
Inequalities between Entropy and Index of
Coincidence derived from Information

Diagrams
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Abstract

To any discrete probability distribution P we can associate its en-
tropy H(P ) = −

∑
pi ln pi and its index of coincidence IC(P ) =

∑
p2
i .

The main result of the paper is the determination of the precise range
of the map P y (IC(P ),H(P )). The range looks much like that of the
map P y (Pmax, H(P )) where Pmax is the maximal point probability,
cf. research from 1965 (Kovalevskij [18]) to 1994 (Feder and Merhav
[7]). The earlier results, which actually focus on the probability of er-
ror 1 − Pmax rather than Pmax, can be conceived as limiting cases of
results obtained by methods here presented. Ranges of maps as those
indicated are called Information Diagrams.

The main result gives rise to precise lower as well as upper bounds
for the entropy function. Some of these bounds are essential for the
exact solution of certain problems of universal coding and prediction
for Bernoulli sources. Other applications concern Shannon theory (re-
lations betweeen various measures of divergence), statistical decision
theory and rate distortion theory.

Two methods are developed. One is topological, another involves
convex analysis and is based on a “lemma of replacement” which is of
independent interest in relation to problems of optimization of mixed
type (concave/convex optimization).

∗research of both authors has been supported by the COWI Foundation as well as by
the Danish Natural Science Research Council.
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1 Introduction, definitions

In information theory proper and in applications to probability theory, statis-
tics and other fields, one often needs inequalities which relate entropy or
relative entropy of distributions (i.e. divergence) to entropies of other dis-
tributions or to other quantities of interest. One of the most well known
and useful inequalities of this type is Pinskers inequality (D ≥ 1

2
V 2), cf.

Pinsker [21], Csiszár and Körner [5], Problem I.3.17 or Fedotov, Harremoës
and Topsøe [8]. This inequality allows one to conclude convergence of distri-
butions from smallness of divergence. Some of our inequalities allow for the
same conclusion but, in contrast to several other inequalities, they are of sig-
nificance also when the deviation or “divergence” considered is moderate or
large. However, the main results presented in this paper are more restrictive
in another way as they only involve deviation from a uniform distribution.
The very nature of our results, including also that they are best possible
in a certain sense, open up for various applications which are indicated in
more detail in the final section which offers a discussion of results obtained.
Here we only mention that the key motivation of the authors is the link to
certain problems of exact prediction, a theme that will be the subject of a
forthcoming publication.

Returning to a comparison with Pinskers inequality, we note that this relates
divergence between two distributions to the square of the l1-distance between
the distributions. Basically, what we shall investigate, is the relation to the
l2-distance.

By M1
+(N) we denote the set of discrete probability distributions P over N,

identified by the vector (p1, p2, . . . ) of point probabilites. We use the notation
Uk for the generic uniform distribution over a k-set: Uk = ( 1

k
, . . . , 1

k
, 0, . . . )

or isomorphic versions of this distribution. If, say Uk and Uk+1 (or Uk and
Uj with j > k) are considered at the same time, it is assumed without
further comment that the support of Uk is contained in that of Uk+1 (or
Uj): supp(Uk) ⊆ supp(Uk+1) (or supp(Uk) ⊆ supp(Uj)). This convention
corresponds to the ordering p1 ≥ p2 ≥ · · · of the point probabilities of
the distributions concerned. Often we restrict attention to distributions with
fixed finite support. The set of all distributions P = (p1, . . . , pn) on the n-set
{1, 2, . . . , n} is denoted by M1

+(n).
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As usual we denote by H(P ) the entropy of P :

H(P ) = −
∑
i

pi ln pi.

We shall work with natural logarithms and use standard conventions, e.g.
regarding 0 · ln 0 (set to 0). Relative entropy or divergence, defined by

D(P‖Q) =
∑
i

pi ln
pi
qi
,

also plays a role for our investigations, though mainly as motivation for the
study we shall embark on. In fact, we shall only have cases in mind for which
Q is a uniform distribution, say Q = Un, and for which P ∈ M1

+(n). Then,
as D(P‖Un) = lnn−H(P ), it is possible to express bounds for D(P‖Un) as
bounds for the entropy H(P ), and this is what we shall do.

With P ∈M1
+(N) we also associate its index of coincidence, denoted IC(P ),

and defined by

IC(P ) =
∑
i

p2
i . (1)

This quantity, which is the probability of getting “two of a kind” in two
independent trials governed by the distribution P , is of significance in cryp-
toanalysis, cf. Friedman [9], Stinson [25] and Menezes et al. [20]. Simple
transformations of the index of coincidence occur elsewhere in the literature
as we shall comment on later.

Note the trivial inequality

IC(P ) ≤ max
i
pi, (2)

in particular IC(P ) ≤ 1, with equality for deterministic distributions. The
difference 1− IC(P ) is sometimes called the concentration measure.

The index IC(P ) may also be thought of as the square of the l2-norm of P ,
i.e., when using ‖ · ‖ to denote l2-norm, as IC(P ) = ‖P‖2. The deviation of
a distribution P ∈ M1

+(n) from Un (the most “flat” distribution in M1
+(n))

can be measured by the norm-squared deviation:

‖P − Un‖2 =
n∑
i=1

(pi −
1

n
)2 = IC(P )− 1

n
.

This quantity is the measure of roughness, and we denote it by MRn(P ).
In the cited references this measure is only used for P ∈ M1

+(n). However,
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we shall find it convenient to use this terminology and notation for any
distribution, i.e. we define

MRn(P ) = IC(P )− 1

n
, P ∈M1

+(N). (3)

If we do restrict attention to distributions in M1
+(n), it follows from the above

that IC(P ) ≥ 1
n

for P ∈M1
+(n). Therefore, referring also to (2), we see that

for P ∈ M1
+(n), IC(P ) varies between 1

n
and 1. When one works in M1

+(n)
it is often convenient to use the measure of roughness rather than the index
of coincidence. Note that then MRn(P ) is closely related to the often used
chi-squared divergence between P and Un, indeed, then

MRn(P ) =
1

n
χ2(P,Un) (4)

holds where, as usual,

χ2(P,Q) =
∑
i

|pi − qi|2

qi
.

For our purposes we find it useful also to introduce some “relative” quantities
associated with a distribution. Often, this leads to simpler formulas. The new
quantities may be thought of either as relative indices of coincidence or as
relative measures of roughness. We prefer the latter terminology. Thus, let
1 ≤ k < j be natural numbers. The (j, k)-relative measure of roughness of
P ∈M1

+(N) is defined by

MRj,k(P ) =
MRj(P )

MRj(Uk)
=
IC(P )− 1

j

1
k
− 1

j

. (5)

Cases with 0 ≤ MRj,k ≤ 1 are the most interesting ones but clearly, MRj,k

may be negative (take P = Uj+1, for instance) or larger than 1 (take P = U1

when k > 1). Essentially, the validity of the inequalities 0 ≤ MRj,k ≤ 1 de-
pends on a kind of “complexity” of P with respect to the index of coincidence.
To be precise, we say that P is of IC-complexity class k if

IC(Uk+1) =
1

k + 1
< IC(P ) ≤ 1

k
= IC(Uk). (6)

The relevance of this kind of division has been noted before, first it seems in
1965 by Kovalevskij [18]. We shall return to this in the discussion. Through
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this definition, M1
+(N) is decomposed into complexity classes, one for each

k = 1, 2, . . . .

We note the following curious relation which will be useful later on and right
now can be taken to motivate the introduction of the relative measures of
roughness.

Lemma 1.1. Let j > k. Then the (j, k)-relative measure of roughness of any
mixture of a uniform distribution Uk over a k-set and a uniform distribution
Uj over a larger j-set is given by the formula

MRj,k ((1− x)Uj + xUk) = x2, 0 ≤ x ≤ 1.

The simple purely computational proof is left to the reader.

Except for the technical Section 5, we only need the MR-quantities when
k = j−1 and when k = 1. For these two cases we introduce special notation,
using sub- and superscripts in a way which will later be suggestive (see,
respectively lower, and upper curves in Figure 1 below). As to the first case
of special importance, j = k+ 1, we shall write MRk in place of MRk+1,k, i.e.

MRk(P ) =
MRk+1(P )

MRk+1(Uk)
=
IC(P )− 1

k+1
1
k
− 1

k+1

. (7)

For the second case of special interest, k = 1, the value of j will be the
maximal value under consideration in a given context, denoted n below. We
shall then write MR

n
(P ) in place of MRn,1(P ), i.e.

MR
n
(P ) =

MRn(P )

MRn(U1)
=
IC(P )− 1

n

1− 1
n

. (8)

If P ∈M1
+(n), then

MR
n
(P ) =

1

n− 1
χ2(P,Un).

Usually, the value of n is understood from the context.

We shall see later that the quantity 1−MR
n
(P ) plays a special role for some

of the inequalities we will study. We note that this quantity behaves as a
kind of entropy and belongs, apart from a constant, to a class of entropy-like
functions first considered by Havrda and Charvát, cf. [17]. The important
case considered here was called, again apart from a constant, “quadratic
entropy” by Vajda [32] and reintroduced by Daróczy [6]. More details about
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previous research in this area (axiomatics and basic properties) can be found
in Vajda and Vašek [33] and in references quoted there.

The main purpose of the paper is to study the relationship between D(P‖Un)
and MRn(P ) (or, equivalently, χ2(P,Un)). Qualitatively, D(P‖Un) and
MRn(P ) both measure deviation from the uniform distribution Un. It is there-
fore natural to compare these quantities. If P is close to Un, an approximate
comparison is easy as we have

D(P‖Un) =
n∑
i=1

pi ln

(
1 +

pi − 1
n

1
n

)
,

and using the approximation ln(1 + x) ≈ x− x2/2 we then find that

D(P‖Un) ≈
n∑
i=1

((
pi −

1

n

)
+

1

n

)
· a
(
n
(
pi −

1

n

)
− n2

2

(
pi −

1

n

)2
)
,

hence, for P ≈ Un,

D(P‖Un) ≈ n

2
MRn(P ) =

1

2
χ2(P,Un) (9)

(compare also with Corollary 2.9 of the next section).

