
Applications of Game Theoretical

Optimization Techniques inspired by

Information Theory

Flemming Topsøe
University of Copenhagen

Department of Mathematical Sciences
topsoe@math.ku.dk, www.math.ku.dk/˜topsoe

Poster Presentation for ISIT2007, Nice, June 2007

Abstract as communicated to ISIT2007

Previous joint work with Peter Harremoës points to a common basis for
much of information theoretical optimization (MaxEnt, Minimum Discrimination,
Capacity-redundancy as main cases). The starting point may be taken to be a
kind of ”complexity function” (key example re MaxEnt is avarage code length).
The results hinted at constitute important applications in their own right (publi-
cations of Csiszár, Grünwald and Dawid, the author, ...). It turns out that going
outside information theory proper and applying the techniques to other kinds
of ”complexity functions” interesting connections to other areas may be estab-
lished. The strength of this is being explored but not yet totally clarified. There
appears to be room for further investigations that may attract the interest of
young researchers.



Two anniversaries: 150 years and 50 years

Sylvester 1857: start of location theory. He wrote:

“It is required to find the least circle which shall con-
tain a given system of points in the plane”.

A man of few words. Two examples: Easy (3 anchors)
and difficult (2 anchors and 1 inactive point)
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Second anniversary: Jaynes 1957: MaxEnt, the max-
imum entropy principle of statistical physics (and ...):

Base inference in statistical physics on the principle
to point to that distribution, consistent with available
information, which has maximal entropy.

What do the two problems have in common?



A notion of complexity

Let Φ = Φ(P, Q) be a “complexity function” .
Assume: “diagonal condition” holds:
Φ(P, Q) ≥ Φ(P, P) with strict inequality if Q 6= P .
P and Q to vary over the same “basic set” . But P and
Q are treated differently:

P refers to “nature”, “the system”, (what you cannot
know about – but want to know) and Q refers to “you”
(the communicator, the statistician, the physicist, the
investor, ...) and reflects what YOU can do about it!

Define Φ-Entropy and divergence by:

H(P) = min
Q

Φ(P, Q) ,D(P, Q) = Φ(P, Q)−H(P)

entropy = minimal complexity
Divergence = actual − minimal complexity



EXAMPLE (information theory): P, Q’s: probability
distributions over an “alphabet”, here a finite set, say.

Φ(P, Q) =
∑

pi ln
1

qi
= 〈ln

1

Q
, P 〉

(average codelength!). Then
H(P) =

∑

pi ln
1
pi

and D(P, Q) =
∑

pi ln
pi
qi

2

EXAMPLE (geometry): P, Q’s: Points in Euclidean
space, say R

2.

Φ(P, Q) = ‖P − Q‖2

(squared Euclidean distance!). Then H(P) = 0 (!),
D(P, Q) = Φ(P, Q). What is this good for? Wait and
see! 2

MaxEnt :
Given P , a preparation (set of P ’s). MaxEnt-distribution
is the P ∈ P of maximal entropy (if well defined).
MaxEnt-value : Hmax(P) = maxP∈P H(P).

A highly useful, trivial, but neglected criterion:



If Q ∈ P is robust: Φ(P, Q) independent of P ∈ P ,
say ∀P ∈ P : Φ(P, Q) = h, then Q is the MaxEnt-
distribution and Hmax(P) = h.

Proof. Firstly: H(Q) = Φ(Q, Q) = h.
Secondly: if P 6= Q, P ∈ P , then
H(P) < H(P) + D(P, Q) = Φ(P, Q) = h.

EXAMPLE (information theory). For a function f on
the alphabet and a prescribed meanvalue a, look at
the preparation

P = {P |〈f, P 〉 = a} .

By robustness, if Q ∈ P and there are constants λ0

and λ such that

ln
1

Q
= λ0 + λ · f

then Q is the MaxEnt-distribution. 2



The technique can be expanded and leads to (grand)
canonical ensembles of statistical thermodynamics
in a rather direct way and without using Lagrange mul-
tipliers. Expansion to cover MinXEnt or minimum dis-
crimination principle of Kullback also possible (for in-
dications/reminders, see further on).

