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Consider the set M 1
+(A) of probability distributions where A is a set

provided with some σ-algebra.

Jensen-Shannon divergence JSD : M 1
+(A) × M1

+(A) → [0,∞] is a sym-
metrized and smoothed version of the all important divergence measure of
informaton theory, Kullback-Leibler divergence D(P‖Q). It is defined by

JSD(P‖Q) =
1

2
D(P‖M) +

1

2
D(Q‖M) (1)

with M = 1

2
(P + Q).

Apparently, it is gaining in popularity, especially among statisticians.
Somewhat implicitly the quantity was introduced in Wong and You [15,
Definition 13]. Lin and Wong derive some simple properties in [9] and this
information is essentially repeated in Lin [8]. Further identities and inequal-
ities appeared in Topsøe [13] (where the name “capacitory discrimination”
was used). The result which triggered the research behind the present sub-
mission and which is a main reason why it is safe to predict a rise of interest
in JSD-divergence is the fact that JSD is the square of a metric. In view
of previous research, cf. references in [11], the result is not that surpris-
ing. However, it was first published very recently, in Endres and Schindelin
[4] and, independently, in Österreicher and Vajda, [11]. The metric

√
JSD

metrizes convergence in total variation as is clear in view of well known in-
equalities for certain classes of divergence measures (see [7] for a systematic
treatment). The interest is in the metric itself and the information theoretic
interpretations and results it gives rise to. The further results which are the
basis for the present submission will be published in Fuglede [5] and Topsøe
[3].

On pages 4 and 5 we give some simple arguments in favour of JSD-
divergence. But first we turn to some technically more involved considera-
tions which depend on partly classical results and methods from harmonic
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analysis. The monograph [2] may be helpful regarding terminology used and
basic results from that field.

The starting point is the observation that
(

M1
+(A),

√
JSD

)

is isometrically
isomorphic to a subset – a certain curve – in Hilbert space. This may be
proved as an application of Schoenberg’s theorem, cf. [12] or the relatively
short proof in [2]. The result opens for an approach to certain parts of
information theory based on differential geometry.

A drawback with a proof of the metric property of JSD-divergence via
Schoenberg’s theorem is that it is non-constructive and leaves the question
open as to the actual embedding in Hilbert space. The answer to this question
requires a good bit of further work which we shall now briefly indicate.

First observe that JSD-divergence is defined by integration (or summa-
tion) of terms generated by the kernel on R+ = [0,∞]:

K(x, y) =
x

2
ln

2x

x + y
+

y

2
ln

2y

x + y
. (2)

It therefore suffices to characterize the embedding of (R+,
√

K) in Hilbert
space. The image turns out to be what we shall call a 1

2
-spiral. By an α-

spiral in real Hilbert space, more precisely, a logarithmic spiral of order α,
we understand a curve t y x(t) ; t ∈ R for which

‖x(t1 + t) − x(t2 + t)‖ = eαt‖x(t1) − x(t2)‖ . (3)

For α = 0, the α-spirals become helixes as studied by Kolmogorov [6] and
von Neumann and Schoenberg, [14]. An important structural result concerns
the spectral representation of helixes. It turns out that the elegant proof by
Masani in [10] of this result can be adapted to spirals. This leads to a
characterization of spirals in terms of isometries to L2-spaces.

Another approach to α-spirals is through negative definite kernels. The
kernel K : X × X → R is negative definite if, for all finite sets (ci)i≤n of
real numbers and all corresponding finite sets (xi)i≤n of points in X, the
implication

n
∑

i=1

ci = 0 =⇒
∑

i,j

cicjK(xi, xj) ≤ 0 (4)

holds. A kernel on R+ is 2α-homogeneous if K(tx, ty) = t2αK(x, y) for
x , y , t ∈ R+.

Theorem 1. The 2α-homogeneous negative definite kernels on R+ can be

identified as kernels which have a representation

K(x, y) =

∫ ∞

0

|xα+iλ − yα+iλ|2dµ(λ) (5)
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for a bounded measure µ on R+.

If K has such a representation with µ({0}) = 0, then (R+,
√

K) is a

metric space which can be embedded isometrically into the real Hilbert space

L2(µ) ⊕ L2(µ) by the map x y (Re(fx), Im(fx)) where

fx(λ) = (xα+iλ − 1)
−α + iλ

α + iλ
. (6)

For the kernels (2), the representing measure is given by

dµ(λ) =
1

cosh(πλ)

1

1 + λ2
dλ . (7)

The generality of Theorem 1 points to the possibility to consider more
general divergence measures. This is indeed possible. In fact you may gener-
alize a one-parameter family of divergence measures considered by Arimoto
[1] (see also [11]) to a two-parameter family. The kernels concerned on R+

are, for β0 6= β given by

Kβ|β0
(x, y) =

β β0

β − β0

(

(
1

2
xβ +

1

2
yβ)

1

β − (
1

2
xβ0 +

1

2
yβ0)

1

β0

)

, (8)

and for β0 = β by the expression

‖(x, y)‖1−β
β

(

xβ

2
log xβ +

yβ

2
log yβ − xβ + yβ

2
log(

1

2
xβ +

1

2
yβ)

)

(9)

where the norm is with respect to the uniform measure ( 1

2
, 1

2
).

