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1 Introduction, Background

A large number of papers have been devoted to entropy (or uncertainty)
measures going beyond Boltzmann-Shannon entropy, aiming at covering the
needs of non-extensive statistical physics. In particular, q-entropy or Tsallis
entropy, is now popular among physicists (the database maintained by Tsal-
lis, cf. [6], contains more than 1000 entries!). In fact, the q-entropy functions
were first considered in mathematics by Havrda and Charvát, [1]. They are
monotone functions of Rényi entropies and one might dismiss them on this
ground. However, the point is that they are of significance for studies of
statistical physics as witnessed in many papers. More recently, motivated by
the needs of relativistic statistical physics, Kaniadakis introduced a family
of entropy measures which he called κ-entropies, cf. [3],

We will point to the significance of q-entropy and κ-entropy by showing
that they fit into a general theory based on measures of complexity.

In Section 2 the notion of complexity together with a related game is
discussed. This follows ideas which can be traced from Topsøe [5]. Basically,
the philosophy is consistent with maximum entropy thinking of Jaynes, cf.
[2], but goes one step deeper by deriving the maximum entropy principle from
an underlying game theoretical principle. In Section 3, q- and κ-entropies
are derived from suitable measures of complexity.

2 Games of complexity

Let A be finite or countably infinite. Introduce Player I, “Nature”, and
Player II, “the physicist”. Let the strategies available to Player I be given by
a set SI of distributions over A, the preparation. As an indicative example,
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think of an Ising spin system provided with an energy function. Then A

consists of all sequences (i1, · · · , in) of 0’s and 1’s with n the number of
particles and as the preparation you could consider all distributions over A

with a prescribed mean energy. As strategy set SII for Player II we take the
set of all distributions over A.

We consider a measure of relative complexity (below just complexity)
which, to any pair (P, Q) of distributions, assigns a number Φ(P‖Q) ∈ [0,∞],
thought of as the complexity for Player II in observing the physical system
based on the strategy Q when Player I has chosen the strategy P . We say
that Φ(P‖Q) is the complexity of P with reference Q.

By definition, Φ-entropy equals minimal complexity, i.e. we put

SΦ(P ) = inf
Q∈SII

Φ(P‖Q) . (1)

We assume that the following axioms are fulfilled:

SΦ(P ) < ∞ for P ∈ SI , (2)

SΦ(P ) = Φ(P‖P ) for P ∈ SI , (3)

Φ(P‖Q) > SΦ(P ) for P ∈ SI , Q ∈ SII , Q 6= P. (4)

The basic axioms (3) and (4) are quite natural. Indeed, they express that
the complexity of P is the smallest when P itself is taken as reference.

We define Φ-redundancy (or divergence) by DΦ(P‖Q) = Φ(P‖Q)−SΦ(P ) ,

i.e. as actual complexity minus minimal complexity. Often, this is written

Φ(P‖Q) = SΦ(P ) + DΦ(P‖Q) , (5)

the linking identity. Clearly, DΦ(P‖Q) ≥ 0 with equality if and only if
P = Q. In certain models of statistical physics, D(P‖Q) > 0 can be related
to free energy and if D(P‖Q) > 0 this gives a possibility to perform some
work.

Introduce the two-person zero-sum game γΦ with Player I and Player
II as players and with Φ as objective function, viewed as a cost to Player
II. Applying usual “minimax/maximin thinking” of game theory, Player I
will, when contemplating whether or not to use the strategy P ∈ SI , pay
attention to the best counter strategy by Player II, i.e. the strategy which
minimizes complexity. By (1), this leads to the value SΦ(P ). Therefore,
Player I considers P ∗ ∈ SI to be an optimal strategy if SΦ(P ∗) = Smax

Φ , the
maximum entropy value, given by Smax

Φ = supP∈SI
SΦ(P ) .