In other situations, approximation arguments as the above cannot be invoked.
Instead, we shall investigate the relationship between D(P‖Un) and MRn(P )
by determining the exact range of the map P y (MRn(P ), D(P‖Un)) of
M1

+(n) into R2. As MRn(P ) = IC(P ) − 1
n

and D(P‖Un) = lnn − H(P ), it
appears simpler to work with the map P y (IC(P ), H(P )). Note that this
map, referred to as the IC/H-map, is well defined on all of M1

+(N) if we allow
for infinite values in the range (points of the form (x,∞) with 0 < x < 1).

The main problem then is to determine the range of the IC/H-map and, in
fact more important, to determine the range of the restriction of this map to
M1

+(n). The sets in question we denote by ∆ and ∆n, respectively:

∆ =
{

(IC(P ), H(P )) | P ∈M1
+(N)

}
(10)

∆n =
{

(IC(P ), H(P )) | P ∈M1
+(n)

}
. (11)

We refer to ∆ as well as to ∆n as IC/H-diagrams. If necessary in a given
context, ∆ will be called the full IC/H-diagram and ∆n the restricted IC/H-
diagram. These diagrams are special instances of so-called Information Di-
agrams which will occur in various variants in the sequel and be further
discussed in the final section.
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2 Statements of the main results

Regarding the nature of the IC/H-diagrams ∆ and ∆n, n ≥ 2, we first note
that the points Qk, k ≥ 1, which correspond to uniform distributions, i.e.
the points given by

Qk = (IC(Uk), H(Uk)) =

(
1

k
, ln k

)
, k ≥ 1

all belong to the diagram ∆. These points lie on the smooth curve y = − lnx,
0 < x ≤ 1. In fact, this curve is a lower bounding curve for ∆ as is easily
seen by an application of Jensen’s inequality:

H(P ) = −
∑
i

pi ln pi ≥ − ln
∑
i

p2
i = − ln IC(P ). (12)

This inequality holds for all P ∈ M1
+(N), and the derivation shows that the

points Qk, k ≥ 1, are the only points in ∆ which actually lie on the curve
y = − lnx. All other points in ∆ lie above this curve.

It is interesting—and perhaps a bit surprising—that the theoretically best
lower bounding curve for the IC/H-diagrams is not smooth but has certain
singularities at the points Qk. This is illustrated in Figure 1 which displays
the diagram ∆n (for n = 5).

Fig.1. The restricted IC/H-diagram ∆n(n = 5, k = 2).
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The shaded region is ∆n. This region lies between the lower cascade which
is composed of certain curves connecting the points Qk+1 and Qk, k = n −
1, n − 2, . . . , 1, and the upper arc which connects Qn and Q1. We have also
indicated the lower bounding curve xy − lnx (the dashed curve).

In order to understand the content of Figure 1 fully, it only remains to clarify
the meaning of the curves occurring there. It is convenient first to introduce
a notation for the IC/H-map:

~ϕ(P ) = (IC(P ), H(P )), P ∈M1
+(N). (13)

For k ≥ 1, the arc joining Qk+1 and Qk is the oriented curve from Qk+1 to
Qk given by the parametrization

sy ~ϕ ((1− s)Uk+1 + sUk) , 0 ≤ s ≤ 1. (14)

This curve, taken with orientation as given by (14), we denote by _Qk+1Qk.
The lower cascade referred to above is the piecewise smooth curve, denoted
__QnQ1, and given by

__QnQ1 = _QnQn−1 + _Qn−1Qn−2 + · · ·+ _Q2Q1. (15)

The upper arc is determined by the parametrization

sy ~ϕ ((1− s)Un + sU1) , 0 ≤ s ≤ 1.

This curve we denote _QnQ1 and the same curve, but taken in opposite
direction, we denote by _Q1Qn.

The main result can then be formulated as follows:

Theorem 2.1. Let n ≥ 3. The curve Jn = __QnQ1+_Q1Qn is a positively
oriented Jordan curve in the plane, and the bounded region which this curve
determines (including Jn itself) coincides with the restricted IC/H-diagram
∆n.

Remark. For n = 2, we find that ∆2 consists of all points on the arc _Q2Q1.
This may be considered to be a degenerate case of the theorem which then
holds for n ≥ 2.

From Theorem 2.1 it is easy to deduce the following corollaries:

Corollary 2.2. For n ≥ 3, the restricted IC/H-diagram ∆n consists of the
points (x, y) with 1/n ≤ x ≤ 1 for which there exists y∗ and y∗ such that
y∗ ≤ y ≤ y∗ and such that (x, y∗) lies on the lower cascade and (x, y∗) on the
upper arc.
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Corollary 2.3. The full IC/H-diagram ∆ consists of the point (1, 0) and of
all points (x, y) with 0 < x < 1 for which there exists k ≥ 1 and y∗ ≤ y such
that (x, y∗) ∈ _Qk+1Qk (here, we also allow the value y =∞)

Yet another corollary to Theorem 2.1 is obtained by a closer inspection of
the nature of the curves _Qk+1Qk. Indeed, the entropy function considered
as a function of the index of coincidence on the curves in question turns out
to be concave. This then shows that the following result holds:

Theorem 2.4. (i). For n ≥ 3, Q1, Q2, . . . , Qn are extremal points of the
restricted diagram ∆n and these points are the only extremal points on
the lower cascade __QnQ1.

(ii). The set of extremal points for the full IC/H-diagram ∆ coincides with
the set of points Q1, Q2, . . . .

(iii). The diagram ∆ lies above all secants joining neighbouring points Qk+1

and Qk, k ≥ 1.

We remark that for n = 2, all points in ∆2 (= _Q2Q1) are extremal for ∆2.
We warn the reader that for n ≥ 3 only some points on the upper arc _QnQ1

are extremal points of ∆n (since this curve has an inflection point).

Concerning all three parts of Theorem 2.4 it is important to note that the
lower bounding curve y = − lnx, 0 < x ≤ 1, is convex.

A simple transformation applied to the restricted IC/H-diagram gives the
shape of the MR

n
/D-diagram which by definition is the set of points

(MR
n
(P ), D(P‖Un)) for P ∈ M1

+(n). Note that the relative measure of

roughness MR
n
(P ) varies between 0 and 1 and appears to be a natural

choice of parameter for the kind of diagram considered. Of course, if we had
divided the divergence with its maximal value (lnn), also the other parame-
ter would vary between 0 and 1. For n = 5 the MR

n
/D-diagram is shown in

Figure 2.
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Fig.2. The MR/D-diagram for n = 5.

Another equivalent form of Theorem 2.1 is obtained by replacing IC(P ) by
the Rényi entropy H2(P ) of order 2, cf. Rényi [22], Cover and Thomas [3] or
Csiszár and J. Körner [5], for example. As

H2(P ) = − ln IC(P ),

it is a simple matter to transform the IC/H-diagram ∆n into the equivalent
H2/H-diagram. The result of this transformation, again for n = 5, is shown in
Figure 3. We note that the logarithmic lower bounding curve for the IC/H-
diagram is transformed into the diagonal (the identity map) for the H2/H-
diagram. It should also be remarked that, apparently, the bounding curves
have better convexity properties in the transformed diagram.
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Fig.3. The H2/H-diagram (n = 5, k = 2).

The results so far were expressed in a geometric way. The analytic equivalents
are also important. First, let us reformulate Corollaries 2.2 and 2.3 using the
relative measure of roughness:

Theorem 2.5. (i) Let P ∈M1
+(n) for some n ≥ 2 and put r = MR

n
(P ).

Then

H(P ) ≤ H
(
(1− r1/2)Un + r1/2 U1

)
. (16)

(ii) Let P ∈ M1
+(N) and assume that P is of IC-complexity class k. Put

rk = MRk(P ). Then

H(P ) ≥ H
(

(1− r1/2
k )Uk+1 + r

1/2
k Uk

)
. (17)

Proof. (i): By Lemma 1.1, the distributions P and (1−r1/2 )Un+r1/2 U1 which
occur in (16) have the same (n, 1)-relative measure of roughness, hence also
the same index of coincidence. The result then follows from Corollary 2.2.
The proof of (ii) is similar, referring this time to Corollary 2.3.

The lower bound (17) (and certain extensions of these bounds) have been
obtained recently also by György and Linder [13] who applied the results to
the study of problems of quantization and rate distortion theory (for general
background, see Cover and Thomas [3] and the recent survey paper by Gray
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and Neuhoff [11]). That this type of research also leads to certain diagrams
as the IC/H-diagrams can be seen as follows (brief indication): Consider a
random variable X which is uniformly distributed on [0, 1]. If Q is a nearest
neighbour quantizer with finite range and if we use Euclidean distance as
distortion measure, then – after a simple computation – it is seen that the
distortion of Q equals 1

4
IC(Q′) where Q′ denotes the distribution of Q(X).

As the rate of the quantizer is the entropy H(Q′), we see that a study of the
connection between rate and distortion essentially amounts to a study of the
IC/H-diagram.

Exploiting part (iii) of Theorem 2.4 analytically we are led to a set of in-
equalities which to a great extent provoked the research reported on in this
paper. To formulate the inequalities in a convenient way, we first introduce
the constants

ek =

(
1 +

1

k

)k
, k ≥ 1. (18)

Note that as k increases, ek increases and has e as its limit value.

We can then state another key result, announced in Topsøe [29]:

Theorem 2.6. For any P ∈M1
+(N) and any k ≥ 1, the inequality

H(P ) ≥ αk − βkIC(P ) (19)

holds, with the constants αk and βk defined by

αk = ln(k + 1) + ln ek , βk = (k + 1) ln ek, k ≥ 1. (20)

Proof. The proof follows upon noting that as the straight line with equation
y = αk − βkx contains both points Qk+1 and Qk, it must be the equation for
the secant joining these points. The result then follows from Theorem 2.4,
(iii).

