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Overview of aim, results and limitations

Aim: To understand the basic structure of the
“idealized communicator” a person with an infinite
vocabularium, acquired over time.

We shall refer to such a person as a “Zipfean” .

Limitations: We consider only the primitive seman-
tic structure, that of words . The words are ranked,
starting with the most frequent word, and as “basic
structure” we understand the associated probability
distribution P = (p1, p2, · · · ) . No more, no less.

Any acceptable distribution P = (p1, p2, · · · ) for a
Zipfean is referred to as a Zipfean distribution .



Results:
• the possible Zipfean distributions are
characterized in precise mathematical terms

• they can be realized using finite energy
ressources by the Zipfean and represented and
decoded with finite effort by the listener

• further, these distributions lead to stability : the
Zipfean does not have to change basic struc-
ture of the language over time and yet, such lan-
guage:

• is flexible , allowing the Zipfean to increase the
expresive power as much as is required for any
conceivable specialized purpose

• there are several, indeed a continuum of
Zipfean distributions .

Limitations:
• the “acquired over time” has not been explained
• no procedure to test the theory for the
computational linguists is suggested (but...)



Which distributions?

Definition: A distribution P = (p1, p2, · · · ) is
hyperbolic if it is not dominated by any power law.

Examples Consider a constant K > 1 and
P = (p1, p2, · · · ) of the form

pn =
1

Z · n(lnn)K

for n ≥ 2 with Z a normalization constant (never mind
about the value of p1). Then this is a well defined
hyperbolic distribution. One finds that this distribution
has finite entropy if and only if K > 2. 

We shall argue that

the Zipfean distributions are precisely the hyperbolic
distributions with finite entropy.

To realize the good sense in this, we shall – in consis-
tency with Zipf’s thinking – consider a certain game:



... the game of least effort between the Zipfean and
the listener, the linguist. The Zipfean chooses a dis-
tribution P from some available set P of “feasible dis-
tributions”, the linguist chooses κ, a code length func-
tion , taken from the set of all such functions without
any restriction.

By definition, a code length function is any function
defined on the dictionary Ω (may be taken to be N)
such that


2−κi = 1. This is for measurements in

bits . For measurements in natural units (chosen be-
low) the defining requirement is


e−κi = 1.

The players fight over average code length , Φ
(also perceived as the complexity) :

Φ(P, κ) =


i∈Ω
piκi

with the linguist as minimizer, the Zipfean as maxi-
mizer. This leads to a two-person zero-sum game



with values

sup
P
inf
κ
Φ(P, κ) ≤ inf

κ
sup
P
Φ(P, κ) .

If the values are equal and finite, the game is in equi-
librium with common value as the value of the game .

Clearly (!) infκΦ(P, κ) = H(P ), the entropy of P ,
hence the Zipfean’s value is the MaxEnt-value :

Hmax(P) = sup
P∈P

H(P ) = sup
P∈P



i∈Ω
pi ln

1

pi
.

Regarding the linguists value, we denote it byRmin =
Rmin(P) as it is the minimum of the specific risks
R(κ|P) = supP∈P Φ(P, κ).

So, under equilibrium, MaxEnt=MinRisk .

Now then, the main theoretical results:



Theorem I (equilibrium)
If P is convex and Hmax(P) < ∞, the game is
in equilibrium and the linguist has a unique optimal
strategy κ∗. The matching distribution P ∗ defined
by p∗i = e−κ∗i is the MaxEnt-centre of attraction i.e.,
for any sequence (Pn)n≥1 of distributions in P with
H(Pn)→ Hmax(P), it holds that Pn → P ∗.
Theorem II (entropy preservation)
With conditions and notation as above, if P ∗ is
power-dominated, then H(Pn)→ H(P ∗).
Theorem III (entropy loss)
If P ∗ is hyperbolic then, for every entropy level h with
H(P ∗) < h < ∞, there exists a convex modelP with
P ∗ as centre of attraction and with Hmax = h. The
largest such model is the set of distributions P such
that Φ(P, κ∗) ≤ h with κ∗ the code adapted to P ∗ ,
i.e., for all i ∈ Ω, κ∗i = − ln p∗i .

It is the possibility of entropy loss which is of prime in-
terest. For the Zipfean choosing such a distribution,
stability and flexibility is possible at the same time!
Since ... let’s discuss (see poster)!



In more detail: The game of least effort

Representation of words via codes is essential. Re-
call classical concept of a code length function as in
the table below, coding from a dictionaryΩ (for simple
illustrations below, the dictionary is taken to consist of
a few letters rather than words):

dictionary code-word code-word
Ω length (κ)
a 11 2
e 00 2
i 01 2
o 100 3
u 1010 4
y 1011 4

Recall also: Given possible lengths κi, there exists
a (prefix-free) code with these as code lengths if and
only if Kraft’s inequality holds:



i∈Ω
2−κi ≤ 1 .



