The Determinantal Formula in Schubert calculus

Dan Laksov \& Anders Thorup
Department of Mathematics, KTH \& Department of Mathematics, University of Copenhagen

17 March 2008

Abstract. We present a proof of the determinantal formula in Schubert calculus for general schemes. The result may be viewed as an appendix to the article [LT2].
6.0 Setup. Work with the notation introduced in [LT2]. In particular, \mathcal{E} is a locally free module of rank $n \geq 1$ over the base scheme X, and $d \leq n$ is a fixed positive integer.

Let

$$
F:=\operatorname{Flag}^{d}(\mathcal{E}) \quad \text { and } \quad \pi_{F}: F \rightarrow X
$$

be the d 'th partial flag scheme and its structure map, parametrizing flags of corank d in \mathcal{E}. On F there is a universal flag of quotients of \mathcal{E}_{F},

$$
\begin{equation*}
\mathcal{E}_{F} \rightarrow \mathcal{Q}_{d} \rightarrow \mathcal{Q}_{d-1} \rightarrow \cdots \rightarrow \mathcal{Q}_{1}, \tag{6.0.1}
\end{equation*}
$$

with \mathcal{Q}_{i} locally free of rank i. So, the successive kernels $\mathcal{L}_{i}:=\operatorname{Ker}\left(\mathcal{Q}_{i} \rightarrow \mathcal{Q}_{i-1}\right)$ for $i=1, \ldots, d\left(\right.$ and $\left.\mathcal{Q}_{0}=0\right)$ are locally free of rank 1 .

Let

$$
G:=\operatorname{Grass}^{d}(\mathcal{E}) \quad \text { and } \quad \pi_{G}: G \rightarrow X
$$

be the d 'th Grassmannian and its structure map, parametrizing rank- d quotients of \mathcal{E}. On G there is a universal rank- d quotient \mathcal{Q} of \mathcal{E}_{G}. It defines a short exact sequence,

$$
\begin{equation*}
0 \rightarrow \mathcal{R} \rightarrow \mathcal{E}_{G} \rightarrow \mathcal{Q} \rightarrow 0 \tag{6.0.2}
\end{equation*}
$$

with \mathcal{R} locally free of corank d. On the flag scheme F, the quotient $\mathcal{E}_{F} \rightarrow \mathcal{Q}_{d}$ defines an X-morphism $g: F \rightarrow G$ under which the quotient \mathcal{Q}_{d} of \mathcal{E}_{F} is the pull-back of the quotient \mathcal{Q} of \mathcal{E}_{G}. In fact, it follows from the functorial properties of flags that the map $g: F \rightarrow G$ identifies F and the complete flag scheme of \mathcal{Q} over G :

$$
\begin{equation*}
\operatorname{Flag}_{X}^{d}(\mathcal{E})=\operatorname{Flag}_{G}^{d}(\mathcal{Q}) . \tag{6.0.3}
\end{equation*}
$$

1991 Mathematics Subject Classification. 14N15, 14M15, 05E05.

Under this identification we have the equality $\mathcal{Q}_{F}=\mathcal{Q}_{d}$ and the universal (complete) flag of quotients of \mathcal{Q}_{F} is tail of the flag (6.0.1).

In the case $d=1$, the two schemes F and G reduce to projective space: Let

$$
P:=\mathbb{P}(\mathcal{E})=\operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \quad \text { and } \quad \pi: P \rightarrow X
$$

be the projective bundle and its structure map. On P there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{E}_{1} \rightarrow \mathcal{E}_{P} \rightarrow \mathcal{O}_{P}(1) \rightarrow 0 \tag{6.0.4}
\end{equation*}
$$

Clearly, the flag schemes may be defined inductively as a chain of schemes and maps,

$$
F_{d} \rightarrow \cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow X
$$

