag schenfe= Flag’ (Q) with the mapg: F — G is
recalled in Section 6.1. The inductive construction of thitting algebra Split(Co) over
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the ring A*(G) with its map Splif (Co) — A*(G) is given in [LT1, Section 6]. It follows
from the two constructions that the second diagram is corativetunder the top horizontal
identification given in [LT2, Formula (4.9.1)] with := G and€ := Q.

To prove the formulain (6.6.4), consider the fundamentdsl] € A(Z) and its image
in A(G). First, fi[Z] = [R2] since the mapf: Z — Q is birational by Lemma 6.2. Hence
the image of Z] in A(G) is equal to the class]] in A(G).

Next, the inclusion: Z — F is, by the iterative construction 6.3, a compositiordof
regular embeddings defined by zero schemes of regular seatmrrespoding to the one
considered in (6.3.3). Hence,

J«Z] = Cy,;(a) - - Cyy (B[ F. (6.6.5)

Under the identifications in the diagram, the product of @haasses in (6.6.5) may be
viewed as a product in the splitting algebra Sfilito). By the fundamental result in [LT1,
Proposition 6.3], the image of the product under the ih&pthe resultant in (6.6.4),

_ Cyy Cyy
9(Craten -+ On(en)) =Ref 2. 52).
Thereforeg,i.[Z] is equal to the resultant applied t&¢]. Thus formula (6.6.4) has been
proved.
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