The inequality (19) is “rigid” in the sense that the constants cannot be
improved. This follows as equality holds if P is either a Uk+1 - or a Uk - type
distribution. We also express this by saying that the inequality is anchored
in the Uk+1- and in the Uk- type distributions.

It is pretty clear that inequalities as the above are of relevance for error
probability analysis, cf. e.g. Gallager [10]. There we also find an inequality
which is closely related to (19) in the case k = 1, viz. the inequality H ≥
1− IC (in our notation), cf. Exercise 4.7 of [10]. Note that (19) contains the
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following strengthened version of this inequality: H ≥ ln 4(1 − IC). Here,
ln 4 is the best constant as equality holds for the distributions U1 and U2.
It should be noted that in the quoted exercise this optimal version of the
inequality is also noted, but, strictly speaking, only for P ∈M1

+(2).

It is noteworthy, in fact surprising, that though previous research regarding
information diagrams have worked with the probability of error in place of
index of coincidence, exactly the same constants αk and βk have appeared
in related inequalities (due to the form of inequalities considered it is in fact
αk + βk and βk that appears in previous research). To be precise, we refer
to equations (12) in Kovalevskij [18], (6) in Tebbe and Dwyer [26], (29) in
Ben-Bassat [1] and, finally, to equation (14) in Feder and Merhav [7]. An
explanation for this phenomenon is given in the discussion.

As indicated in the announcement [29], the inequality (19) can be proved
in a straightforward way by induction (over n with P ∈ M1

+(n)) in case
k = 1. Simple direct proofs of (19) for other values of k are not known to the
authors.

The inequality (19) is really only of significance for distributions P of IC-
index class k since, for other distributions, this inequality is weaker than the
more elementary inequality (12).

Again, a reformulation in terms of the relative measure of roughness is illu-
minating:

Corollary 2.7. Let P ∈M1
+(N), let k ≥ 1 and put r = MRk(P ). Then

H(P ) ≥ (1− r)H(Uk+1) + rH(Uk).

In connection with this corollary, it lies nearby to notice the following
strengthening of the usual concavity property of the entropy function:

H ((1− x)Uk+1 + xUk) ≥ (1− x2)H (Uk+1) + x2H (Uk) (21)

which, of course, is lower bounded by (1−x)H (Uk+1)+xH(Uk). The inequal-
ity (21) follows from Corollary 2.7, using also Lemma 1.1. The exponent in
(21) is best possible in the sense that if we replace the two occurrences of x2

by xβ for some exponent β, the inequality you get fails unless β ≤ 2 (consider
small values of x).

The full proof of the geometric results, especially Theorem 2.1, uses facts
from topology and will be postponed until Section 5. The reader may turn
directly to that section. However, in Sections 3 and 4 we show that it is
possible to prove important parts of the main result, viz. Theorem 2.6, and
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from that Theorem 2.4, by a direct analytical method which we believe many
will find more elementary. The technique consists of two parts, a general part
and a specific part. The general part—which we believe is of independent
interest—is a method of reduction, called the “lemma of replacement”, which
simplifies the study of certain optimization problems which involve a basic
function of “mixed type”—first concave, then convex. In Section 4 the lemma
of replacement is applied to a specific optimization problem, thereby proving
Theorem 2.6. We point out that this technique gives a further reduction
than would be obtainable had we introduced Lagrange multipliers in the
usual fashion.

In Section 6 we consider ∆n and use the nature of the upper arc _QnQ1

to derive upper bounds for the entropy function. A main result from that
section may be stated as follows, expressed in terms of the relevant relative
measure of roughness:

Theorem 2.8. There exists an increasing sequence (τn)n≥2 of constants with
τ2 = (ln 4)−1 ≈ 0.7213 and limn→∞ τn = 1 such that the inequality

H(P ) ≤ lnn ·
(
1−MR

n
(P )
)τn

(22)

holds for n ≥ 2 and all P ∈M1
+(n).

Section 6 contains more information about the best (i.e. largest) constants
for this inequality. For now we only point out the following corollary:

Corollary 2.9. For any n ≥ 2 and any P ∈M1
+(n) the following inequalities

hold:

H(P ) ≤ lnn
(
1− τnMR

n
(P )
)
, (23)

D(P‖Un) ≥ τn lnn

n− 1
χ2(P,Un). (24)

Proof. The function x y lnn · (1 − x)τn which appears in (22) is concave,
hence lies below any of its tangents. Considering the tangent through (0, lnn),
the inequality (23) results. Rewriting (23), we obtain (24).

Figure 4 illustrates the various upper bounds obtained for the entropy func-
tion. The example P ∈ M1

+(5) has been chosen (as for Figure 1). The
closest bound is the one obtained from (22) for which the exponent is
τ5 ≈ 0.8473. A somewhat looser bound is obtained by considering the expo-
nent τ2 = (ln 4)−1 ≈ 0.7213 which can always be used according to Theorem
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2.8 (whereas the maximal exponents are difficult to calculate and may not
be available). Finally, Figure 4 also shows a straight-line upper bound for the
entropy function, viz. the one obtained from (23).

Fig.4. Upper bounds for entropy in terms of index of coincidence for n = 5.

Simple but not very sharp further bounds are the following:

1 ≤ H(P ) + IC(P ) ≤ lnn+
1

n
. (25)

The left-hand inequality follows from (12) and the right-hand inequality –
previously announced as equation (30) of Topsøe [30]– is obtained by noting
that as τn ≥ τ2 = (ln 4)−1, τn lnn ≥ 1 − 1

n
and then the inequality follows

from (8) and (23).

Note that the lower bound in (25) is the sum of the minimum of H and the
maximum of IC, whereas the upper bound is the sum of the maximum of
H and the minimum of IC. Graphically, the inequalities (25) give a parallel
band in the IC/H−plane within which the information diagram ∆n must
lie. Of course, much more narrow confinements on the position of ∆n, and
still with easily computed limits follow from other inequalities, say (12) for
lower bounds and the more sophisticated upper bounds in (22) and (23)
when combined with specific lower bounds of τn, in particular, we point to
the bound τn ≥ lnn

lnn+1
.

The final section offers a discussion which also indicates some ideas for further
development.
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3 The lemma of replacement

Throughout this section f : [0, 1] → R will denote a function with f(0) = 0
for which there exists 0 ≤ ξ ≤ 1 such that the restriction of f to [0, ξ] is
concave and the restriction of f to [ξ, 1] is convex. Though the value ξ may
not be uniquely determined and though f may not be twice differentiable,
we call ξ the inflection point of f . In “standard” applications, ξ will in fact
be uniquely determined from f and given as the solution to the equation
f ′′(ξ) = 0.

We refer to the situation described by saying that f is a concave/convex
function with inflection point ξ.

Well known arguments involving convex (or concave) functions show that f
is bounded on [0, 1] and continuous except possibly at the points 0, ξ and 1.

With the concave/convex function f we associate the map F : M1
+(N) →

R ∪ {∞} defined by

F (P ) =
∑
i

f(pi). (26)

where, as usual, the pi’s denote the point probabilities of P .

Note that F is bounded below. To see this, let f ≥ c on [0, 1] and put
ν = b(1/ξ)c. Noting also that f(t) ≥ (f(ξ)/ξ)t for all t ∈ [0, ξ], it is easy to
show that F (P ) ≥ −|f(ξ)/ξ|+ νc for all P ∈M1

+(N).

Consider now the problem to determine either the maximum (supremum)
or the minimum (infimum) of F (P ), possibly with P restricted to M1

+(n).
What we shall show is that any “initial” distribution P may be replaced by a
distribution of special type for which the value of F is closer to the extreme
value.

The distributions of “special type” which we shall encounter are in fact those
we met in Section 2, viz. mixtures of two uniform distributions, either a
mixture of Un and U1 for some n ≥ 3 (when we seek upper bounds) or a
mixture of Uk+1 and Uk for some k ≥ 1 (when we seek lower bounds).

We shall use “co” to denote “convex hull” , e.g. co{Un, U1} denotes the set
of mixtures of Un and U1.

Theorem 3.1 (Lemma of replacement). Let f be a concave/convex
function and let P ∈M1

+(N). Then the following holds:

(i). There exists a k ≥ 1 and a distribution P0 ∈ co{Uk+1, Uk} such that
F (P0) ≤ F (P ).

16



(ii). If, for a fixed n ≥ 3, P ∈ M1
+(n), there exists a distribution P1 ∈

co{Un, U1} such that F (P1) ≥ F (P ).

Proof. Let f have ξ as inflection point. We first pay attention to the re-
striction of F to M1

+(n) for a fixed n ≥ 2. Let P ∈ M1
+(n) and assume

that the point probabilities in P are ordered: p1 ≥ p2 ≥ · · · ≥ pn. Let
ν ∈ {1, . . . , n + 1} be determined so that pi ≥ ξ for i < ν and pi < ξ for
i ≥ ν. The cases ν = 1 and ν = n + 1 are extreme cases for which either
no point probability or all point probabilities are ≥ ξ. We may assume that
ν ≤ n.

Denote by K the set of (qν , . . . , qn) for which 0 ≤ qi ≤ ξ for ν ≤ i ≤ n and

n∑
i=ν

qi =
n∑
i=ν

pi

hold. Then K is a compact and convex subset of Rn−ν+1. Let G : K → R

denote the function defined by

G(qν , . . . , qn) = F (p1, . . . , pν−1, qν , . . . , qn), (qν , . . . , qn) ∈ K.

Then G is a concave and lower semi-continuous function on K, hence G
assumes its minimal value at an extremal point of K. The extremal elements
are those elements (qν , . . . , qn) for which the strict inequalities 0 < qj < ξ at
most hold for one value of j. We can thus determine an element of K of the
form (ξ, ξ, . . . , ξ, r, 0, . . . , 0) with 0 ≤ r < ξ such that

F (P ) ≥ F (p1, . . . , pν−1, ξ, ξ, . . . , ξ, r, 0, . . . , 0).