with $F_{1}:=\mathbb{P}(\mathcal{E})$, and the following inductive description: Assume that $F=\operatorname{Flag}^{d}(\mathcal{E})$ is given with the universal flag (6.0.1). Let $\mathcal{R}_{d} \subseteq \mathcal{E}_{F}$ be the corank- d submodule corresponding to the quotient \mathcal{Q}_{d}. Set $F^{\prime}:=\mathbb{P}\left(\mathcal{R}_{d}\right)$, let $\mathcal{L}^{\prime}:=\mathcal{O}_{F^{\prime}}(1)$ be the universal rank-1 quotient of $\mathcal{R}_{d, F^{\prime}}$, let $\mathcal{R}_{d+1} \subseteq \mathcal{R}_{d, F^{\prime}}$ be the kernel of the canonical epimorphism $\mathcal{R}_{d, F^{\prime}} \rightarrow \mathcal{L}^{\prime}$, and let $\mathcal{Q}_{d+1}:=\mathcal{E}_{F^{\prime}} / \mathcal{R}_{d+1}$. Then \mathcal{Q}_{d+1} is a rank- $(d+1)$ quotient of $\mathcal{E}_{F^{\prime}}$, and there is a canonical quotientmorphism $\mathcal{Q}_{d+1} \rightarrow \mathcal{Q}_{d, F^{\prime}}$ with kernel \mathcal{L}^{\prime}. Clearly, $F^{\prime}=\operatorname{Flag}^{d+1}(\mathcal{E})$, with the corank- $(d+1)$ flag obtained from \mathcal{Q}_{d+1} and the pull back to F^{\prime} of the flag (6.0.1) as the universal corank- $(d+1)$ flag.
6.1 Setup continued. Consider an increasing sequence of d linear subschemes of $\operatorname{IP}(\mathcal{E})$:

$$
A_{1} \subseteq A_{2} \subseteq \cdots \subseteq \mathrm{~A}_{d} \subseteq \mathbb{P}(\mathcal{E})
$$

say $A_{i}=I P\left(\mathcal{A}_{i}\right)$ given by a decreasing sequence of d locally free quotients of \mathcal{E} :

$$
\begin{equation*}
\mathcal{E} \rightarrow \mathcal{A}_{d} \rightarrow \cdots \rightarrow \mathcal{A}_{2} \rightarrow \mathcal{A}_{1}, \tag{6.1.1}
\end{equation*}
$$

say $A_{i}:=\operatorname{IP}\left(\mathcal{E} / \mathcal{V}_{i}\right)$ with a decreasing sequence $\mathcal{E} \supseteq \mathcal{V}_{1} \supseteq \cdots \supseteq \mathcal{V}_{d}$ of d locally split submodules of \mathcal{E}. The associated Schubert subscheme is the closed subscheme of the Grassmannian,

$$
\Omega\left(A_{1}, \ldots, A_{d}\right)=\Omega\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{d}\right) \subseteq \operatorname{Grass}_{X}^{d}(\mathcal{E}),
$$

defined informally, see [LT2], by the following conditions on a $(d-1)$-plane Q in $\operatorname{IP}(\mathcal{E})$:

$$
\operatorname{dim} Q \cap A_{i} \geq i-1 \quad \text { for } i=1, \ldots, d
$$

Over the flag scheme $F=\operatorname{Flag}^{d}(\mathcal{E})$ we have two decreasing sequences of quotients of \mathcal{E}_{F} :

Denote by $Z=\operatorname{Flag}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{d}\right)=\operatorname{Flag}\left(A_{1}, \ldots, A_{d}\right)$ the closed subscheme $Z \subseteq F$ where the top sequence dominates the bottom sequence, that is, the quotient $\mathcal{E}_{F} \rightarrow \mathcal{A}_{i, F}$ dominates the quotient $\mathcal{E}_{F} \rightarrow \mathcal{Q}_{i}$ for $i=1, \ldots, d$:

So, if $\mathcal{A}_{i}=\mathcal{E} / \mathcal{V}_{i}$, then Z is the intersection of the zero schemes of the d compositions $\mathcal{V}_{i, F} \rightarrow \mathcal{E}_{F} \rightarrow \mathcal{Q}_{i}$.