Here we only pay attention to the possibility of equal-
ity:


2−κi = 1 as strict inequality does not give max-

imal efficiency (compression ).

Further, we shall idealize by allowing arbitrary real
numbers as lengths. Then we may as well measure in
natural units (“nats”) , rather than in bits. Thus: From
now on, a code length function is a function κ on Ω

such that


i∈Ω e−κi = 1

Note obvious duality between distributions P and code
length functions κ:

κi = ln
1

pi
(the code length function κ adapted to P )

pi = e−κi ( the distribution P matching κ ) .

Notation: P̂ for the code length function adapted to P .

Perhaps just one more example:





The complexity function :

Φ(P, κ) = κ, P 

=



i∈Ω
piκi


.

Interpretation: Φ(P, κ) is the effort (average per
word) required by the linguist if he uses a represen-
tation of words given by the code length function κ,
assuming the distribution used by the Zipfean is P .

Define: Given P , the entropy of P is the minimal
effort required by the linguist :

H(P ) = inf
κ
Φ(P, κ)

and the redundancy related to a situation with P

chosen by the Zipfean and κ chosen by the linguist
is actual minus minimal effort :

D(Pκ) = Φ(P, κ)−H(P ) .



Lemma Entropy is familiar Shannon entropy, redun-
dancy is familiar Kullback-Leibler divergence when
replacing κ by the matching distribution, say Q:

H(P ) =


i∈Ω
pi ln

1

pi
, D(Pκ) =



i∈Ω
pi ln

pi

qi
.

Proof Follows from basic property of Kullback-Leibler
divergence as Φ(P, κ) = H(P ) +D(Pκ). 

In order to get the game going, let there be given a
model P of feasible distributions over Ω which the
Zipfean can choose from. The linguist chooses just
any (clever!) code length function. Let the Zipfean be
a maximizer, and the linguist a minimizer in the two-
person zero-sum game, fighting over Φ(P, κ).

Here is a trivial, useful, but often neglected result:



Robustness lemma If P ∗ ∈ P and if the adapted
code length function κ∗ = P̂ ∗ is robust in the sense
that, for some h < ∞,

Φ(P, κ∗) = h for all P ∈ P ,

then the game is in equilibrium, and P ∗ is the unique
MaxEnt-distribution and κ∗ the unique optimal code
length function.

Proof Clearly,

R(κ∗|P) = h = Φ(P ∗, κ∗) = H(P ∗) ≤ Hmax(P) .

The other inequality: Hmax(P) ≤ Rmin(P) is trivial.


This result already points to the importance of the
specific models

Pκ∗,h = {P |κ∗, P  ≤ h} .

Comments on Theorem I: A pure existence result.
Can be proved either by standard techniques (say, via



Kneser’s minimax theorem) or by an intrinsic method.
For details see my homepage (esp. the ms. “Between
Truth and Description”). I shall not give the proof here.

Comments on Theorem II: A “positive” result which
allows strong convergence results in many cases. Not
the key issue here, so I also suppress the proof of that
result.

Comments on Theorem III: On the surface a “neg-
ative” result: loss of entropy! But it is not. We turn
it into a positive result by focusing on the fact that
it allows an approximating sequence Pn → P ∗ with
all Pn’s having significantly higher entropy than P ∗ –
hence all having larger semantic expressive power –
and yet they really result from the same “govorning”
distribution P ∗ which is the one representing the ba-
sic structure of the language as used by the Zipfean.

To formulate the result in a somewhat extreme way,
look at this:





with Z a normalization constant (the partition func-
tion). This defines the exponential family . Let κβ =
P̂β. All the κβ ’s are robust. But the point is that for the
special situation considered none of the Pβ ’s belong
to the model P. This may be illustrated by considering
the map f defined by

f(β) = κ∗, Pβ for β ≥ 1 .

The point now is that by considering larger and larger
subsets ΩN ⊆ Ω and the approximate models

PN = {P ∈ P| support of P = ΩN}
we find, for each N , an exact solution to the Max-
Ent problem for the model PN by looking at the corre-
sponding exponential family determined by the func-
tion fN defined in the obvious way. This exact so-
lution is determined by a constant βN found graphi-
cally by intersecting the graph of fN with the horizon-
tal line in level h. Considering the shape of the func-
tions fN , see figure, we realize that βN → 1, hence
H(PN) → h. As

Hmax(P) ≤ sup
P∈P

(H(P )+D(Pκ∗)) = sup
P∈P

κ∗, P  = h ,



Hmax(P) = h and by Theorem I, PN converges to
the maximum entropy attractor. As PN also converges
to P ∗, P ∗ is the maximum entropy attractor and we
are done.
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