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Abstract

Various notions of block symmetry for discrete, memoryless chan-
nels are introduced. Though block symmetry in itself does not guaran-
tee easy calculation of channel capacity and easy determination of op-
timal distributions, usually, it does simplify matters, and also, known
results in this direction — often based on rather strong concepts of
symmetry — appear as simple corollaries to the results here presented.
The findings appear to be relatively simple and natural ones which
somehow were not considered or overlooked in the early development
of information theory.
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1 Preview

Let P be the transition matrix for a discrete memoryless channel (DMC) and
consider a block decomposition (P%); ; of P as indicated in Figure 1. Such a
decomposition is induced by two decompositions — or equivalence relations
if you wish — one of the input-, the other of the output alphabet. Assume
that, within each block P¥, all row sums are equal and all column sums
are equal. Assume further, that rows in the full matrix P which correspond
to equvalent input letters have equal entropy. Then there exists an optiml
input distribution —i.e. one for which the transmission rate reaches capacity —
which is consistent with the decomposition of the input alphabet in the sense
that equivalent input letters are sent with equal probability. Furthermore,
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P Figure 1

the optimal output distribution is consistent in a similar way, hence equiv-
alent output letters are received with equal probability. This result may be
viewed as our key result.

2 DMC’s with Benefit

Let P = (pay)zexyey be a stochastic matrix, fixed in the sequal. We view P
as the transition matrix of a DMC. The sets X and Y, the input- and output
alphabets, are here assumed to be finite.

For z € X, ¢, denotes the z’th row vector in P. An input distribution is a
probability distribution p'= (p,).ex over X. The induced output distribution
is the mixture ¢ = > p,q,. The information transmission rate 1(p;P), or
just I(p), can be expressed, using “D” for divergence, as

1) = p.D(@|0). (1)

zeX

We need a refined notion of capacity, taking into regard that the sending
of an input symbol may be associated with a certain benefit. This idea, and
the basic result connected with it, has been considered before, cf. Blahut [2]
Theorem 9 (where it was found more natural to associate a “cost” , with the
input symbols).

Consider a benefit function a : * ~ a, which maps X into the reals, and
define the modified capacity with benefit a, C(P,a), by

C(P;a) = Sl;p(f(ﬁ) +(a,)). (2)

Here, the bracket notation indicates mean value: (a,p) = ) _ pa.a,.
Clearly, the supremum in (2) is attained, and we are led to consider optimal
input- and output distributions for the modified problem, thereby generaliz-
ing the usual concepts (which correspond to the case with zero benefit).

Lemma 1. Let p* be an input distribution and denote by ¢ the induced
output distribution. A necessary and sufficient condition that p* be an optimal



input distribution for the modified problem with benefit a is that, for some
constant C', the following two conditions hold:

D(G\q*) + a, < C for all x (3)
D(q||q") + ax = C for all x with p} > 0. (4)

If these conditions are satisfied, C' is the modified capacity: C = C(P;a).

Proof. We show a simple proof of sufficiency, extending the reasoning in [8].
So assume that (3) and (4) hold. Employ the identity

1(7) + D(qllg") = Y poD(G 17

rzeX

valid for any input distribution p’ with induced output distribution ¢, to
conclude that for any such p),

1) + (a,7) <Zp$( @7 >+ax) <c.

zeX

It readily follows that C(P;a) = I(p*) + (a,p*) . O

Whereas there may be several optimal input distributions, the optimal
output distribution is unique, as in the case with zero benefit. This follows
by strict concavity of o'~ I(p) + (a, p).

Explicit formulas for calculation of optimal distributions and modified
capacity pertaining to a general 2 X 2 transition matrix have been worked
out using Lemma 1.

3 The Basic Result

For any set W, DEC(W) denotes the lattice of decompositions of W, ordered
by subdecompositions. Put Z = X x Y. A block decomposition of Z is a
decomposition of Z of the form nx xny = {Ax B | A € nx, B € ny}
with nx € DEC(X), and ny € DEC(Y). A set A x B € nx X ny is called a
block of the decomposition. The set of block decompositions of Z is denoted
BDE(Z). This set is a sublattice of DEC(Z).

Consider a block decomposition n = nx x 7y € BDE(X x Y). As the
block decomposition 7 is seen in relation to P, we write n € BDE(P). The
number of classes in nx and 7y are denoted M, respectively N. We put



nx ={X; | i < M}and ny = {Y; | j < N}. Fori < M,j < N we
denote by P% the ij’th block in P, i.e. PY = (pgy)sex, jey,- We write
n € BDE(P;o_) if, within each block P¥, the row sums are equal, say = o
If n € BDE(P;0_), we define the derived DMC as the DMC with transition
matrix &7P = (Ui_j)iSMJSN.