Possibly, certain extreme cases occur: no ξ’s, no r or no 0’s. In fact we
may assume that no ξ’s occur since otherwise they can be moved to the
group of large (≥ ξ) point probabilities. We may thus assume that F (P ) ≥
F (p1, . . . , pν−1, r, 0, . . . , 0). As f is convex on [ξ, 1], it is easy to see that

F (p1, . . . , pν−1, r, 0, . . . , 0) ≥ F (p, . . . , p, r, 0, . . . , 0)

with p = (
∑ν−1

1 pi)/(ν − 1). The probability vector (p, . . . , p, r, 0, . . . , 0) is a
mixture of Uk+1 and Uk for a certain k (note that p > r ≥ 0).

To prove the general validity of (i), consider an arbitrary distribution P =
(p1, p2, . . . ) in M1

+(N). We may assume that p1 ≥ p2 ≥ . . . , that all the pi
are positive and also, that F (P ) < ∞. It follows that f is continuous at 0.
Put Pn = (p1, . . . , pn, qn) with qn =

∑∞
n+1 pi. If we apply the same procedure
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to Pn as the one we applied to the distribution given in the first part of the
proof, we find that provided qn < ξ, the distribution we end up with, now
conceived as a distribution in M1

+(N), is independent of n. Thus, there exists
k and P0 ∈ co{Uk+1, Uk} such that F (Pn) ≥ F (P0) for n sufficiently large.
Now, for n sufficiently large,

F (P ) = F (Pn) +
∞∑

i=n+1

f(pi)− f(qn) ≥ F (P0) +
f(ξ)

ξ
qn − f(qn)

and it follows that F (P ) ≥ F (P0). This proves (i).

The situation dealt with in (ii) can be treated in a similar manner. Details
are left to the reader.

4 Entropy inequalities via the lemma of re-

placement

We shall here apply the technique developed in the previous section in order
to establish the inequalities (19) of Theorem 2.6.

Let us fix k ≥ 1 and define αk and βk as in (20). For P ∈M1
+(N) we must then

prove that H(P ) ≥ αk − βkIC(P ). In order to do so, consider the function
fk : [0, 1]→ R defined by

fk(x) = −x lnx− αkx+ βkx
2.

As

f ′′k (x) = −1

x
+ 2βk,

the function fk is concave/convex with inflection point ξk = (2βk)
−1, i.e.

ξk =
1

2k(k + 1) ln(1 + 1
k
)
.

Clearly, 1
2(k+1)

< ξk <
1
2k

. The function associated with fk we denote by Fk,

cf. (26). We find that

Fk(P ) = H(P )− αk + βk · IC(P ), P ∈M1
+(N).

Thus, what we have to prove is that Fk ≥ 0. From the lemma of replacement
we see that it suffices to prove that Fk(P ) ≥ 0 if P ∈ co{Uj+1, Uj} for some
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j ≥ 1. This inequality is trivial if j 6= k since then the stronger inequality
H(P ) ≥ − ln IC(P ), i.e. H(P ) ≥ H2(P ), holds (look at it geometrically, cf.
Figure 1, observing that the line containing Qk+1 and Qk has the equation
y = αk−βkx). We have thus reduced the problem to proving that Fk(P ) ≥ 0
for all P ∈ co{Uk+1, Uk}.
Define the function ϕk : [0, 1]→ R by

ϕk(x) = Fk ((1− x)Uk+1 + xUk) .

The desired inequality ϕk ≥ 0 can then be proved by elementary considera-
tions as follows: Simple calculations show that

ϕ′k(x) =
1

k + 1
ln

1− x
k + x

+ 2x ln

(
1 +

1

k

)
+

1

k + 1
ln k ,

ϕ′′k(x) = − 1

(1− x)(k + x)
+ 2 ln

(
1 +

1

k

)
.

Therefore, apart from the already known relations ϕk(0) = ϕk(1) = 0, we see
that ϕ′k(0) = 0, that ϕ′k(1) = −∞ and that

ϕ′′k(0) = −1

k
+ 2 ln

(
1 +

1

k

)
>

k − 1

k(k + 1
) ≥ 0.

It is then easy to show that ϕk ≥ 0. Indeed, if ϕk assumed a negative value,
ϕk would have at least three inflection points which is impossible (in fact, ϕk
only has one inflection point).

Backtracing our steps, we see that Theorem 2.6 is proved. Theorem 2.4 is
obtained as a simple consequence. The further results can, in part, be ob-
tained by more elaborate considerations based on the lemma of replacement.
However, one will invariably enter into more and more topologically oriented
considerations and the full power of Theorem 2.1 can hardly be obtained by
further elaborations based only on the lemma of replacement. In particular,
it is difficult to exclude the possibility of holes in the diagram ∆n situated
between the lower cascade and the upper arc. The further study which is
needed calls for genuine topological considerations.

5 The IC/H-diagram

In this section we give the full proof of Theorem 2.1. Difficulties inherent in
the problem are that there are interior points in the simplex M1

+(n) which are
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mapped by the IC/H-map to boundary points of the range and also, there
are boundary points of the simplex which are mapped to interior points of
the range. By decomposing the simplex properly, the first difficulty is avoided
and then methods from topology can be invoked. Therefore, our proof will
combine general topological facts with specific computations.

We first remind the reader of some basic topological notions, cf. Bredon [2]
or Greenberg and Harber [12] or, for recent new proofs, Thomassen [27].

For a subset A of a topological space, int(A) = A◦ denotes the interior
of A and ∂(A) the boundary of A. We shall also work with connectedness
components, just called components, but only need this concept for open
subsets of the plane R2. Thus, if G ⊆ R2 is open, the components of G are
the maximal connected subsets of G. Recall that a Jordan curve is a set
L ⊆ R2 which is homeomorphic to the circle. By the Jordan curve theorem,
a Jordan curve L divides the plane in exactly two components, say G0 and
G1, i.e. these sets are the components of the complement R2 \ L . Both
components have L as their boundary: ∂(G0) = ∂(G1) = L , and one of the
components, let it be G0, is bounded. We refer to the compact set G0∪L as
the compact region determined by L . Apart from the Jordan curve theorem
we need another non-trivial fact from topology, viz. that no proper subset of
a Jordan curve L divides the plane in two components, i.e. if L ′ ⊆ L and
L ′ 6= L , then R2 \L ′ is connected.

We shall also find it convenient to extend the more specific notions introduced
in Section 1. For natural numbers 1 ≤ i, j ≤ n, γj,i denotes the oriented curve
in R2 which connects Qj and Qi, and which is given by the parametrization
sy ~ϕ(Ps), 0 ≤ s ≤ 1 where

Ps = (1− s)Uj + sUi.

Formally this definition allows for the singular case i = j, which will, however
not be of relevance below. If necessary to stress the dependency on i and j,
we write P j,i

s in place of Ps. If i1, i2, . . . , ik are integers in [1, n], we denote
by γi1,... ,ik the curve γi1,i2 + · · ·+ γik−1,ik .

The lower cascade __QnQ1 is then the curve γn,n−1,... ,2,1 and the curve con-
sidered in Theorem 2.1 is Jn = γn,n−1,... ,2,1,n. Thus, what we have to prove
is that Jn is a Jordan curve and that the compact region it determines
coincides with the IC/H-diagram ∆n.

In fact, our method of proof will lead in a natural way to a more general
result. In order to formulate that, we introduce certain new concepts. First,
an index vector i is a vector of the form i = (i1, . . . , iν) for some 1 ≤ ν ≤ n
with 1 ≤ i1 < i2 < · · · < iν ≤ n. The number ν is the length of i and we write
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|i| = ν. With any index vector i of length at least 3 we associate the curve
Ji = γiν ,... ,i1,iν and the domain ∆i defined as the union of Ji and all bounded
components of R2\Ji. As we shall see below, Ji is a Jordan curve so that
∆i is in fact the compact region determined by Ji. For i = (1, 2, . . . , n) we
find Ji = Jn and ∆i = ∆n.

With an index vector i = (i1, . . . , iν) we also associate the subset Mi ⊆
M1

+(n) of all distributions P which can be written as a convex combination
of the form

P = α1Ui1 + α2Ui2 + · · ·+ ανUiν . (27)

As usual, this notation implies that the Uij ’s are uniform distributions over ij-

element sets which are nested: supp(Ui1) ⊆ · · · ⊆ supp(Uiν ). By M
′

i we denote
the set of P ’s of this form but corresponding to the “standard choice” of the
uniform distributions Uij , i.e. the choice for which supp(Uij) = {1, 2, . . . , ij},
j = 1, . . . , ν. We refer to M

′

i as the standard cell of Mi. Note that by sym-
metry considerations, Mi can be written as the union of sets, each of which
is an isomorphic copy (via permutation) of the standard cell.

The set Mi can also be characterized as the set of P ∈M1
+(n) for which the

point probabilities can be grouped into ν + 1 classes with i1, i2− i1, . . . , iν −
iν−1, respectively n− iν point probabilities in each class and such that, firstly
within a given class, the point probabilities are the same, secondly, the point
probabilities in one class are grater than or equal to the point probabilities in
the next class and, thirdly, all point probabilities in the last class are 0. Note
that all classes except possibly the last one (when iν = n) contain at least one
point probability. Note also that M1,2,... ,n = M1

+(n) and that i = (1, 2, . . . , n)
is the only index vector for which Mi is convex.

Consider a fixed P ∈ M1
+(n). Then P can be written in the form (27).

