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Abstract — Zipf’s law is an empirical observation
which relates rank and frequency of words in natu-
ral languages. The law suggests modelling by distri-
butions of “hyperbolic type” . We present a general
definition and an information theoretical characteriza-
tion of such distributions. This leads to a property of
stability and flexibility, explaining that a language can
develop towards higher and higher expressive powers
without changing its basic structure.

I. Zipf’s law

Consider a large sample from a natural language, a “text”.
Words of the text each occur with a certain frequency, F . The
most frequent word has rank r = 1, the second most frequent
has rank r = 2, · · · . Zipf’s law states that r·F is approximately
constant, cf. [1], [5] and later investigations, [4], [3].

Zipf argues that in the development of a language, vocab-
ulary balance will eventually be reached as a result of two
opposing forces, unification (tends to reduce the vocabulary
and corresponds to a principle of least effort seen from the
point of view of the speaker) and diversification (connected
with the auditors wish to associate meaning to speach). Zipf
used James Joyce’s Ulysses with its 260.430 running words as
his primary example. Ulysses contains 29.899 different words.
The hyperbolic rank-frequency relationship is usually illus-
trated by a plot on doubly logarithmic paper. The result
reveals the closeness to an exact hyperbolic law r · Fr = C.

II. Criticism and a proposal

There is something dubious about Zipf’s law. It is a lim-
iting phenomenon – one of vocabulary balance – and as such
should be modelled by a distribution over N. But no distribu-
tion on N has point probabilities proportional to 1

n
. Criticism

from linguists also concerns the tails (high- or low- ranking
words) where the fit is less pronounced.

We propose to consider a whole class of distributions P =
(p1, p2, · · · ) over N. If p1 ≥ p2 ≥ · · · , P is said to be hyperbolic
if, given a > 1, pi ≥ i−a for infinitely many i. Examples: Take
pi proportional to i−1(log i)−c for some c > 2. A distribution
with infinite entropy H(P ) is hyperbolic. Clearly, when we
use such distributions for our linguistic modelling, this will
lead to a high expressive power. It is surprising that the same
effect can be achieved when H(P ) <∞. Therefore, hyperbolic
distributions with H(P ) <∞ have our main interest.

The special properties of the hyperbolic distributions are
connected with the Code Length Game, pertaining to a model
P ⊆ M1

+(N), the set of distributions over N. By K(N) we
denote the set of (idealized) codes over N, i.e. the set of κ :
N→ [0;∞] with

∑∞
1 exp(−κi) = 1. The Code Length Game
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for P is a two–person zero–sum game. Player I chooses P ∈ P
and Player II chooses κ ∈ K(N). Average code length 〈κ, P 〉
is taken as cost for Player II.

We put Hmax(P) = sup{H(P )|P ∈ P}. The game is in
equilibrium with a finite value if and only if Hmax(co(P)) =
Hmax(P) < ∞. If so, the value of the game is Hmax(P)
and there exists a distribution P ∗, the Hmax-attractor, such
that Pn → P ∗ (say, in total variation) for every sequence
(Pn)n≥1 ⊆ P for which H(Pn) → Hmax(P). Normally, one
expects that H(P ∗) = Hmax(P). However, cases with entropy
loss, H(P ∗) < Hmax(P), occur. This is where the hyperbolic
distributions come in.
Theorem Assume that H(P ∗) < ∞. Then a necessary and
sufficient condition that P ∗ can occur as Hmax–attractor in a
model with entropy loss is that P ∗ is hyperbolic. If so then,
for every h with H(P ∗) ≤ h < ∞, there exists a model P =
Ph with P ∗ as Hmax–attractor and Hmax(Ph) = h. In fact,
Ph = {P |〈κ∗, P 〉 ≤ h} is the largest such model. Here, κ∗

denotes the code adapted to P ∗, i.e. κ∗i = − ln p∗i ; i ≥ 1. For
details, see [2].

III. Discussion

Hyperbolic distributions are connected with entropy loss
but, more importantly, in view of the theorem above, we real-
ize that they occur as guarantors of stability. This implies a
potential for a language to reach higher and higher expressive
powers without changing its basic structure.

One may speculate that modelling based on hyperbolic laws
lies behind the phenomenon that “we can talk without think-
ing”. We just start talking using basic structure of the lan-
guage and then from time to time stick in more informative
words and phrases in order to give our talk more semantic
content, and in doing so, we do not violate basic principles
– hence still speak recognizably Danish, English or what the
case may be.

Another consideration: If Alice, an expert, wants to get
a message across to Bob and if Alice knows the level of Bob
(layman or expert), Alice can choose the appropriate entropy
level, h, and communicate at that level, still maintaining basic
structural elements of the language.
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