In precise geometric terms, the flag scheme F represents the functor whose value at an X-scheme T is the set of all flags,

$$
\begin{equation*}
Q_{1} \subset Q_{2} \subset \cdots \subset Q_{d} \subseteq \mathbb{P}\left(\mathcal{E}_{T}\right) \tag{6.1.2}
\end{equation*}
$$

where Q_{i} is a linear subspace of relative dimension $i-1$ in $\operatorname{IP}\left(\mathcal{E}_{T}\right)=\operatorname{IP}(\mathcal{E}) \times{ }_{X} T$, and Z respresents the subfunctor whose value is the subset of flags (6.1.2) where

$$
Q_{i} \subseteq A_{i} \times_{X} T \text { for } i=1, \ldots, d
$$

Clearly, the canonical morphism $g: \operatorname{Flag}^{d}(\mathcal{E}) \rightarrow \operatorname{Grass}^{d}(\mathcal{E})$ induces a morphism of closed subschemes,

$$
\begin{equation*}
f: \operatorname{Flag}\left(A_{1}, \ldots, A_{d}\right) \rightarrow \Omega\left(A_{1}, \ldots, A_{d}\right) \tag{6.1.3}
\end{equation*}
$$

6.2 Lemma. The morphism (6.1.3) induces an isomorphism between the open dense subset of $\operatorname{Flag}\left(A_{1}, \ldots, A_{d}\right)$ where $A_{i} \cap Q_{d}=Q_{i}$ for $i=1, \ldots, d$, and the open dense subset of $\Omega\left(A_{1}, \ldots, A_{d}\right)$ where $A_{i} \cap Q$ is a linear subscheme of dimension $i-1$ for $i=1, \ldots, d$.

Proof. The assertion is obvious.
6.3 Iterative construction. Generalizing the inductive definition of the flag scheme, the subscheme $Z=\operatorname{Flag}\left(A_{1}, \ldots, A_{d}\right)$ of the d^{\prime} th flag scheme $F=\operatorname{Flag}^{d}(\mathcal{E})$ may be constructed inductively as follows:

First, if $d=0$, then $Z=F=X$. To describe the inductive step, passing from d to $d+1$, assume that Z and F are constructed for d linear subspaces A_{1}, \ldots, A_{d} of $\operatorname{IP}(\mathcal{E})$, and consider an additional linear subspace $A_{d} \subseteq A_{d+1} \subseteq \operatorname{IP}(\mathcal{E})$, say $A_{d+1}=\operatorname{IP}\left(\mathcal{E} / \mathcal{V}_{d+1}\right)$ with $\mathcal{V}_{d+1} \subseteq \mathcal{V}_{d}$. Consider the universal flag on F :

$$
\begin{equation*}
\mathcal{E}_{F} \rightarrow \mathcal{Q}_{d} \rightarrow \cdots \rightarrow \mathcal{Q}_{1} \tag{6.3.1}
\end{equation*}
$$

where \mathcal{Q}_{i} is locally free of rank i. Assume that the quotient \mathcal{Q}_{d} corresponds to the submodule \mathcal{R}_{d}, say $\mathcal{Q}_{d}=\mathcal{E}_{F} / \mathcal{R}_{d}$. Consider the projective scheme $h: F^{\prime}:=\operatorname{IP}\left(\mathcal{R}_{d}\right) \rightarrow F$, and on F^{\prime} the tautological exact sequence,

$$
\begin{equation*}
0 \longrightarrow \mathcal{R}^{\prime} \longrightarrow \mathcal{R}_{d, F^{\prime}} \longrightarrow \mathcal{O}_{F^{\prime}}(1) \longrightarrow 0 . \tag{6.3.2}
\end{equation*}
$$

Then the quotient $\mathcal{Q}^{\prime}:=\mathcal{E}_{F^{\prime}} / \mathcal{R}^{\prime}$ dominates the quotient $\mathcal{Q}_{d, F^{\prime}}=\mathcal{E}_{F^{\prime}} / \mathcal{R}_{d, F^{\prime}}$, and $\mathcal{L}^{\prime}:=$ $\mathcal{O}_{F^{\prime}}(1)$ is the kernel of the surjection $\mathcal{Q}^{\prime} \rightarrow \mathcal{Q}_{d, F^{\prime}}$. Clearly, $F^{\prime}=\operatorname{Flag}^{d+1}(\mathcal{E})$ with

$$
\mathcal{E}_{F^{\prime}} \rightarrow \mathcal{Q}^{\prime} \rightarrow \mathcal{Q}_{d, F^{\prime}} \rightarrow \cdots \rightarrow \mathcal{Q}_{1, F^{\prime}}
$$

as the universal flag.
Over F^{\prime} we have two $(d+1)$-flags of quotients,

Over Z, and hence over the preimage $h^{-1} Z$, we have that $\mathcal{E} \rightarrow \mathcal{A}_{i}$ dominates $\mathcal{E} \rightarrow \mathcal{Q}_{i}$ for $i=1, \ldots, d$:

Moreover, for any scheme T over $h^{-1} Z$ we have that $\mathcal{A}_{d+1, T}$ dominates \mathcal{Q}_{T}^{\prime} if and only if the composition $\mathcal{V}_{d+1, T} \rightarrow \mathcal{E}_{T} \rightarrow \mathcal{Q}_{T}^{\prime}$ vanishes. Since $\mathcal{V}_{d+1, T} \subseteq \mathcal{V}_{d, T}$, the composition maps into the kernel \mathcal{L}_{T}^{\prime} of $\mathcal{Q}_{T}^{\prime} \rightarrow \mathcal{Q}_{d, T}$. So the composition defines over the preimage $h^{-1} Z$ of Z in F a natural morphism,

$$
\mathcal{V}_{d+1, h^{-1} Z} \rightarrow \mathcal{L}_{h^{-1} Z}^{\prime},
$$

or a section,

$$
\begin{equation*}
\mathcal{O}_{h^{-1} Z} \rightarrow \mathcal{V}_{d+1, h^{-1} Z}^{*} \otimes L_{d+1, h^{-1}} \tag{6.3.3}
\end{equation*}
$$

clearly, $Z^{\prime}=\operatorname{Flag}\left(A_{1}, \ldots, A_{d+1}\right)$ is the scheme of zeros of the latter section.
The section (6.3.3) is regular, since the structure map $h^{-1} Z \rightarrow Z$ identifies $h^{-1} Z$ with $I P\left(\mathcal{R}_{d, Z}\right)$ and $\mathcal{R}_{d, h^{-1} Z} \rightarrow \mathcal{L}_{h^{-1} Z}^{\prime}$ with the universal rank-1 quotient(?). As a consequence, the class of Z^{\prime} in $\mathrm{A}\left(h^{-1} Z\right)$ is obtained by applying the top Chern class $c_{\text {top }}\left(\mathcal{V}_{d+1}^{*} \otimes \mathcal{L}^{\prime}\right)$ to $\left[h^{-1} Z\right]$. The top Chern class is, as a consequence of the Splitting Principle, equal to the value of the Chern polynomial $C_{\mathcal{V}_{d+1}}$ at the first Chern class $x=c_{1} \mathcal{L}_{d+1}$. Hence, under the inclusion $j: Z^{\prime} \rightarrow h^{-1} Z$,

$$
\begin{equation*}
j_{*}\left[Z^{\prime}\right]=C_{\mathcal{V}_{d+1}}(x)\left[h^{-1} Z\right] \tag{6.3.4}
\end{equation*}
$$

6.4 Proposition. Consider the d'th flag scheme $F=\operatorname{Flag}^{d}(\mathcal{E})$ with its universal flag (6.0.1), let $\mathcal{L}_{i}:=\operatorname{Ker}\left(\mathcal{Q}_{i} \rightarrow \mathcal{Q}_{i-1}\right)$ and $\xi_{i}:=c_{1} \mathcal{L}_{i}$ for $i=1, \ldots$, d. Let $Z:=\operatorname{Flag}\left(A_{1}, \ldots, A_{d}\right)$ and, more generally, let Z_{i} be the preimage in F of $\operatorname{Flag}\left(A_{1}, \ldots, A_{i}\right)$ under the natural map $F=\operatorname{Flag}^{d}(\mathcal{E}) \rightarrow \operatorname{Flag}^{i}(\mathcal{E})$. Then, for $i=1, \ldots, d$, we have the equation in $\mathrm{A}(F):$

$$
\left[Z_{i}\right]=\prod_{j=1}^{i} C_{\mathcal{V}_{j}}\left(\xi_{j}\right) \cap[F] .
$$