Moreover, if we insist that the weights all be positive, this representation of
P is unique. We refer to this representation as the representation of P as
a proper mixture of nested uniform distributions and we write i(P ) for the
associated index vector i. Via i(P ), M1

+(n) is split into distributions of various
types, more specifically called types defined by nesting. Distributions with
|i(P )| ≥ 3, i.e. distributions which, in more loose terms, are mixtures of at
least three nested uniform distributions, will play a special role in the sequel
as distributions that behave “regularly”, cf. Lemma 5.2 below. Distributions
with |i(P )| = 2 are mixtures of just 2 nested uniform distributions and are
those we used to define the curves γj,i which are the building blocks for
the planar curves that appear in our study. And distributions with |i(P )| =
1 are the uniform distributions themselves, the key building blocks among
individual distributions.
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After the above introductory definitions, we embark on a sequence of lemmas
which will, eventually, lead to the desired result. The first one is purely
topological:

Lemma 5.1. Let K be a compact subset of the plane R2 with K◦ 6= ∅ and
let L be a Jordan curve in R2. If ∂K ⊆ L , then K is the compact region
determined by L .

Remark. Note that the conditions on K and L may be expressed equiva-
lently by demanding that K \L be a non-empty subset of K◦.

The proof below is stated for the convenience of the reader. It uses basic
principles, and as such is less general but simpler than corresponding results
in modern textbooks (as the already cited ones, [2] and [12]).

Proof. As both R2 \K and K◦ are non-empty open subsets of R2 \ ∂K, the
boundary ∂K divides the plane in at least two components. Then, since no
proper subset of L has this property and since ∂K ⊆ L , ∂K = L must
hold. Let G0 be the bounded, and G1 the unbounded component of R2 \L .
We claim that K◦ = G0.

Note that R2 \L = (R2 \K)∪K◦ is a representation of R2 \L as a disjoint
union of two non-empty open sets of which the second set is bounded. Clearly
then, K◦ = G0 and K = K◦ ∪ ∂K must be the compact region determined
by L .

Then we show that certain mixtures of uniform distributions behave “regu-
larly” under ~ϕ:

Lemma 5.2. Distributions P ∈ M1
+(n) which are mixtures of at least three

nested uniform distributions are mapped by ~ϕ into interior points of the range
of ~ϕ.

Proof. Let x1, x2, · · · , xn be the point probabilities of P . The functional ma-
trix of the map ~ϕ under the condition

∑n
1 xi = 1 is

F =


2x1 2x2 · · · 2xn

−1− lnx1 −1− lnx2 · · · −1− lnxn
1 1 · · · 1

 .

We have to show that the rank of this matrix is 3.1 By assumption, there are
at least three distinct non-zero x’s. Assume, as we may, that 0 < x1 < x2 < x3

1Less streamlined and more elementary, what is really involved in this proof is the
restriction of ~ϕ to a 2-dimensional domain which—with the assumption 0 < x1 < x2 <
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and consider the submatrix

F0 =

 2x1 2x2 2x3

−1− lnx1 −1− lnx2 −1− lnx
1 1 1

 .

Clearly, F0 has the same rank as the matrix x1 x2 x3

lnx1 lnx2 lnx3

1 1 1


and this must be 3 because x2 is a convex combination of x1 and x3 and 1 is of
course the same convex combination of 1 and 1, whereas lnx2 is strictly larger
than the convex combination in question of lnx1 and lnx3 as the logarithmic
function is strictly concave.

Then we turn to a closer study of mixtures of just two nested uniform distri-
butions and their images under ~ϕ, i.e. we turn to a study of the curves γj,i.
Let i and j be fixed with 1 ≤ i < j ≤ n. Without overburdening the notation,
we let IC and H denote the coordinate functions, i.e., with Ps = P j,i

s ,

~ϕ(Ps) = (IC(s), H(s)), 0 ≤ s ≤ 1.

Further, IC ′, IC ′′, IC ′′′, H ′, H ′′ and H ′′′ denote the derivatives (first, second
and third) of the coordinate–functions w.r.t. s. For the formulas below we
put

p′ =
1− s
j

+
s

i
, p′′ =

1− s
j

, (28)

hence also suppressing the dependency on s. A simple computation leads to

x3—is the domain obtained by fixing the 4’th, 5’th,. . . ,n’th point probabilities to those of
P and by allowing the 1’st, 2’nd and 3’rd point probabilities to vary in a neighbourhood
of those of P . Eliminating one of the parameters, say the one corresponding to x3, you
obtain a map from a domain in R2 into R2. By direct computation of determinants, the
2× 2 functional matrix of this map is non-singular at the point corresponding to P if and
only if F0 below is non-singular.
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the following formulas:

IC ′ = 2
n∑
a=1

Ps(a) · (Ui(a)− Uj(a)) = 2
(
1− i

j

)
(p′ − p′′), (29)

IC ′′ = 2
n∑
a=1

(Ui(a)− Uj(a))2, (30)

H ′ = −
n∑
a=1

lnPs(a) · (Ui(a)− Uj(a)) =
(
1− i

j

)
ln
p′′

p′
, (31)

H ′′ = −
n∑
a=1

1

Ps(a)
· (Ui(a)− Uj(a))2 (32)

H ′′′ =
n∑
a=1

1

Ps(a)2
· (Ui(a)− Uj(a))3

=
j − 1

j3

((j − i
i

)2
(p′)−2 − (p′′)−2

)
. (33)

Of course, summation in these formulas could be constrained to a ∈ supp(Uj).
We need the following consequences of the formulas:

Lemma 5.3. With assumptions and notation as above, we have

(i). IC ′ ≥ 0 with equality if and only if s = 0,

(ii). IC ′′ > 0,

(iii). IC ′′′ = 0,

(iv). −∞ ≤ H ′ ≤ 0 with H ′ = −∞ if and only if s = 1, and with H ′ = 0 if
and only if s = 0,

(v). −∞ ≤ H ′′ < 0 with H ′′ = −∞ if and only if s = 1,

(vi). H ′′′ assumes negative values (for s = 1 where H ′′′ = −∞ and in the
vicinity of s = 1). If j ≤ 2i, in particular if j = i + 1, H ′′′ ≤ 0. If
j > 2i, H ′′′ assumes positive values (for s = 0 and in the vicinity of
s = 0).

Proof. (i)–(v) follow from (29)–(32) when noting that p′′ = 0 for s = 1
and that p′ ≥ p′′ with equality for s = 0. Regarding (vi) we note that the
inequality p′ ≥ p′′ shows that

H ′′′ ≤ (p′′)−2(j − 1)(ij)−2(j − 2i)

with equality if s = 0 or if s = 1 (when you find H ′′′ = −∞).
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We depict the curves γj,i as curves in the (IC,H)-plane with index of coin-
cidence as abscissa and entropy as ordinate. Though s ∈ [0, 1] is chosen as
parameter via the map sy ~ϕ(Ps), the curves can just as well be parametrized
by the index of coincidence. This follows from Lemma 1.1 which shows that
MRj,i(Ps) = s2 in connection with the definition of MRj,i, cf. (5).

Recall that a plane curve is said to be convex if it lies at the same side
of the tangent at each curve point. Furthermore, the sign of the curvature
determines at which side of the tangent the curve lies.

Lemma 5.4. Let 1 ≤ i < j ≤ n and consider the curve γj,i.

(i). H is a decreasing function of IC on the curve.

(ii). The curve has a tangent at each point. Considered as a curve in the
(IC,H)-plane, the tangent is vertical at the point Qi and has the slope
−j/2 at the point Qj.

(iii). The curve is a convex curve if and only if j ≤ 2i, and when this condi-
tion is fulfilled, H considered as a function of IC is a concave function
(for 1/j ≤ IC ≤ 1/i).

Proof. Property (i) follows from (i) and (iv) of Lemma 5.3. Property (ii)
follows from the same facts and, for s = 0 (when Ps = Qj), from (30) and
(32). In order to establish the claim of (iii), recall that the curvature of γj,i
at ~ϕ(Ps) is

((IC ′)2 + (H ′)2)−3/2 · κ,

where

κ = det

(
d~ϕ(Ps)

ds
,

d2~ϕ(Ps)

ds2

)
=

∣∣∣∣IC ′ IC ′′

H ′ H ′′

∣∣∣∣ .
By Lemma 5.3 κ(0) = 0 and

dκ

ds
=

∣∣∣∣IC ′′ IC ′′

H ′′ H ′′

∣∣∣∣+

∣∣∣∣IC ′ IC ′′′

H ′ H ′′′

∣∣∣∣ = IC ′ ·H ′′′.

By Lemma 5.3, (vi), we see that if j ≤ 2i, κ ≤ 0 whereas, if j > 2i, κ assumes
both positive and negative values. This proves (iii).

Lemma 5.5. If i is an index vector of length 3, then ~ϕ restricted to the
standard cell M

′

i is an embedding of M
′

i in R2.
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Proof. Assume that i = (i, j, k) and put M = M
′

i . Then M is the convex
hull of the uniform distributions Ui, Uj and Uk supported by, respectively,
{1, . . . , i}, {1, . . . , j} and {1, . . . , k}. We consider M as a subset of its affine
hull (homeomorphic to R2). In this proof, ~ϕ denotes the restriction of the
IC/H-map to M , and we put K = ~ϕ(M).

By Lemma 5.2 or, rather, by a natural variant of this Lemma,

~ϕ(M◦) ⊆ K◦. (34)

This follows as the functional matrix ~ϕ is non-sigular at points in M◦. This
fact also implies that locally, at each point of M◦, ~ϕ is a homeomorphism.
In other words, ~ϕ is a covering on M◦. By (34),

∂K ⊆ ~ϕ(∂M).

