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THE PRINCIPLE OF GAME THEORETICAL EQUILIBRIUM

Consider a discretalphabetA and probability distributions PQ,--- over A. The set
of all such distributions is denotedl? (A). A distribution is identified by its point
probabilities:P = (p;)ica. A measure of complexiig a map which to each pa(P, Q)
of distributions assigns a valug(P,Q) € [0,%] such that, for eac? € M1(A), the
minimal value of®(P,Q) with Q € M1(A) is assumed on the diagonal, i.e. @r= P
and nowhere else unle€gP,P) = .

A preparationis any non-empty subse? C M1(A). When Z is fixed, aconsistent
distributionis a distribution in%. Thegamey = y(®, #2) has® as objective function
and is the two-person zero-sum game betwBtyer | (“Nature”), who can choose
a strategyP € &2, andPlayer Il (“the Physicist”) who can choose any strateQy=
M_{(A). Player | is a maximizer, Player Il a minimizer. Thus vekfined by val =
Supc » info ®(P, Q) is the Player I-valueof the game and, similarly, vialdefined by
valj = infosupc» P(P,Q) is the Player ll-value of the game. Here and below, a
variable denoted b is understood to vary over all 81 (A).

An optimal Player I-strategys aP € & such that val= info ®(P, Q) and aroptimal
Player ll-strategyis aQ € M1(A) such that val = sup. » ®(P,Q). By the general
minimax inequalityval, < val;. The game is irequilibriumif val; = val;; < co.

For further information about the game introduced, see [4]. The attempt to locate
optimal strategies for the players and to establish equilibrium for suitable preparations
is taken as a basic principle of statistical physics, ph@ciple of game theoretical
equilibrium(GTE).

We introduce®-entropyof P as minimal complexity, i.e. as () = info ®(P, Q). By
assumption, KP) = ®(P,P), thus, val = sug. 4, H(P), which is themaximum entropy
value also denoted MaxEnrt MaxEnt{®, &7). So va] = MaxEnt and we realize that
the GTE-principle leads directly to Jayn@sximum entropy princip)cf. [5].
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Classical Boltzmann-Gibbs-Shannon entropy (BGS-entropy) is obtained as minimal
complexity with respect to the measue Q) ~ S p Inali which has a clear and con-
vincing interpretation related to coding. Our results go some way to establish reasonable
interpretations also for more general measures of complexity. Regarding the origin of
the the above measure of complexity, under the nanmeeaturacy see Kerridge [6].

As we have seen, entropy is generated by complexity. 8wégence (cross entropy,
relative entropyor redundancy)defined as actual minus minimal complexity(FDQ) =
®(P,Q) — H(P) when HP) < . In any case, théinking identity ®(P,Q) = H(P) +
D(P,Q) holds and OP, Q) > 0 with equality if and only if° = Q (for the measures of
complexity we shall consider, it will be clear how to definéFXQ) when HP) = ).

ROBUSTNESS, EXPONENTIAL FAMILIES

A Player ll-strategyQ is robustif, for some constanh < o, the level of robustness
®(P,Q) = h for all consistent distribution®. The set& = &(P,Z?) of all robust
Player ll-strategies is thexponential familyassociated witly(®, &2). If a family .4
of preparations is considered, txeponential family?’(®,.4") associated with4” is the
set of distributions which are robust for all preparatichss 1.

The following general and simple observation will play a key role in the sequal:

Theorem 1 (robustness lemma)Let the measure of complexidy and the prepara-
tion &2 be given. Assume that the distributiori @@ robust (Q € &(®, £)) and con-

sistent (Q € &2). Theny(®, &) is in equilibrium and has Qas the unique MaxEnt-
distribution as well as the unique optimal strategy for Player .

Proof. Though known from e.g. [4] we present a direct proof.