Note that, by the Whitney Sum formula, $C_{\mathcal{V}_{j}}(T)=C_{\mathcal{E}}(T) / C_{\mathcal{A}_{j}}(T)$.
6.5 Conclusion. Recall that for the Chow group of the d^{\prime} 'th flag scheme $F=\operatorname{Flag}^{d}(\mathcal{E})$ there is a canonical identification,

$$
\begin{equation*}
\mathrm{A}(F)=A^{*}(F) \otimes_{A^{*}(X)} A(X)=\operatorname{Split}_{A^{*}(X)}^{d}\left(C_{\mathcal{F}}\right) \otimes_{A^{*}(X)} A(X), \tag{6.5.1}
\end{equation*}
$$

where $\operatorname{Split}{ }_{A}^{d}(p)$ denotes the d^{\prime} 'the splitting algebra for the polynomial p over A in d linear factors $p(T)=\left(T-\xi_{1}\right) \cdots\left(T-\xi_{d}\right) \tilde{p}(T)$, where ξ_{1}, \ldots, ξ_{d} are the universal roots in Split ${ }_{A}^{d}(p)$. By the identification (6.5.1), the Chern classes $x_{i} \in \mathrm{~A}^{*}(X)$ correspond to the universal roots ξ_{i}.

Recall in addition that the A-subalgebra of $\operatorname{Split}_{A}^{d}(p)$ generated by the elementary symmetric polynomials in the ξ_{1}, \ldots, ξ_{d} is the factorization algebra Fact $_{A}^{d}(p)$, universal with
respect to factorizations $p=q \tilde{q}$ into factors of degree d and $n-d$. The Chern ring $A^{*}(G)$ of the d^{\prime} 'th Grassmannian $G=\operatorname{Grass}^{d}(\mathcal{E})$ is in fact the d^{\prime} th factorization algebra of $C_{\mathcal{E}}$, and the equation $C_{\mathcal{E}}=C_{\mathcal{Q}} C_{\mathcal{R}}$ in $A^{*}(G)[T]$ resulting from the exact sequence (6.0.2) is the universal factorization. Moreover the pull back of the morphism $g: F \rightarrow G$ and the inclusion of the factorization algebra into the splitting algebra induce a commutative diagram,

6.6 Theorem. Consider over the base scheme X a locally free module \mathcal{E} and a flag of d locally free quotients,

$$
\begin{equation*}
\mathcal{E} \rightarrow \mathcal{A}_{d} \rightarrow \cdots \rightarrow \mathcal{A}_{2} \rightarrow \mathcal{A}_{1} \tag{6.6.1}
\end{equation*}
$$

with $\mathrm{rk} \mathcal{A}_{i} \geq i$, say $\mathcal{A}_{i}:=\operatorname{IP}\left(\mathcal{E} / \mathcal{V}_{i}\right)$ with a decreasing sequence,

$$
\begin{equation*}
\mathcal{V}_{d} \subseteq \cdots \subseteq \mathcal{V}_{1} \subseteq \mathcal{E} \tag{6.6.2}
\end{equation*}
$$

of d locally split submodules \mathcal{V}_{i}. Form the Grassmanian $G:=\operatorname{Grass}^{d}(\mathcal{E})$ parametrizing rank-d locally free quotients of \mathcal{E} with the universal quotient $\mathcal{E}_{G} \rightarrow \mathcal{Q}$, fitting into an exact sequence,

$$
\begin{equation*}
0 \rightarrow \mathcal{R} \rightarrow \mathcal{E}_{G} \rightarrow \mathcal{Q} \rightarrow 0 \tag{6.6.3}
\end{equation*}
$$

Let $\Omega=\Omega\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{d}\right)$ be the corresponding Schubert subscheme of G. Then the class of Ω in the Chow group $\mathrm{A}(G)$ is given by the determinantal formula,

$$
\begin{equation*}
[\Omega]=\operatorname{Res}\left(\frac{C_{\mathcal{V}_{1}}}{C_{\mathcal{Q}}}, \ldots, \frac{C_{\mathcal{V}_{d}}}{C_{\mathcal{Q}}}\right)[G]=\operatorname{Res}\left(\frac{C_{\mathcal{R}}}{C_{\mathcal{A}_{1}}}, \ldots, \frac{C_{\mathcal{R}}}{C_{\mathcal{A}_{d}}}\right)[G] . \tag{6.6.4}
\end{equation*}
$$

Proof. The Laurent series in the two resultants are the same since, by the Whitney Formula, $C_{\mathcal{E}}(T)=C_{\mathcal{V}_{i}}(T) C_{\mathcal{A}_{i}}(T)=C_{\mathcal{R}}(T) C_{\mathcal{Q}}(T)$ in $\mathrm{A}^{*}(G)[T]$. Note also that the Segre series is the inverse of the Chern polynomial so that $C_{\mathcal{V}_{i}} / C_{\mathcal{Q}}=C_{\mathcal{V}_{i}} S_{\mathcal{Q}}=C_{\mathcal{R}} S_{\mathcal{A}_{i}}$.