Now, ~ϕ(∂M) consists of all points on one of the arcs γk,j, γj,i and γk,i, i.e.
~ϕ(∂M) = Ji. We shall prove that Ji is a Jordan curve. We see that Ji

consists of two curves γk,j,i and γk,i. According to Lemma 5.4, (i), both curves
can be considered as graphs of decreasing functions of IC for 1/k ≤ IC ≤ 1/i,
and both graphs connect Qk with Qi. We claim that we can connect Qk with
Qi by a curve entirely in K◦ (except for the two endpoints). This follows
from (34) as we can connect Uk with Ui by a path in M◦ (again except for
the endpoints). Thus, to any value of IC with 1/k < IC < 1/i we can find
Q = (IC, y) ∈ K◦. Then there must exist y1, y2 with y1 < y < y2 such that
(IC, y1) and (IC, y2) both lie in ∂K. Thus (IC, y1) must lie on one of the
graphs considered and (IC, y2) on the other. Considering the nature of the
two graphs and the fact that Qj ∈ γk,j,i, it now follows that γk,j,i lies strictly
below γk,i between Qk and Qi. Thus Jk,j,i is a Jordan curve.

From Lemma 5.1 it now follows that K = ∆i. This is the key fact we need in
the sequel. To prove that ~ϕ is in fact an embedding it remains to be proved
that ~ϕ is injective.

As ~ϕ is a covering on the simply connected region M◦ and as K◦ is also
simply connected, the restriction of ~ϕ to M◦ is a homeomorphism.

With the proof of Lemma 5.5 available it is now easy to determine the relative
geometric positions of the curves γj,i:

Lemma 5.6. Let γ1 = γj1,i1 and γ2 = γj2,i2 be two different curves for which
the indices fulfill the conditions 1 ≤ i1 < j1 ≤ n and 1 ≤ i2 < j2 ≤ n and
i2 ≤ i1. Then:
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If γ1 and γ2 have one endpoint in common, this is their only intersection.

If γ1 and γ2 have no endpoint in common, they intersect if and only if
i1 < j2 < j1.

Proof. The cases when γ1 and γ2 have a common endpoint are dealt with by
reasoning as in the proof of Lemma 5.5, which implies that the curves then
only intersect at the common endpoint.

Assume that i2 < i1 < j2 < j1. Then γ2 divides {(x, y) | y ≥ − lnx} into two
components and Qi1 and Qj1 belong to different components. Therefore, γ1

intersects γ2.

Then assume that i2 < i1 < j1 < j2. Then we can either argue along similar
lines as above or we can refer to the proof of Lemma 5.5 which shows that
γ2 lies above γj1,i2 which lies above γ1.

Clearly, if i2 < j2 < i1 < j1, γ1 and γ2 do not intersect.

Finally, we can prove the main result of the section:

Theorem 5.7. Let i be an index vector. Then Ji is a positively oriented
Jordan curve and ~ϕ(Mi) = ∆i, the compact region determined by Ji.

Proof. By Lemma 5.6, Ji is a Jordan curve. Put K = ~ϕ(Mi) and let M
denote the standard cell M

′

i . By symmetry, K = ~ϕ(M). Let i = (i1, . . . , iν).
Then, by Lemma 5.6,

∆i = ∆i1,i2,i3 ∪∆i1,i3,i4 ∪ · · · ∪∆i1,iν−1,iν

and combining this with Lemma 5.5 it follows that K ⊇ ∆i. By Lemma
5.2, points in M which are mixtures of three or more of the dirstribu-
tions Ui1 , Ui2 , . . . , Uiν (with Uij the uniform distribution over {1, . . . , ij},
j = 1, . . . , ν), are mapped by ~ϕ into K◦. Therefore,

∂K ⊆
⋃
j<k

γik,j .

However, as K ⊇ ∆i, Lemma 5.6 shows that most of the sets here are con-
tained in K◦ (except for their endpoints). More precisely, it follows by these
considerations that ∂K ⊆Ji. Then, by Lemma 5.1, K = ∆i.
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6 Upper bounds of power-type for the en-

tropy function

In this section we study distributions P ∈ M1
+(n), and derive upper bounds

for the entropy H(P ) given in terms of the index of coincidence IC(P ).
The theoretically best upper bound was already given in Corollary 2.2 which
shows that

H(P ) ≤ H ((1− x)Un + xU1) (35)

if x is determined so that P and (1 − x)Un + xU1 have the same index of
coincidence.

This bound is perhaps somewhat awkward to handle. In any case, we seek
analytically simpler bounds. It appears most natural to express such bounds
in terms of the relative measure of roughness, MR

n
(P ), rather than in terms

of the index of coincidence itself.

By τn we denote the largest constant such that the inequality of “power-
type”,

H(P ) ≤ lnn ·
(
1−MR

n
(P )
)τn

, (36)

holds for all P ∈M1
+(n). We refer to the τn’s as the maximal exponents.

It appears impossible, except for n = 2, to express τn in closed form. It is
natural to expect that τn ≤ 1 for all n. This fact follows from Lemmas 6.1
and 6.2 below, but more precise bounds will follow. We consider it a key
non-trivial fact that the maximal exponents converge to 1 as n → ∞, cf.
Theorem 6.4.

In principle, the study of the maximal exponents is elementary and depends
on a closer inspection of the functions hn, n ≥ 2, defined by

hn(x) = H((1− x)Un + xU1), 0 ≤ x ≤ 1 . (37)

We find it convenient to introduce the abbreviation

n′ = n− 1. (38)

For the function hn, and its first two derivatives, which we shall need later
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on, we find the expressions

hn(x) =
n′(1− x)

n
ln

n

1− x
+

1 + n′x

n
ln

n

1 + n′x
(39)

= lnn− n′

n
(1− x) ln(1− x)− 1

n
(1 + n′x) ln(1 + n′x) , (40)

h′n(x) = −n
′

n
ln

1 + n′x

1− x
, (41)

h′′n(x) = − n′

(1− x)(1 + n′x)
. (42)

Introduce also the function s by

s(x) = 1− x2, 0 ≤ x ≤ 1. (43)

By Lemma 1.1 and by (35) we see that the validity of the power inequality
(36) for all P ∈M1

+(n) is equivalent with

hn(x)

lnn
≤ s(x)τn

for 0 < x < 1. Hence, defining the function gn by

gn(x) =
ln(hn(x)

lnn
)

ln s(x)
, 0 < x < 1, (44)

we find the following expression for the τn’s:

Lemma 6.1. For each n ≥ 2, the maximal exponent τn is given in terms of
gn by

τn = inf
0<x<1

gn(x).

At the more technical level we start by collecting basic facts about the indi-
vidual functions gn:

Lemma 6.2. (i) The limit values of gn at the endpoints 0 and 1 are:

gn(0+) =
n′

2 lnn
, gn(1−) = 1. (45)

(ii) For n ≥ 2, gn(x) < 1 for all x sufficiently close to 1 and for n ≥ 3,
gn(x) < gn(0+) for all x sufficiently close to 0.
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(iii) For n ≥ 3, there exists x0 such that 0 < x0 < 1 and gn(x0) = τn.

Proof. (i): The routine proof, using proper approximations and/or l’Hospitals
rule, is left to the reader.

(ii): First note that by (39),

hn(x) ≥ n′(1− x)

n
ln

n

1− x
. (46)

Then, for x sufficiently close to 1, it follows that hn(x) > s(x) lnn, hence
gn(x) < 1 for such values of x.

Regarding the behaviour near the other endpoint, one may again appeal to
a (tedious!) application of l’Hospitals rule. One finds that

lim
x→0+

gn(x)− gn(0+)

x
= −(n− 1)(n− 2)

6 lnn
.

Thus, for n ≥ 3, gn(x) < gn(0+) for x sufficiently close to 0.

(iii): This follows from (ii).

According to (i) above, we can now define the gn’s by continuity on all of
[0, 1].

Then we study the behaviour of the gn’s as n varies:

Lemma 6.3. (i) For 0 < x < 1, g2(x) < g3(x) < g4(x) < · · · .

(ii) For 0 < x ≤ 1 limn→∞ gn(x) = g∞ exists and is given by

g∞(x) =
ln(1− x)

ln(1− x2)
, 0 < x ≤ 1 (47)

(with g∞(1) = 1).

Proof. (i): Fix n ≥ 2 and consider the auxiliary function

f(x) =
hn(x)

lnn
− hn+1(x)

ln(n+ 1)
, 0 ≤ x ≤ 1.

Then f(0) = f(1) = 0 and, by (41), f ′(0) = 0 and f ′(1) = −∞ (note that
n/((n+ 1) ln(n+ 1))− n′/(n lnn) < 0). By (42), we see that

f ′′(x) =
1

1− x

(
− n′

lnn(1 + n′x)
+

n

ln(n+ 1)(1 + nx)

)
.
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This formula implies, firstly, that f ′′(0) = n/ ln(n + 1) − n′/ lnn > 0 and,
secondly, that f only has one inflection point in ]0, 1[. Collectiong these facts
we see that f(x) > 0 for x ∈ ]0, 1[ (since otherwise, f would have at least
3 inflection points in ]0, 1[). As f(x) > 0 in ]0, 1[, gn(x) < gn+1(x) in ]0, 1[
follows.

(ii): By (i) we may define g∞ on ]0, 1] as the pointwise limit of the gn’s.
Clearly, g∞(1) = 1. By (40) it follows that for 0 < x < 1,

lim
n→∞

hn(x)

lnn
= 1− x,

hence g∞ is given by (47).

Theorem 6.4.

1

ln 4
= τ2 < τ3 < · · ·

and limn→∞ τn = 1.

Proof. In view of Lemma 6.3, (i), the inequalities τ2 < τ3 < · · · follow readily.
The determination of τ2 can be found in Topsøe [31].

Clearly, g∞ is decreasing in ]0, 1] and thus assumes its minimal value 1 for
x = 1. Choose n0 such that gn0(1

2
) > 1. Then, for n ≥ n0, gn assumes its

minimal value (τn) in [1
2
, 1]. As gn converges uniformly to g∞ in [1

2
, 1], the

minima of the gn’s converge to the minimum of g∞. This is the assertion of
the Theorem.