Let h be the level of robustness. Tha(Q*,Q*) = h and, forP € & with P #
Q*, H(P) = ®(P,P) < ®(P,Q*) = h. ThusQ" is the unique MaxEnt-distribution. For
any Q # Q', supc» P(P.Q) > ®(Q",Q) > (Q",Q") = h = sup,» P(P.Q") and
equilibrium as well as unique optimality € for Player Il follows. O

The result connects the exponential fandflyvith the preparatior?. Indeed, if€ and
Z intersect, they only intersect in one distribution which then is the optimal strategy for
both players and, furthermore, the game considered is in equilibrium.

COMPLEXITY AND LINEAR CONSTRAINTS

We shall apply the principle of GTE — via the robustness lemma — to a wide class of
complexity functions and associated notions of entropy, always having one and the same
type of preparations in mind, viz. those given lmear constraints They are the most
important preparations for statistical physics and other applications, cf. e.g. Kapur [7].
From now on, we consider a fixed finite set= (f,)1<,<k of real-valued functions
defined omA. The associatethmily of natural preparationsdenoted /", consists of all
non-empty sets”, which are defined as follows, denoting byP) mean value w.r.tP:

Pa={PcMI(A)|(fy,P)=a, for1<v <Kk}. (1)
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Herea = (ay)1<y<k € RK. We assume that no non-trivial linear combination of the
f,’s reduces to a constant function. Cleady(®,.4"), the natural exponential family
consists of those distributions which are robust for all natural preparations.

We shall select special measures of complexity adapted to a study of the natural
preparations and constructed with the aim to simplify the search for distributions in
& (P,./"). To accomplish this, we consider measures of complexity of the form

O(P.Q) = &o((K(Q).P)) 2)

where, for eacl) € M1 (A), &q is a real function an@ mapsQ € M1 (A) into a function
defined or\. We insist tha{k(Q), P) can be obtained by summation based on a function
k1 [0,1] — [0, ], thecoding functionvia the formula

(K(Q),P) = > pir(q). 3)

€A

This corresponds to the requiremértQ))(i) = x(q;); i € A.

Regardingég : [0,00] — [0,] and k : [0,1] — [0,], we assume that théy’s are
increasing and concave, thatis decreasing and convex, thatl) = 0, that x is
continuous at 0 (not just &, 1)) and, finally, thatb defined by (2) is a genuine measure
of complexity. The last requirement will be trivially fulfilled in the concrete cases
we shall consider. The inverse functiar! : [0, k(0)] — [0,1] will play a significant
role. We note that this function is continuous, decreasing and convex,xasisple
geometric proof).

For theclassical examplebg is the identity map anda the functiong ~ In é. Then

k1 is the restriction ok ~ exp(—x) to [0,]. Entropy generated by this measure of
complexity is standard BGS-entropy.

For the general situation, we note that @yor whichk(Q) is a linear combination
of the constant function 1 and the given functidas - - , fy, i.e. of the form

K(Q) =Ao+A fi+- A fu=A+A-f (4)

for certain constantdp andA = (Ag,---,Ax), is @ member o&’ (P,.4"). Motivated by
this observation, we fix real constamts= (11,---, ) and ask if there exists a real
constantlp and a distributiorQ = (q;)jca such that (4) holds.

For abbreviation, put; = A - f (i). Then (4) amounts tqy = k(Ao +L;) fori € A. As
x1is defined o0, x(0)], we must have & A9+ L; < k(0) for eachi. Therefore, the
Li must be bounded below. Furthermore, frging; = 1, we conclude that, for each
K < k(0), there can only be finitely manye A with L;j < K. Thus we may order
the Li: Lj; <L, <---, with this sequence breaking off and having a largest element
if A is finite and withL;, — x(0) if A is infinite. PutL, = Lj, andL* = sugc, Li
(= x(0) if A is infinite). We realize that we must require tHat— L, < x(0) and,
assuming this holds, the set of possible constagts the sef—L., o] in casek(0) = o
and the sef—L., k(0) — L*] if x(0) < o. Consider the functiorf defined byf(x) =
Yica K~ 1(x+Li) with X's ranging over the possible valuesif. What we search for is
a value ofAg, necessarily unique, such thitlp) = 1.
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Clearly, f(—L,) > 1. By standard techniques, we see tliais continuous from
the right and iff(Xp) < c for some value of«, then f is continuous at alk > Xo.
Furthermore, i, — x(0) and if f (xn) < oo for all n, thenf (x,) — 0 asn — co.

