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Abstract

We derive second order lower bounds for the entropy function ex-

pressed in terms of the index of coincidence. The constants found

either explicitly or implicitly are best possible in a natural sense.

Keywords Entropy, index of coincidence, measure of roughness.

1 Background, introduction

We study probability distributions over the natural numbers. The set of all
such distributions is denoted M 1

+(N) and the set of P ∈ M 1
+(N) which is

supported by {1, 2, · · · , n} is denoted M 1
+(n).

We use Uk to denote a generic uniform distribution over a k-element set,
and if also Uk+1 (Uk+2, · · · ) is considered, it is assumed that the supports are
increasing. By H and by IC we denote entropy and index of coincidence,
respectively, i.e.

H(P ) = −
∞

∑

k=1

pk ln pk ,

IC(P ) =
∞

∑

k=1

p2

k
.

In Harremoës and Topsøe [1] the exact range of the map P y (IC(P ), H(P ))
with P varying over either M 1

+(n) or M1
+(N) was determined. The ranges in

question, termed IC/H-diagrams, were denoted ∆, respectively ∆n:

∆ = {(IC(P ), H(P )) | P ∈ M 1

+(N)} ,

∆n = {(IC(P ), H(P )) | P ∈ M 1

+(n)} .
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By Jensen’s inequality we find that H(P ) ≥ − ln IC(P ), thus the logarithmic
curve t y (t,− ln t); 0 < t ≤ 1 is a lower bounding curve for the IC/H-
diagrams. Further, we note that the points Qk =

(

1

k
, ln k

)

; k ≥ 1 which
correspond to the uniform distributions Uk lie on this curve. No other points
in the diagram ∆ lie on the curve, in fact, Qk; k ≥ 1 are extremal points of
∆ in the sense that the convex hull they determine contains ∆. No smaller
set has this property.
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Fig.1. The restricted IC/H-diagram ∆n(n = 5, k = 2) (from [1]).

Figure 1 illustrates the situation for the restricted diagrams ∆n. The key
result of [1] states that ∆n is the bounded region determinated by a certain
Jordan curve determined by n smooth arcs, the “upper arc” connecting Q1

and Qn and then n − 1 “lower arcs” connecting Qn with Qn−1, Qn−1 with
Qn−2 etc. until Q2 which is connected with Q1.

In [1] the main result was used to develop concrete upper bounds for
the entropy function. Here our concern will be lower bounds. The study
depends crucially on the nature of the lower arcs. In [1] these arcs were
identified. Indeed, the arc connecting Qk+1 with Qk is the curve which may
be parametrized as follows:

s y ~ϕ((1− s)Uk+1 + s Uk)

with s running through the unit interval and with ~ϕ denoting the IC/H-map

given by ~ϕ(P ) = (IC(P ), H(P )); P ∈ M 1
+(N).
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The distributions in M 1
+(N) fall in IC-complexity classes. The k’th class

consists of all P ∈ M 1
+(N) with IC(Uk+1) < IC(P ) ≤ IC(Uk). In order to

determine good lower bounds for the entropy of a distribution P , one first
determines the IC-complexity class k of P . One may then determine that
value of s ∈]0, 1] for which IC(Ps) = IC(P ) with Ps = (1 − s)Uk+1 + s Uk.
Then H(P ) ≥ H(Ps) is the theoretically best lower bound of H(P ) in terms
of IC(P ).

In order to write the sought lower bounds for H(P ) in a convenient form,
we introduce the k’th relative measure of roughness by

MRk(P ) =
IC(P )− IC(Uk+1)

IC(Uk)− IC(Uk+1)
= k(k + 1)

(

IC(P )−
1

k + 1

)

. (1)

This definition applies to any P ∈ M 1
+(N) but really, only distributions of

IC-complexity class k will be of relevance to us. Clearly, MRk(Uk+1) =
1, MRk(Uk) = 0 and for any distribution of IC-complexity class k, 0 ≤
MRk(P ) ≤ 1. For a distribution on the lower arc connecting Qk+1 with Qk

one finds (cf. Lemma 1 of [1]) that

MRk((1− s)Uk+1 + s Uk) = s2 . (2)

In view of the above said, it follows that for any distribution P of IC-
complexity class k, the theoretically best lower bound for H(P ) in terms of
IC(P ) is given by the inequality