At this point we find it convenient to collect some information about the
gn’s in the form of a table (Table 1). Except for the two last columns, the
information given is obtained by numerical- and graphical experimentation.
For each of the investigated values of n, we have found experimentally that
there is a unique minimum point of gn, and the argmin-value as well as the
function value is quoted. The bounds given in the last two columns are taken
from Lemmas 6.5 and 6.8 below (a more precise lower bound is indicated in
the discussion).
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n argmin τn upper bound lower bound

2 0.0000 0.7213 − 0.4094

3 0.8625 0.7991 − 0.5231

4 0.9442 0.8292 0.8327 0.5809

5 0.9704 0.8473 0.8559 0.6168

6 0.9821 0.8597 0.8705 0.6418

7 0.9882 0.8690 0.8808 0.6605

8 0.9917 0.8762 0.8885 0.6753

9 0.9940 0.8820 0.8944 0.6872

10 0.9955 0.8868 0.8993 0.6972

11 0.9965 0.8909 0.9033 0.7057

12 0.9972 0.8944 0.9067 0.7131

13 0.9978 0.8975 0.9096 0.7195

14 0.9982 0.9002 0.9121 0.7252

15 0.9985 0.9026 0.9143 0.7303

16 0.9987 0.9048 0.9163 0.7349

17 0.9989 0.9068 0.9181 0.7391

18 0.9991 0.9086 0.9197 0.7430

19 0.9992 0.9102 0.9212 0.7465

20 0.9993 0.9117 0.9226 0.7497

50 1− 4.8 · 10−5 0.9329 0.9407 0.7964

100 1− 4.7 · 10−6 0.9436 0.9496 0.8216

1000 1− 3.1 · 10−9 0.9636 0.9664 0.8732

10000 1− 1.5 · 10−12 0.9733 0.9748 0.9021

Table 1

Lemma 6.5. Let c be the constant determined uniquely by the two require-
ments

0 < c < 1, c = 1 + ln(2c) (48)

(c ≈ 0.231961). Then, for all n ≥ 4,

τn ≤ 1− c

lnn
(49)

32



Proof. The validity of (49) for n = 4, 5, . . . , 18 is established on a case-by-
case basis. This can be done quite precisely via Table 1, even without having
to rely on the exactness of this table. Indeed, for each of the values of n in
question, one chooses a value of x close to the stated value of argmin and
checks, numerically, that gn(x) ≤ 1− c

lnn
.

We shall now establish (49) for n ≥ 19. Put

a = arg max
x>0

ln
(

1+x
2

)
x

(50)

(a ≈ 3.31107). As the function appearing here is strictly concave, a is
uniquely determined by the vanishing of the derivative, i.e. by the equation

1

1 + a
= 1 + ln

(
2

1 + a

)
.

It follows that 1/(1 + a) = c and then, that

ln
(

1+a
2

)
a

= c. (51)

By Lemma 6.1,

τn ≤ gn(1− n−a) (52)

and it only remains to estimate this function value.

By (46) and by rewriting gn in the form

gn(x) = 1−
ln
(

hn(x)
s(x) lnn

)
ln
(

1
s(x)

) ,

we find that

gn(1− n−a) ≤ 1−
ln
(

n′(a+1)
n(2−n−a)

)
ln
(

na

2−n−a
) .

Thus

1− τn ≥
ln
(
n′(a+1)

2n

)
ln
(

na

2−n−a
) =

ln
(
n′

n

)
+ ac

a lnn− ln (2− n−a)

=
c

lnn
+
c ln (2− n−a)− lnn · ln

(
1 + 1

n′

)
(a lnn− ln(2− n−a)) lnn

.
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Recalling the (approximate) values of c and a, it is easy to check numerically
that for n ≥ 19,

lnn · ln(1 + 1/n) ≤ c ln(2− n−a)

holds. We then see that for these values of n, 1 − τn ≥ c/ lnn, i.e. (49)
holds.

In order to derive specific lower bounds for the τn’s, a closer study of the gn’s
is necessary. This presents certain problems as these functions are unstable
close to the endpoint 1. This is illustrated in Figure 5. Table 1 is also helpful
in revealing the nature of the gn’s.

Fig.5. Illustration of the special behaviour of gn (n = 50).

For the further study, we consider the derived function g′n. One finds that

g′n(x) =
s′(x)

s(x) ln s(x)
(ζn(x)− gn(x)), (53)

where ζn denotes the auxiliary function
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ζn(x) =
(lnhn)′(x)

(ln s)′(x)
=
h′n(x)s(x)

hn(x)s′(x)
, 0 < x < 1. (54)

Now, let us aim at deriving what we consider to be the most interesting
results, viz. lower bounds for the maximal exponents. It appears difficult to
do so by direct inspection of the functions gn. Instead, the auxiliary functions
ζn come into play.

Lemma 6.6. For all n ≥ 3,

τn ≥ inf
0<x<1

ζn(x).

Proof. By Lemma 6.1 and Lemma 6.2 (iii), there exists 0 < x0 < 1 with
gn(x0) = τn and g′n(x0) = 0. From (53) we conclude that ζn(x0) = τn, hence
τn ≥ inf ζn.

A direct calculation, cf. (40) and (41), shows that

ζn(x) =
ln(1 + n′x) + ln

(
1

1−x

)
lnn+ ln

(
1

1−x

)
+ 1+n′x

n′(1−x)
ln
(

n
1+n′x

) · 1 + x

2x
. (55)

Using the inequality ln(a) ≤ a− 1 in the denominator, we find that

ζn(x) ≥
ln(1 + n′x) + ln

(
1

1−x

)
lnn+ ln

(
1

1−x

)
+ 1

· 1 + x

2x
. (56)

At this point we need a simple lemma:

Lemma 6.7. For n ≥ 5 and all 0 ≤ x ≤ 1,

ln(1 + n′x)

lnn
≥ 2x

1 + x
. (57)

Proof. Put

ϕ(x) = (1 + x) ln(1 + n′x)− 2x lnn.

We have to prove that ϕ ≥ 0. One finds that ϕ(0) = ϕ(1) = 0 and that
ϕ′(0) = n′ − 2 lnn > 0 (as n ≥ 4) as well as ϕ′(1) = 2n′/n − lnn < 0
(as n ≥ 5) hold. Investigating ϕ′′, it becomes evident that ϕ only has one
inflection point in ]0, 1[. We conclude that ϕ ≥ 0.
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It is now easy to establish a lower bound for τn which gives more substance
to the convergence established in Theorem 6.4.

Lemma 6.8. For n ≥ 2,

τn ≥ 1− 1

lnn+ 1
. (58)

Proof. From (56) and (57) we get, for any 0 < x < 1,

ζn(x) ≥
lnn+ 1+x

2x
ln
(

1
1−x

)
ln
(

n
1−x

)
+ 1

≥
ln
(

n
1−x

)
ln
(

n
1−x

)
+ 1

= 1− 1

lnn+ 1 + ln
(

1
1−x

) ≥ 1− 1

lnn+ 1
.

As this bound is independent of x, the result now follows from Lemma 6.6.

Collecting facts, we can now summarize the main results of this section:

Theorem 6.9. The maximal exponents (τn)n≥2 in the power-type inequality
(36) are increasing with limit 1 and bounded below by τ2 = (ln 4)−1. Further-
more, for n ≥ 2, the inequalities

c

lnn
≤ 1− τn ≤

1

lnn+ 1
(59)

hold where c ≈ 0.2320 is defined by (48).

7 Discussion

Relation to planned further work

The present paper belongs to a series of three papers (the other two are
[14] and [15]). The overall goal is to consolidate and further develop a game
theoretical viewpoint underlying certain basic parts of information theory
for which optimization plays an important role. A starting point is Topsøe
[28]. Several other authors have also stressed the importance of the game
theoretical view, cf. for example Haussler [16] and Xie and Barron [34]. In [15]
we will collect the main theoretical results, [14] will contain specific results of
universal coding and prediction and in the present paper we develop special
techniques which are needed in [14] but which appear to be more general, so
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that they can be presented – as is done here – without special reference to
the problems studied in [14] and in [15].

Extensions to the study of other diagrams, work of other authors

Our main result, Theorem 2.1 can be extended in various directions. First
we note that the actual result proved in Section 5, Theorem 5.7, is more
general than Theorem 2.1. We may for instance use it to study a restriction
of the IC/H-diagram to distributions with a lower bound of the form 1

m
for

integer m on the individual point probabilities. However, other extensions are
more interesting. First we point to extensions to a study of certain IC/Hf -
diagrams where

Hf (P ) =
∑
i

f(pi).

In order to carry out an analysis like the one in Section 5, the essential
condition is that f ′′′ be positive.

Another direction of generalization is to consider Rényi entropies in place of
the ordinary entropy. Recall the definition of the Rényi entropy Hα of order
α > 0:

Hα(P ) =
1

1− α
ln

(∑
i

pαi

)
.

The limit as α→ 1 is the usual entropy, and the limit as α→∞ is − lnPmax,
where Pmax denotes the maximal point probability. Recall that the diagram
in Figure 3 is a comparison of two Rényi entropies (of orders 2 and 1, respec-
tively). It is natural to ask what happens if Rényi entropies of other orders
are compared. If 0 < ν < µ <∞ the arguments in Section 5 still apply and
you obtain a diagram very similar to the one in Figure 3 with smooth curves
connecting the points of the form (ln k, ln k), k = 0, 1, · · · , n. If we let µ go
to infinity while ν is kept fixed, we get in the limit a diagram comparing
Rényi entropies of order ∞ and ν. Now, 1− Pmax can be identified with the
probability of error, and this explains why diagrams similar to Figures 1, 2
and 3 appear when entropy and probability of error are compared.

The first to study in detail the Pe/H-diagram was Kovalevskij [18] in 1965.
Further research, partly extending Kovalevskij’s results, partly rediscovering
them, includes papers by Tebbe and Dwyer [26], Ben-Bassat [1] and Feder
and Merhav [7].