Our analysis shows thdt can have at most one point of discontinuity, viz. where it
passes from the valuweto finite values. Such a discontinuity “normally” does not occur.
Also other anomalies are “normally” excluded. For instance, one may easily construct
examples such thdtis constantly equal teo but such values are also excluded as they
are of no practical interest. Thus we maintain that “normally” the funcfi@assumes
finite values larger than 1 as well as values less than 1 and hence the existence of a value
Ao with f(Ag) = 1 is assured by continuity.

Summarizing, we can now formulate the main result:

Theorem 2 (MaxEnt calculus). Let A = (A4,---,Ax) be given real constants. Then,
under “normal” circumstances (cf. the discussion above), the equation

%x—l(%+x-f(i)) —1 5)

i€

has a solution, necessarily unique, and=qJq; )ic4 given by
qi:x—l(zou-f(i)) fori e A (6)

satisfieg4) and hence belongs to the exponential fardilyp,.4/"). This distribution is
the MaxEnt-distribution for”?; with a= (ay,--- ,ax) given by

av:ZQifv(i)forV:].,"',k (7)
i€cA

and, for this value of aMaxEnt(®, ;) = Eo(Ao+ 1 - a).

The theorem replaces and expands the standard recipe for MaxEnt-calculations. The
main difference is a focus oky via (5) rather than on the classical partition function. In
the final section we present a more thorough discussion of the significance of the result.
Before continuing, we shall limit the type of complexity functions studied by reduc-
ing the number of parameters needed for their definition. Instead of the many functional
parameters appearing in (2), we now suggest a setting with only two functional param-
eters, one functio, called thecorrector, to account for all the functiong via the
formulaég(x) = X+ Sica £(0i) and then the already introduced coding functiarin
other words, we point to complexity functions of the form

®(PQ) = pik(a)+ ) (). (8)

icA €A

The functionsx and ¢ are uniquely determined fror. The two terms in (8) are
called, respectively theoding partand thecorrection For the classical example, the
coding part isy; pi Iné and the correction vanishes.
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COMPLEXITY A LA BREGMAN

We shall now generate @, H, D)-triple from a simple starting point. The method fol-
lows the idea oBregman divergencemnd is referred to aBregman generatiarAnother
method,Csiszar generatiorwas suggested in [4]. In our view, Bregman generation is
by far the most important one for the needs of statistical physics.

Given is aBregman generatoby which we shall understand a strictly concave and
smooth real function h defined d@, 1] with h(0) = h(1) = 0 and K(1) = —1. We take
“smoothness” to mean that h has an analytic extensidf,te[. Though less will do
for most investigations, the stronger requirement allows one to consider alsoidhe
functionh defined by

~ 1
h(x) = xh (-) . 9)

X

This function is well-defined and real-valued|dye[. As a final technical assumption,
we assume that the function can be extended by continuj ¢g, allowing for infinite
values at the endpoints. A specific valughis interpreted as theomplexityof an event
which is known to occur with probabilityp.

From h we generate two functions= ¢ (p,q), and d=d(p,q):

¢(p,a) = h(a)+(p—a)h'(a), (10)
d(p,a) = h(q) —h(p) + (P—a) ' (q). (11)
A specific valueg(p,q) is interpreted as theomplexityof an event which is believed
to occur with probabilityg but actually occurs with probability. This is consistent
with the previous interpretation &g p, p) = h(p). The function d simply measures the
difference @ivergencgbetween estimated and true value. We also notegtfatg) and
d(p,q) may assume the valugco. This happens if and only if botp > q= 0 and
h'(0) = « hold.
Consider thenternal functions,® = ®,, H = H, and D= Dy, generated by, h and
d. By this we mean that:

®(PQ) = > ¢(pi,ai), H(P) Z_%h(pi), D(RQ) =  d(pi,ai). (12)

ieA i€

We refer tog, h andd as thepartial functions, respectively partiabmplexity, entropy
anddivergenceThey satisfy a partial version of the linking identity:

¢(p,a) =h(p) +d(p,q). (13)
Note thatd = @y, is of the special form (8) with coding functian= «y, given by
K(X) =H(x)+1 (14)

and correcto€ = &, given byé& (x) = h(x) —x(h'(x) + 1). Hence the Bregman generator
is decomposed into two terms:

h(x) = xx(X) +&(X). (15)
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As £(0) = £(1) = 0 and&’(x) = —xh"(x) — 1 we find thaté = 0 if and only if we
are in theclassical case (x) = xln(l/x) We also see thd}(x) > —xin [0, 1], hence the
correction related to any distributid@ is bounded below by-1. The dual functiorh

appears also to be of significance. In particufdx) = (l/x) X, hence

=5 pil(q +2Ah 4 (16)

icA

The first term in (16) is the coding part minus 1, the second term the correction plus 1.
Partial complexity is given by (p,q) = ph'(q) +h'(1/q).

GENERATORS VIA DEFORMED LOGARITHMS

We turn to a concrete two-parameter family, 5) of Bregman generators defined via
deformed logarithméaken in this form from [10]) and given by

xP —x
Nggx=4 B & forazp 17)
x*Inxfor o =

The associated Bregman generators are defined by

hy g(X) = xIng g (1/X). (18)

Warning: We have chosen to model the definition after the expressin(il/x) rather
than—x Inx. The main reason is the more natural interpretation of the former expression,
but also, the change appears to be more as preferred in the “Tsallis literature”. The
change is in contrast to the choice in [4]. Thus, compared to [4], one should make the
transformation(a, ) ~ (—fB,—o). Note also the symmetry,fp =hg o

From [4] we see (after transformation) that, in order to obtain a genuine Bregman
generator, the following restrictions apply @oandf: EitherO0 < o < 1 andf < 0 or
elsea <0and 0< B < 1.

The partial complexity function and the coding function are given by:

bap(xy) =5 . —(—@—apy 1By P —ay gy F), (19)

1
ﬁ_a<(1—a)x“—(1—[3)xﬁ>. (20)
Note thatk(0) = c except if eitherx = 0 or = 0 (thenx(0) = (o + B — 1)/ (et + B)).
The important inverse functions~! are defined or0, x(0)]. They can only be
calculated in closed form in special cases. We point td#adlis casavhich corresponds
to o < 1, B = 0. TheTsallis parametertraditionally denoted by, is then given by
g=1- a. For the origin to this family within the physics literature, see Tsallis, [11].
Let us putky o = Kq (as above witlg = 1 — «). Then, forg # 1,

Ka,ﬁ (X) =1-—

1
Kgl(x) = <1+ %x) foro<x< Kq(0) (21)
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and one can insert (21) into (5). The kind of sums obtained will, typically, have to be
calculated numerically. An exception is the cgse 2. We leave it to the reader to work
out the pleasent details of our calculus in this case (fakebe finite).

Another case wher&ﬁ3 can be calculated in closed form is tkaniadakis family

which corresponds ta. = —, cf. Kaniadakis [12]. We shall not go into that here.

DISCUSSION

Some features of the main resultheorem 2 provides a theoretical framework for
MaxEnt calculations for natural preparations given by linear constraints and pertaining
to a wide range of different entropy measures. Among special features as compared with
the standard approach we mention the following:

The basis for the result is the game theoretical approach which necessitates a focus
on possibly unfamiliar aspects and quantities, notably a focus on a notion of complexity,
intended to reflect the interplay between the physicist and the system he is studying.
This aspect could have been hidden, but the underlying principle — the principnoé
Theoretical Equilibrium- is in itself promoted as a major issue. Indeed, it is suggested
that this principle is of a basic nature, applicable to several scientific investigations, and
that, for the area of statistical physics, it is more fundamental than Jaynes Maximum
Entropy Principle. The principle originated with Pfaffelhuber [13] and, independently,
the author (with [14] the first publication in English). Among further studies, we mention
the joint work [15] with Harremoés.