H(P ) ≥ H((1− x)Uk+1 + x Uk) (3)

where x is determined so that P and (1−x)Uk+1 +x Uk have the same index
of coincidence, i.e.

x2 = MRk(P ) . (4)

By writing out the right-hand-side of (3) we then obtain the best lower
bound of the type discussed. Doing so one obtains a quantity of mixed type,
involving logarithmic and rational functions. It is desirable to search for
structurally simpler bounds, getting rid of logarithmic terms. The simplest
and possibly most useful bound of this type is the linear bound

H(P ) ≥ H(Uk)MRk(P ) + H(Uk+1)(1− MRk(P )) (5)

which expresses the fact mentioned above regarding the extremal position
of the points Qk in relation to the set ∆. Note that (5) is the best linear
lower bound as equality holds for P = Uk+1 as well as for P = Uk. Another
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comment is that though (5) was developed with a view to distributions of
IC-complexity class k, the inequality holds for all P ∈ M 1

+(N) (but is weaker
than the trivial bond H ≥ − ln IC for distributions of other IC-complexity
classes).

Writing (5) directly in terms of IC(P ) we obtain the inequalities

H(P ) ≥ αk − βk IC(P ) ; k ≥ 1 (6)

with the constants αk and βk given by

αk = ln (k + 1) + k ln

(

1 +
1

k

)

, (7)

βk = (k + 1)k ln

(

1 +
1

k

)

.

In the present paper we shall develop sharper inequalitites than those
above by adding a second order term. More precisely, for k ≥ 1, we denote
by γk the largest constant such that the inequality

H ≥
1

k
MRk +

1

k + 1
(1− MRk) +

γk

2k
MRk(1− MRk) (8)

holds for all P ∈ M 1
+(N). Here, H = H(P ) and MRk = MRk(P ). Expressed

directly in terms of IC = IC(P ), (8) states that

H ≥ αk − βk IC +
γk

2
k(k + 1)2

(

IC −
1

k + 1

) (

1

k
− IC

)

(9)

for P ∈ M1
+(N).

The basic results of our paper may be summarized as follows.

Theorem 1. The constants (γk)k≥1 are increasing with γ1 = ln 4 − 1 ≈
0.3863 and with limit value γ ≈ 0.9640.

More substance will be given to this result by developing rather narrow
bounds for the γk’s in terms of γ and by other means. In particular, we
mention that γ is the minimum of the function

f(x) =
2(−x − ln (1− x))

x2(1 + x)
; 0 < x < 1 (10)

and that the inequalities
(

2k ln (1 +
1

k
)− 1

)

γ ≤ γk ≤
k

k + 1

(

γ − (2k + 1) ln (1 +
1

k
) + 2

)

. (11)
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k γk lower bound upper bound
1 0.3863 0.3724 0.4423
2 0.6071 0.5995 0.6245
3 0.7039 0.7000 0.7127
4 0.7593 0.7569 0.7646
5 0.7952 0.7936 0.7987
6 0.8204 0.8192 0.8229
7 0.8390 0.8381 0.8409
8 0.8534 0.8527 0.8548
9 0.8648 0.8642 0.8659

10 0.8740 0.8736 0.8750
20 0.9175 0.9174 0.9177
50 0.9450 0.9450 0.9450

100 0.9544 0.9544 0.9544
10.000 0.9639 0.9639 0.9639

1.000.000 0.9640 0.9640 0.9640

Table 1:

hold.
This leeds to rather narrow bounds for the constants γk, cf. Table 1.
The motivation to develop the refined second order inequalities lies in

applications to problems of exact prediction in Bernoulli models. The author
plans to take this up in a separate publication. However, in view of the
significance of entropy and of index of coincidence – closely related to the
popular chi-square distance – it is found that the results are of interest in
their own right. In addition, the tools applied, though simple in principle,
result in some delicate estimates and involve relatively sophisticated classical
techniques which may have a bearing on related studies. For instance, some
auxiliary elementary inequalities for the logarithmic function in terms of
rational functions may be of wider applicability.

Earlier related work includes Kovalevskij [2], Tebbe and Dwyer [3], Ben-
Bassat [4], Golic [5], Feder and Merhav [6] and the already cited work by
Harremoës and Topsøe [1].
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