The study by Sayir [24] shows how diagrams with a shape as those considered
here and in the previous literature come up in an experimental study.
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A recent independent study by György and Linder [13] deals with problems of
quantization and rate distortion and in this connection they also discovered
the lower cascade related to the ICα/H-diagrams. Finally, the paper [23]
by Santis, Gaggia and Vaccaro may be the last published research in this
direction.

Let us also briefly discuss an extension of the index of coincidence to indices
of order α defined by

ICα(P ) =
∑
i

pαi .

The quantities 1−ICα behave like an entropy in some respects and have been
introduced, apart from a proportionality factor, in Havrda and Charvát [17].
However, right now, the connection with Rényi entropies:

Hα(P ) =
1

1− α
ln ICα(P )

is more important.

When a diagram comparing Rényi entropies is transformed into a diagram
like figure 1 or 2 based on ICα by the non-linear transformation above, the
convexity of the bounding curves is generally not conserved. The convexity
of bounding curves as well as the determination of the extremal points of
the range for generalized diagrams is an important subject which we hope to
return to.

Universality of constants in Theorem 2.6

In connection with Theorem 2.6, we noted in Section 2, that the constants
in (19) are the same as those that have appeared in previous research when
studying Pe/H-diagrams. To understand this, consider for any α > 1 the
(e−Hα/H)-diagram and note that the dividing points will be ( 1

k
, ln k) for all

α. Also note that that for α = 2, we simply obtain the IC/H-diagram. As
e−Hα → Pmax = 1 − Pe when α → ∞, these facts explain the phenomenon
regarding coincidence of constants.

The significance of IC

Many of the theorems presented in this paper are also valid for α 6= 2, but
by focusing on the index of coincidence of order 2, the technical problems are
kept at a minimum while the main ideas are carried through. It appears that
there are mainly three reasons why the case α = 2 is simple. Firstly, Lemma
1.1 is a computationally convenient structural property which does not carry
over to the indices ICα of arbitrary orders. Secondly, the vanishing of the
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third derivative in Lemma 5.3, (iii) is of course a special property for the
case α = 2 and, lastly, we point to the connection between Rényi entropies
and the indices of order α which is particularly simple for α = 2.

On the topological method

The combination of well-known qualitative methods from topology and sim-
ple specific considerations related to the specific quantities under consider-
ation (here index of coincidence and entropy) appears to have a potential
which could take one quite far beyond the present research as indicated also
above. The method will enable one to establish a basic result on the inter-
relationship between two quantities of interest and from there on one may
develop more specific inequalities as the need may be. The paper illustrates
this point: Theorem 2.1 as the basic result and Theorems 2.6 and 2.8 as spe-
cific inequalities that follow (note that when Theorem 2.6 is derived directly
from Theorem 2.1, the only extra observations you need is Lemma 5.4, (iii)
and the fact that y = − lnx is a lower bounding curve for the IC/H-diagram).

Information Diagrams

As is seen from previous research pointed to and from research about to be
published, “diagrams” as those discussed here play a significant role for sev-
eral areas. Right now the application areas we can point to are the following
ones: Shannon theory, prediction and universal coding, rate distortion anal-
ysis and statistical decision theory with a common denominator for the two
last mentioned areas being error probability analysis. Justified by this rather
wide range of applicability, we suggest that one uses the term Information
Diagram for these objects. A precise definition is not sensible. What we have
in mind is situations where quantities of significance in information theory
– two or more such quantities – are studied with the aim of obtaining infor-
mation about the global relationship between the quantities – information
which goes beyond partial information as obtained, e.g. by asymptotic or
local approximations.

Complexity classes

For an information diagram as here considered, the non-smooth bounding
curve does vary smoothly when restricted to certain intervals determined by
IC, Pe or what the case may be. These “bounding intervals” (terminology
of Kovalevskij [18]) also determine a decomposition of the set M1

+(n) (or
M1

+(N)) and thus gives rise to various “complexity classes”, as those we
introduced in connection with our study of the IC/H-diagram. A further
study of these for various information diagrams should be interesting.

Wider perspectives
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Wider perspectives open up when we speculate over higher-dimensional ver-
sions of the topological method. Then, what will be involved, is the study
of interrelationships between more than two quantities. The extension of the
topological method to higher dimensions could also be essential as then the
special method developed in Section 3 may not be available in a suitably
generalized form.

Taking these wider perspectives into account, it may be reasonable to use the
term “bigram” for the main case when only two quantities are compared,
e.g. we may speak about the IC/H-bigram, the H2/H-bigram etc.

Possible extensions of Theorem 2.6

The original aim of the paper was to establish the inequalities of Theorem
2.6 which are essential for the solution of certain problems of exact universal
coding and prediction in Bernoulli sources, cf. Harremoës and Topsøe [14].
The tools developed are, however, rather general and may lead to a number
of other inequalities. Especially, the tools appear to be suitable for the inves-
tigation of inequalities between divergence measures. For this, the lemma of
replacement, Theorem 3.1, is quite sufficient. However, in order that the ar-
guments run smoothly, it is most natural to extend the reasoning behind the
lemma of replacement so that it applies to a generalization of f -divergences,
cf. Csiszàr [4], to cases with a function f of mixed type (concave/convex or
more general). We hope to return to this in a subsequent publication (an-
nounced proofs of certain results from Topsøe [30] which were planned for
this paper have thus been postponed ).

The Lemma of Replacement

When we inspect the proof of Theorem 3.1, we realize that the “replacement
distributions” P0 and P1 can in fact be given directly and quite simply in
terms of P and the inflection point ξ. We need some preparations: To any
P ∈M1

+(N) and any 0 < ξ < 1 we associate two numbers defined by:

#(P : ξ) = #{i | pi ≥ ξ} (60)

and

σ(P : ξ) =
∑
{pi | pi ≥ ξ} (61)

(with # denoting “number of elements such that”). These numbers may be
called “ξ–significance numbers” of P .

Theorem 7.1 (Lemma of replacement, specific form). Let f be a con-
cave/convex function with inflection point ξ and F the associated map defined
on M1

+(N). Let P ∈ M1
+(N) and put ν = #(P : ξ), σ = σ(P : ξ) and

σ′ = 1− σ.
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(i). Determine the integer l such that σ′ ∈ [lξ, (l + 1)ξ[ and put

k = ν + l, r = σ′ − lξ, (62)

P0 = (k + 1)rUk+1 + (1− (k + 1)r)Uk. (63)

Then P0 ∈ co{Uk+1, Uk} and F (P ) ≥ F (P0).

(ii). Let n ≥ 2 and assume that P ∈M1
+(n). Define s ≥ ξ and P1 by

s = σ − (ν − 1)ξ, (64)

P1 = 1−s
1− 1

n

Un +
s− 1

n

1− 1
n

U1. (65)

Then P1 ∈ co{Un, U1} and F (P ) ≤ F (P1).

The power-type inequalities

As follows from Section 6, the power-type inequalities developed there require
a subtle analysis of in principle elementary functions. This was illustrated in
Figure 5 and in Table 1 and may be further illuminated by considering Figure
6 which considers the difference fn between the right-hand-side and the left-
hand-side involved in the power inequality, i.e.

fn(x) = lnn(1− x2)τn − hn(x), x ∈ [0, 1],

cf. (36) and (37).

Fig.6. Illustration of the special behaviour of fn(n = 4).
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Without going into the details we mention that by an analysis of the functions
fn, appealing to standard theory of Csiszár divergences, it is easy to see that
the maximal exponents are all ≥ 2

3
(this value of the exponent corresponds

to a much simpler looking function fn). It is noted that even the inequality
τn ≥ 1

ln 4
is stronger than the result you get when using the exponent 2

3
.

As far as the authors know, no previous instances of the power-type inequality
have occured before for general n. However, Lin [19] proved a partial result
which amounts to the inequality τ2 ≥ 1

2
.

If one plots the upper bound in the power-inequality for n = 2 against the
entropy function, one will not be able to tell the difference between the bound
and the entropy function. Therefore, it is sensible to plot instead a quotient.
First let us denote the generic distribution in M1

+(2) by P = (p, q). Then

H(p, q) = −p ln p− q ln q and 1−MR
2
(p, q) = 4pq, so that the upper bound

obtained from Theorem 6.9 is

H(p, q) ≤ ln 2(4pq)
1

ln 4 . (66)

In Figure 7 we have plotted the quotient between the upper bound in (66)
and H(p, q) for p = (1 + x)/2, q = (1 − x)/2, x ∈ [0, 1]. The dashed curve is
the similar plot but corresponding to Lin’s upper bound H(p, q) ≤ ln 2

√
4pq.

Fig.7. Ratio between power-bound and entropy for n = 2.

Finally, we conjecture that the upper bound of Lemma 6.5 is in fact precise
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in the sense that the asymptotic result

lim
n→∞

(1− τn) lnn = c, (67)

holds with c the constant from Lemma 6.5. In order to support this conjec-
ture, we note that there are various possibilities for obtaining sharper lower
bounds than the bound in Lemma 6.8. For instance, one may apply Lemma
6.7 directly to (55). One then finds that

ζn ≥ ξn,

where ξn is defined by

ξn =
lnn+ ln 1

1−x

lnn+ ln 1
1−x + 1+n′x

n′(1−x)
ln n

1+n′x

, (68)

and here the last term in the denominator may be bounded more sharply
than in the main text. Without going into details we mention that it is easy
to obtain in this way a better theoretical lower bound. For instance, the
lower bounds in Table 1 corresponding to the values n = 10, 20, 100 and 1000
may be replaced by the sharper bounds 0.8022, 0.8329, 0.8739 and 0.9051,
respectively.
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[33] I. Vajda and K. Vašek, “Majorization, concave entropies and comparison
of experiments,” Problems of Control and Information Theory, vol. 14,
pp. 105–115, 1985.

[34] Q. Xie and A.R. Barron, “Asymptotic Minimax Regret for Data Com-
pression, Gambling, and Prediction,” IEEE Trans. Inform. Theory, vol.
46, pp. 431–445, 2000.

46