Theorem 2. Assume that 0 < β0 ≤ β. The above kernels are negative defin-

ite if and only if β0 ≥ 1

2
and β ≥ 1. Clearly, the kernels are 1-homogeneous.

The representing measures can be determined in terms of the complex
gamma function.

We end by some simple considerations aiming at illuminating the signi-
ficance of JSD-divergence.

Consider the discrete case and introduce entropy as usual, i.e. H(P ) =
−
∑

n pn log pn (with pn’s for the point probabilities of P ).
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Consider a finite or infinite mixture
∑

ν ανPν of probability distributions
(αν ’s are all non negative and sum to 1). Put P =

∑

ν ανPν. Then

H

(

∑

ν

ανPν

)

=
∑

ν

ανH(Pν) +
∑

ν

ανD(Pν‖P ) (10)

and Jensen’s inequality confirming the concavity of the entropy function,

H(
∑

ανPν) ≥
∑

ανH(Pν) , (11)

follows from the fundamental inequality D(P‖Q) ≥ 0. In case
∑

ν ανH(Pν) <

∞, we may write (10) in the form

H

(

∑

ν

ανPν

)

−
∑

ν

ανH(Pν) =
∑

ν

ανD(Pν‖P ) . (12)

The left hand side of (12) we call the general Jensen-Shannon Diver-

gence pertaining to the mixture
∑

ν ανPν. In order not to overcomplicate
the notation we write, by abuse of notation, JSD(

∑

ανPν) for this quantity.
The right hand side of (12) has important advantages over the left hand

side: On the technical side, it is always well defined, even for distributions
over arbitrary Borel spaces. Therefore, as defining relation for the general
JSD-divergence we take the equation

JSD(
∑

ν

ανPν) =
∑

ν

ανD(Pν‖P ) (13)

with P =
∑

ν ανPν as above.
Another advantage of the expression (13) is the interpretations it gives

rise to. In fact, the quantity is the transmission rate for a discrete memoryless
channel with input letters indexed by ν, each sent with probability αν, and
with the Pν’s as conditional distributions on the output side.

A second interpretation relates to the model which we shall refer to as the
switching model where a source generates a string x1x2 · · · of “letters”, each
letter selected independently of previous letters and according to a specific
distribution among the Pν’s and in such a way that the probability that Pν

is used is αν . Consider an observer who knows the Pν’s as well as the αν ’s
but does not know which distribution is used at any particular time instant.
The observer wants to design a code such that the expected redundancy is
minimized. By “redundancy” we have the following in mind:

An ideal observer who knows at each time instant which distribution
was used for the selection at the source of the letter sent, will choose, at each
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instant, a code adapted to the distribution selected. Hence, the ideal observer
will use in average H(Pν) nits (bits transformed to natual units based on the
natural logarithm function) for his observations when Pν is selected.

The actual observer cannot know when this or that distribution is used
at the source and has to choose one and the same code, say κ, at each time
instant. Associate with κ the distribution Q with qn = exp(−κn). The aver-
age amount of nits used by the observer is

∑

n pν,n log 1

qn
in case Pν = (pν,n)

is the actual distribution selected. The redundancy in such cases is, there-
fore, the difference between this number and H(Pν), i.e. the redundancy
is D(Pν‖Q). The average redundancy is then

∑

ν ανD(Pν‖Q). Therefore
the observer should choose that distribution Q as the basis for coding which
minimizes average redundancy given by R(Q) =

∑

ν ανD(Pν‖Q) . In order
to identify the associated argmin-distribution, we refer to the socalled com-

pensation identity which states that

∑

ν

ανD(Pν‖Q) =
∑

ν

ανD(Pν‖P ) + D(P‖Q) (14)

holds for any distribution Q. It follows immediately from the identity that
Q = P is the unique argmin-distribution sought and JSD(

∑

ν ανPν) the
corresponding minimum value. Therefore, the general Jensen-Shannon di-
vergence can also be interpreted as minimum redundancy for the switching
model.

By (14), for any fixed Q, divergence D(·‖Q) is a convex function:

D

(

∑

ν

ανPν‖Q
)

≤
∑

ν

ανD(Pν‖Q) . (15)

Furthermore, we realize that if we apply the same strategy of definition as
the one applied to the entropy function and consider the “Jensen-type” di-
vergence, looking at the difference between the right hand and the left hand
side in (15), we are back to the quantity (13), we started with and this is
independent of the distribution Q we choose to take as our reference.
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