Another feature is the puzzling fact that optimization has been achieved “miracu-
lously” without recourse to Lagrange multipliers. Many will find it difficult to accept
that for the problem studied, an approach which is better — simpler and more illuminat-
ing — than the well proven technique involving the popular multipliers exists. Within the
mathematical literature, this special feature goes back at least to Csiszér, cf. [23].

Finally, we note that the MaxEnt calculus outlined here has no mention of partition
functions. The calculus goes a good deal beyond traditional settings based on classical
BGS-entropy. This has resulted in a focus anwhich corresponds to the logarithm
of the partition function in the classical case (so, for the classical case, we can write
Mo =InZ(A) whereZ(1) =S exp(—A - f(i))). Itis well known that IrZ is a key quantity
to work with, thus this feature should be no great surprise. But it is interesting that our
approach leads directly to this quantity. As the partition function has no place for the
general case covered by Theorem 2, this is of course also forced in some sense.

Exponential familiesWhereas the concept of partition function does not survive
the extension to general entropy- and complexity measures, the notexpohential
familiesdoes. It even appears to bee central concept behind the approach taken, cf.
Theorem 1. However, extensions of this concept are needed (see below).

Comparing with the classical approachhe simplifications in the classical case result
from the factorization property of 1, an exponential function in that case. Apart from
this, the calculations for a general complexity function appear to be of much the same
nature as for the classical case. Indeed, given (44, - -, A«) one determinedg from
(5) and then, via (6), (7) leads to the relevant averagegay, - - - ,a). If you aim for a
specific set of averages, there seems to be no way, neither in the classical case nor in the
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general setting, other than application of numerical optimization procedures to choose
just that set of parametefis which leads to the appropriate set of constrained values.
This discussion then tells us that apart from the simplifications possible in handling (5),
the general calculus suggested is no more complicated in practise than what you are used
to from classical studies.

Thermodynamic calculu3he difficulties, indeed impossibilities, involved in finding
solutions to MaxEnt problems in closed form for other than the simplest problems
constitute part of the motivation to create a thermodynamic calculus, studying variation
as functions of various parameters of significance to the physicist or chemist. In this
way one hopes to develop useful approximate solutions or to discover interesting trends
in the thermodynamics as response to changes of relevant parameters. The differential
calculus needed for such endeavours appears to be applicable also to the general setting
of Theorem 2 with its precise equations to look closer into. Studies of this kind are not
taken up here.

Natural expansions, optimal opdating based on a pribinere are many further
possibilities for theoretical investigations based on measures of complexity of the form
here studied. Assumptions related to the form (2) allows one to derive several results
other than Theorem 2: Uniqueness@tietermined fromi, convexity of the set ok’s
for which Q can be found, convexity of the functidn~ Ag = Ag(4) (this corresponds
in the classical case to log-convexity of the partition function), existence of equilibria
for the models in the natural family and, as a consequence, concavity of tha map
MaxEnt(®, ;).

We comment that whereas measures of complexity of the special form (8) are rather
simple and quite a rich family, the more elaborate form given by (2) is also of importance
— especially, it allows the considerationR&nyi entropiesnd related quantities.

A special expansion of the concept of robustness which allows identification of
MaxEnt-distributions for which some of the point probabilities (thef Theorem 2) are
allowed to be 0 should also be mentioned. This concerns cases fghefe f (i) > x(0)
and is therefore only relevant wheti0) < «. However, there are important cases where
this is so, e.g. Tsallis-type quantities wigh> 1. In such casesiconsistentnference is
possible where &easible i(one for which there exist® € &, with p; > 0) is inferred
under MaxEnt-based inference as an impossible event. This phenomenon is treated in
part by Jaynes, cf. p.345 of [22]. Taking this into consideration, it appears possible
to prove that any candidate to MaxEnt-distributions (or the more gecerdkrs of
attractionof [15]) of preparations in a natural family of preparations, must be a member
of the associated exponential family. For the classical case, where inconsistent inference
IS not possible, such a result was established in [15].