Let F be the d 'th flag scheme, $F=\operatorname{Flag}^{d}(\mathcal{E})$; under the induced morphism $g: F \rightarrow G$, the flag scheme F is identified with the complete flag scheme $\operatorname{Flag}^{d}(\mathcal{Q})$ of \mathcal{Q}. Let $Z \subseteq F$ be the closed subscheme $Z=\operatorname{Flag}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{d}\right)$. Consider the following diagram,

The left square of Chow groups corresponds to the natural commutative diagram of schemes. Hence the first square is commutative. The right vertical map ∂ in the second square is the map $\partial=\partial^{1, \ldots, d}$ considered in [LT1, Section 6]. It is a map from the splitting algebra $\operatorname{Split}^{d}\left(C_{\mathcal{Q}}\right)$ of the Chern polynomial $C_{\mathcal{Q}} \in \mathrm{A}^{*}(G)$ to the base ring $A^{*}(G)$; the splitting algebra $\operatorname{Split}{ }^{d}\left(C_{\mathcal{Q}}\right)$ is the full splitting algebra since $C_{\mathcal{Q}}$ is of degree d.

The inductive constrution of full flag scheme $F=\operatorname{Flag}^{d}(\mathcal{Q})$ with the map $g: F \rightarrow G$ is recalled in Section 6.1. The inductive construction of the splitting algebra $\operatorname{Split}^{d}\left(C_{\mathcal{Q}}\right)$ over
the ring $\mathrm{A}^{*}(G)$ with its map $\operatorname{Split}^{d}\left(C_{\mathcal{Q}}\right) \rightarrow \mathrm{A}^{*}(G)$ is given in [LT1, Section 6]. It follows from the two constructions that the second diagram is commutative under the top horizontal identification given in [LT2, Formula (4.9.1)] with $X:=G$ and $\mathcal{E}:=\mathcal{Q}$.

To prove the formula in (6.6.4), consider the fundamental class $[Z] \in \mathrm{A}(Z)$ and its image in $A(G)$. First, $f_{*}[Z]=[\Omega]$ since the map $f: Z \rightarrow \Omega$ is birational by Lemma 6.2. Hence the image of $[Z]$ in $\mathrm{A}(G)$ is equal to the class $[\Omega]$ in $A(G)$.

Next, the inclusion $i: Z \rightarrow F$ is, by the iterative construction 6.3, a composition of d regular embeddings defined by zero schemes of regular sections correspoding to the one considered in (6.3.3). Hence,

$$
\begin{equation*}
j_{*}[Z]=C_{\mathcal{V}_{d}}\left(\xi_{d}\right) \cdots C_{\mathcal{V}_{1}}\left(\xi_{1}\right)[F] . \tag{6.6.5}
\end{equation*}
$$

Under the identifications in the diagram, the product of Chern classes in (6.6.5) may be viewed as a product in the splitting algebra Split $^{d}\left(C_{\mathcal{Q}}\right)$. By the fundamental result in [LT1, Proposition 6.3], the image of the product under the map ∂ is the resultant in (6.6.4),

$$
\partial\left(C_{\mathcal{V}_{d}}\left(\xi_{d}\right) \cdots C_{\mathcal{V}_{1}}\left(\xi_{1}\right)\right)=\operatorname{Res}\left(\frac{C_{\mathcal{V}_{1}}}{C_{\mathcal{Q}}}, \ldots, \frac{C_{\mathcal{V}_{d}}}{C_{\mathcal{Q}}}\right) .
$$

Therefore $g_{*} i_{*}[Z]$ is equal to the resultant applied to $[G]$. Thus formula (6.6.4) has been proved.

References

[LT1] D. Laksov and A. Thorup, A determinantal formula for the exterior powers of a polynomial ring, Indiana Univ. Math. J. 56 (2007), 825-845.
[LT2] D. Laksov and A. Thorup, Schubert calculus on Grassmannians and exterior powers, Preprint 2007, to appear in ??.

S-100 44 Stockholm, Sweden \& Universitetsparken 5, DK-2100 København \emptyset, DenMARK

E-mail address: laksov@math.kth.se \& thorup@math.ku.dk