Player II will pay attention to the risk function RΦ(Q) = supP∈SI
Φ(P‖Q) ,

and consider Q∗ to be an optimal strategy if RΦ(Q∗) = Rmin

Φ , the minimum
risk value, defined by Rmin

Φ = infQ∈SII
RΦ(Q) .
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Clearly, Smax

Φ ≤ Rmin

Φ . If equality holds, the game is in equilibrium. A pair
(P ∗, Q∗) ∈ SI ×SII is a Nash equilibrium pair if the saddle value inequalities

Φ(P‖Q∗) ≤ Φ(P ∗‖Q∗) ≤ Φ(P ∗‖Q) (6)

hold for any P ∈ SI and any Q ∈ SII . If the players choose strategies
prescribed by such a pair, none of the players will benefit from changing
strategy – assuming that the other player does not do so either.

A strategy Q for Player II is robust if, for some h < ∞, Φ(P‖Q) = h for
all P ∈ SI . The set of robust strategies forms the Φ-exponential family.

The principle of game theoretical equilibrium (GTE) dictates that you
search for optimal strategies for the players and investigate if the game is in
equilibrium. By the identification of the optimal strategies for Player I, we
already see that this leads to the MaxEnt-principle. If there is a discrepancy
between Smax

Φ and Rmin

Φ , the excess value in complexity can, via the relation
between redundancy and free energy hinted at above, be used to perform
some work, hence the physical system is not in equilibrium. A more thor-
ough analysis on this point is needed. Anyhow, we maintain the thesis that
thermodynamical equilibrium is the same as game theoretical equilibrium.

The optimal strategies for Player II do not seem to have an analogy in
established principles of statistical physics. They almost always exist - in
contrast to the MaxEnt-distributions. Often it turns out that one and the
same distribution is optimal for Player I as well as for Player II. Such a
distribution is said to be a bi-optimal strategy. The main facts about γΦ are
as follows:

Theorem 1. (GTE-fundamentals for γΦ). Assume that Smax

Φ < ∞.
(i) (Nash equilibrium properties). If (P ∗, Q∗) is a Nash equilibrium pair,

then Q∗ = P ∗ , γΦ is in equilibrium, P ∗ is the unique optimal strategy for
Player I, hence the unique MaxEnt-distribution, and Q∗ is the unique optimal
strategy for Player II. In particular, P ∗ is the unique bi-optimal distribution.
Furthermore, for any P ∈ SI , and Q ∈ SII ,

SΦ(P ) + DΦ(P‖P ∗) ≤ Smax

Φ = Rmin

Φ ≤ RΦ(Q) − DΦ(P ∗‖Q) . (7)

(ii) (necessity of Nash equilibrium). If γΦ is in equilibrium and if both
players have optimal strategies, then there exists a Nash equilibrium pair for
the game, hence also a bi-optimal strategy.

(iii) (identification). A distribution, P ∗, is the bi-optimal distribution if
and only if P ∗ ∈ SI and

Φ(P‖P ∗) ≤ SΦ(P ∗) for all P ∈ SI . (8)

(iv) (robustness). If the distribution P ∗ is consistent (P ∗ ∈ SI) and
robust, then (P ∗, P ∗) is a Nash equilibrium pair.
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The proof is simple, but will not be given here. For standard Shannon
entropy, the proof can be deduced from [5] and references there.

No convexity assumptions regarding SI or concavity assumptions regard-
ing the Φ-entropy function are required. But, of course, such conditions will
be fulfilled for many applications of interest.

In (7) we recognize “Pythagorean type” inequalities.

3 Entropy measures via complexity

It is extremely easy to suggest concrete measures of complexity which satisfy
our axioms. In a sense, Theorem 1 is “too general”. It only deals with
situations when equilibrium holds, and says nothing about how often this
happens. For instance, one might want γΦ to be in equilibrium for any
convex preparation SI . This points to concavity of the Φ-entropy function
as a natural requirement. We may also require that Φ-redundancy is convex
(in the first variable or even jointly).

We shall now demonstrate one way of obtaining non-Boltzmann-Shannon
entropies by “digging one level deeper” via suitably chosen measures of com-
plexity. For any pair of real numbers, α, β, we define the (α, β)-logarithmic
function on ]0,∞[ by

lnα,β x =
xβ − xα

β − α
if β 6= α , (9)

and lnα,β x = xα ln x if β = α. We assume below that α 6= β as the case
of equality only leads to standard complexity (average code length), stand-
ard entropy (Boltzmann-Shannon entropy) and standard divergence (relative
entropy or Kullback-Leibler divergence).