Consider now the problem of optimalpdating based on a givemprior. In fact,
such problems can be handled in analogy with our analysis of MaxEnt problems. In
particular, a resuk la Theorem 2 holds which provides a calculus for optiptaterior
distributionsvia a minimum cross entropy principle the kind of results initiated by
Kullback, cf. [24]. To indicate, if only briefly, that this requires no new techniques,
consider a priolQg and try to maximize theipdating gainWo,(P,Q) = ®(P,Qo) —
®(P,Q). This situation can be analyzed by applying our game theoretical reasoning to
—Wq, which is a genuine complexity measure. For this to work, the theory has to be
extended slightly, allowing complexity measures that can take negative values.
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Precise statements and proofs of results just indicated will be published elsewhere.

Origin of the two-parameter faminThe two-parameter family of complexity-,
entropy- and divergence measuré®,, g,H, 5,Dq g) has its origin in the mathemat-
ical literature, cf. Mittal [8] and Sharma and Taneja [9], and was studied later in the
physical literature by Borges and Roditi, [10] who used the convenient concept of
deformed logarithms.

Entropy should not stand alonéet us illustrate this thesis by considering Tsallis
entropy with Tsallis parametey. There are infinitely many ways of obtaining this
entropy measure as minimal complexity. Below we suggest three complexity measures
which have this property:

PRQ = —=+Y (di- —p. ) (22)

®C(P z pf(1-q~ (23)
R o1 R

PRP.Q) = 1—q<zpﬁqﬁq —1). (24)

As usual, sums are overc A. The “B ”, “C” and “R” stand for, respectively
“Bregman ", “Csiszar” and “Rényi” . The complexity measp is the one considered
in the main text®C the one considered in [4] ardR is closely related to the relevant
complexity measure connected with Rényi entropy and divergence.

The measurab® allows us — as we have seen — to study the natural preparations
given by linear constraintsp® allows us to develop a calculus much as Theorem 2, but
aiming at maximizing entropy for preparations given by averaging with respect to the
g-associated measuregich are measures with point mas$;§sand finally,®R allows
us to deal with preparations given by averages with respect tg-gseort distributions
which are obtained by normalizing tlgeassociated measures. To realize that this is
indeed so, you just have to note héenters in the complexity measure considered.

It can safely be argued that “distorted” averages as those indicated above related to
o€ and®R have no physical relevance and therefore, they are considered of less or no
importance for the study of natural maximum entropy problems. Bregman generation is

thus the method which stands back as the really significant method.

The importance of Bregman type quantiti&#se relevance for statistical physics of
Bregman divergence was emphasized by Naudts [1], [2]. The work by Abe and Bagci
[3] should also be mentioned, however, the present author does not agree with their
conclusion that the use of escort distributions is essential. Anyhow, the proper matching
of entropy measure with the type of constraints one wants to study is important. This
Issue is also addressed in Feng [20].

Originally, Bregman introduced the concept to meet needs of learning theory, cf. [21].
For more recent articles in this direction, see Murata et al., [19] and Sears [18].

Concerning extensions in another direction, to quantum statistical physics, note the
recent study by Petz, [17] where Bregman divergences are carefully defined. Incorpora-
tion of game theoretical considerations may be a fruitful area of research to look into.

Interpretations.Any measure of entropy of importance to statistical physics should
be motivated by sound reasons, including appropriate interpretations. It appears that
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Bregman generation in itself goes a way in this direction. In addition, the choice of
terminology, especially regarding the frequent reference to “coding”, though not yet
founded in precise procedures for observation or measurement, is indicative for what
future research may bring, at least this is where speculations of the author goes.

One should recall that Kullback-Leibler divergence is related to free energy for clas-
sical preparations. This kind of interpretation when more general Bregman-type diver-
gences are involved appears also to be sound, cf. the recent study by Bagci, [16]. Possi-
bly, Crooks, [25], also points to issues to be integrated before a full picture is in place.
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