A general result (not shown here) can be developed which gives sufficient
conditions for existence of optimal input- and output distributions for the
DMC defined by P with certain prescribed conditional distributions, where
conditioning is relative to the classes defined by nx and ny. The idea of proof
is quite simple: We relate the original problem about P to one related to the
derived transition matrix 9,P. With appropriate assumptions it turns out
that this reduction is possible if we introduce benefits. This situation is then
handled via Lemma 1.

The results corresponding to uniform conditional distributions are those
quoted in the preview and below. They lead to the following notions. A
matrix is weakly symmetric if the rows are permutations of each other and if
all column sums are equal. This terminology follows Cover and Thomas [3]
(cf. p.190). We write n € BSD(P) and call y a block symmetric decomposition
of P if all blocks in P are weakly symmetric. A generalized block symmetric
decomposition is the one discussed in the preview. An even more general
notion (not defined here) is preserved under the operation of adding rows to
P, a simple operation which destroys other notions of symmetry.

Notions of symmetry were studied by Shannon in [6] (cf. Sections 15 and
16), and appear in most textbooks. For M = N = 1, one may consult [3] as
mentioned, and for M = 1, N arbitrary, the notion is discussed in Gallager
[4] (cf. p. 94, though there with the stronger requirement of equal columns
modulo permutations).

Theorem 1. For every generalized block symmetric decomposition of a given
DMC, the optimal output distribution is consistent with the decomposition of
the output alphabet and there exists an optimal input distribution which is
consistent with the decomposition of the input alphabet.

4 Discussion and further results, indications

Theorem 1 may not be all that informative. For instance if, given any DMC,
you consider the finest block symmetric decomposition, the result actually
contains no information. It is important to note that there is always, given
any DMC, a coarsest block symmetric decomposition. Moreover, there is
a simple algorithm to determine this most informative block symmetric de-



composition (result obtained in discussion with Thomas Jakobsen). A similar
result is not possible for the generalized notion of block symmetry.

As just one example of a generalized block symmetric deceomposition
which is not a block symmetric decomposition we mention the 10 x 5 matrix
P given, in natural notation, by P = (A/B) where

1111 4 2 2220
e 22200
A=-|11411]|, B==]22022 (5)
8014111 8202 2 2
41111 022 2 2

1

Thus, the uniform distribution (g, - -

tion in this case.

In this example, the result could have been obtained by two successive
applications of the simpler result which involves block symmetric decompo-
sitions. Possibly this kind of iterative procedure based on the simpler of the
two notions discussed is the rule rather than the exception. A complete so-
lution of this problem will involve the characterization of channels with the
uniform distribution as an optimal input distribution. Even the simple case
of a binary channel is not entirely trivial. !

a %) is an optimal input distribu-

Theorem 1 can be viewed as a reduction of the problem of determining
C(P) — and associated optimal distributions — to a simpler problem involving
the derived channel. However, the reduced problem cannot, generally speak-
ing, be solved in closed form. One often has to turn to numerical methods,
and here, the Arimoto-Blahut algorithm is the obvious choice, cf. Arimoto
[1] and Blahut [2]. In this connection we point out that the algorithm can
be modified without difficulty to the case when we allow for benefits. Theo-
retical results (cf. [1], [2]) and some numerical experiments have shown the
feasibility of this approach but, at the same time, indicated that there is little
or no saving in using the reduction provided by our results as compared to
a direct approach employing the algorithm directly on the original problem.

!This case may be discussed by considering the function D(q1|q) — D(g||q) with § =
%cj’l + %(jg as a function of p1; and pos and observing that the determinant of the Hessian
has a simple factorization; indeed, the determinant in question is

—(1—a—-p)*
af(l—a)(1—=0)(1 -8+ a)2(l —a+p)?
where a = p11 and 3 = pos. This observation is the key fact used to show that the function

only vanishes on the diagonals of the unit square (for this argument, we acknowledge
discussions with J. P. R. Christensen).




In the litterature (Silverman [7], [3], [4], [5] etc.), non-trivial concrete
examples of DMC'’s are often with P a 3 x 3 matrix. These examples all have
a non-trivial block symmetric decomposition, hence are of the form

a B v
P= |3 a v]. (6)
0 6 ¢

For instance, [7] has § =¢ = 0.

With 7 the obvious block symmetric decomposition, one can use our
results to calculate the capacity and the optimal distributions.

In view of the result hinted at that a coarsest block symmetric decompo-
sition always exists, we note that BSD(P) is not a lattice. Simple examples

(e.g. with P containing the two row vectors (0,1,0,1) and (3,0, 1,0)) show
that BSD(P) need not be closed under V.
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