We point out that lnα,β 1 = 0 (normalization), lnα,β = lnβ,α (symmetry),
lnα+c,β+c x = xc lnα,β x (translation property) and that the functional equation

lnα,β(xy) = yα lnα,β x + xβ lnα,β y (10)

holds.
First use the functional equation with x = pi and y = qi

pi

together with
natural generalizations of standard quantities in order to ensure that the
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linking identity (5) holds. This leads to the following objects:

Φα,β(P‖Q) =
∑

i∈A

φ(pi)p
1+α−β
i q−α

i (− lnα,β qi) , (11)

Sα,β(P ) =
∑

i∈A

φ(pi)p
1−β
i (− lnα,β pi) , (12)

Dα,β(P‖Q) =
∑

i∈A

φ(pi)p
1+α
i q−α

i (− lnα,β

qi

pi

) , (13)

where φ is some non-negative function on [0, 1].
With these definitions, Φα,β and Sα,β are non-negative and the linking

identity holds. It remains to investigate if φ can be chosen such that Dα,β is
non-negative and only vanishes on the diagonal. It lies nearby to achieve this
by ensuring that Dα,β is a Csiszár f -divergence, i.e. of the form

∑

i∈A
pif( qi

pi

)

for a strictly convex function f with f(1) = 0. This forces φ to be constant
and we may then take φ ≡ 1. A simple computation then leads to the
following result, which may be taken as a supportive argument in favour of
Tsallis entropy.

Theorem 2. (Tsallis entropy via complexity). If (11)-(13) are to define
a genuine measure of complexity together with its associated entropy and
redundancy functions, and if we require that Dα,β be a Csiszár f -divergence
then, necessarily, β − α ≤ 1 and φ must be a positive constant function.
Assume now that β − α ≤ 1. Then, with φ ≡ 1, all stated properties hold.
As Φα,β = Φα+c,β+c for any constant c, this defines a one-parameter family
of functions. If we put q = 1−β +α, then q ≥ 0 and Φα,β = Φq,1 , Sα,β = Sq,1

and Dα,β = Dq,1 and these functions are given by

Φq,1(P‖Q) =
1

1 − q

∑

i∈A

p
q
i

(

1 − q
1−q
i

)

, (14)

Sq,1(P ) =
1

1 − q

∑

i∈A

pi

(

p
q−1

i − 1
)

=
1

1 − q

(

∑

i∈A

p
q
i − 1

)

, (15)

Dq,1(P‖Q) =
1

1 − q

∑

i∈A

pi

(

1 −
(pi

qi

)q−1
)

=
1

1 − q

(

1 −
∑

i∈A

pi

(pi

qi

)q−1
)

. (16)

In (15) we recognize the q-entropy of Tsallis. Note also that for q = 1

2

(16) gives us the popular Hellinger divergence.
The discussion shows that, if the approach as explained based on (10)

is taken as starting point, Tsallis q-entropy emerges as the only possible
family of decently behaved entropy measures. But, of course, one could
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suggest different approaches. One other possibility is to base the definitions
on the κ-logarithms introduced in Kaniadakis [3] by ln{κ} x = ln−κ,κ x. It is
convenient to introduce, as in Kaniadakis [4], the κ-deformed product by

ln{κ}(x ⊗
κ

y) = ln{κ} x + ln{κ} y . (17)

Theorem 3. (κ-entropy via complexity). In case −1 ≤ κ ≤ 1, the formulas

Φ{κ}(P‖Q) =
∑

i∈A

pi ln{κ}

(pi

qi

⊗
κ

1

pi

)

, (18)

S{κ}(P ) =
∑

i∈A

pi ln{κ}
1

pi

, (19)

D{κ}(P‖Q) =
∑

i∈A

pi ln{κ}
pi

qi

, (20)

define a genuine complexity measure with its associated entropy- and divergence-
functions and S{κ} is strictly concave and D{κ} is a Csiszár f -divergence. For
no other values of κ does this hold.

In (19) we recognize the κ-entropy function of Kaniadakis. You may note
that for κ = 1, S{κ} is proportional to χ2-divergence.
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