Enter games

Game γ depending on Φ and preparation P

Φ is the objective function
Player I chooses P ∈ P and is a “maximizer”
Player II chooses (any) Q and is a “minimizer”

Player I-value:
supP∈P infQ Φ(P, Q) = supP∈P H(P) = Hmax(P).

Player II-value:
infQ supP∈P Φ(P, Q) = infQ R(Q|P) = Rmin(P)

(“R” for “risk”).



By minimax inequality, Hmax ≤ Rmin. If equal, the
game γ is in equilibrium .

Theorem Assume P ’s and Q’s range over convex
topological spaces (such as probability distributions or
points in Euclidean space), that P y Φ(P, Q) is con-
cave for all Q and that certain technical topological con-
ditions are satisfied.
Then every game γ = γ(P) with P convex and
H(P) < ∞ is in equilibrium. Furthermore, Player
II has a unique optimal strategy Q∗ (R(Q∗|P) =

Rmin(P)), so supP∈P Φ(P, Q∗) = minQ R(Q|P). Fi-
nally, ∀(Pn) ⊆ P with H(Pn) → Hmax(P): Pn → Q∗.
(So if e.g. P is compact, Q∗ is the MaxEnt distribution).

In short:

“normally”, if Φ is concave in the first variable, then
Hmax = Rmin for convex preparations.



Sylvesters problem, universal prediction

Take any divergence function which satisfies the com-
pensation identity :

∑

αν D(Pν, Q) =
∑

αν D(Pν, P) + D(P , Q)

(P =
∑

ανPν, a convex mixture of the Pν ’s).

e.g. D could come from a Φ which is concave in the
first variable or D is “geometric divergence”: D(P, Q) =

‖P − Q‖2.

The Game based on D is not in equilibrium. Player
I-side is trivial and uninteresting, but Player II-side is
just what we are interested in (Sylvester’s problem,
universal coding). Thus Q∗ with
R(Q∗) = supP∈P D(P, Q∗) is what we are looking
for.

Randomize “a la von Neumann”: weights α = (αP )

are considered for Player I-choices and for complexity



we take Φ(α, Q) =
∑

αP D(P, Q). “Entropy” for this
kind of complexity function is denoted I (information
transmission rate in the information theory case):

I(α) = inf
Q

∑

αP D(P, Q)

=
∑

αP D(P, P ) by compensation id.

Note: The Player II-quantities (the R’s) do not change
by randomization. Further, Φ satisfies conditions of
the theorem. Hence Gallager-Ryabko theorem holds
in abstract setting and then includes Sylvester’s prob-
lem. So Imax = Rmin (“capacity”=”minimal redun-
dancy”). Also, the Kuhn-Tucker criterion applies ...

Priors (Bayesian considerations)

Given Φ and prior Q0. Updating gain is defined as

ΨQ0
(P, Q) = Φ(P, Q0) − Φ(P, Q) .

As −Ψ behaves as a complexity function, previous
theory carries over (with reversal of some signs).



Now, Player I is a minimizer, Player II as maximizer.

If Player I chooses P ∈ P , he associates the value
(accepting the “risk” that Player II responds optimally)

sup
Q

ΨQ0
(P, Q) = sup

Q

(

D(P, Q0) − D(P, Q)

)

= D(P, Q0)

with this choice and aims for a P ∗ ∈ P with

D(P ∗, Q0) = min
P∈P

D(P, Q0) = Dmin(P) .

For Player II, the value associated with the choice Q

as update is the “guaranteed gain”

Γ(Q) = inf
P∈P

ΨQ0
(P, Q)

and the value to aim for for Player II is

Γmax(P) = sup
Q

Γ(Q) .

In information theory all this is well known and goes
back to Kullback’s minimum information discrimina-
tion principle, Csiszár’s I-projection studies etc. In



the physical literature this is mainly referred to as the
MinXEnt principle (due to Jaynes) (minimum cross
entropy principle) . The novelty is the generality under
which all this holds. Not that difficult, but useful. Let’s
see an implication for geometry and prove a classical
fact by these considerations:

If P ⊆ Rn is convex and compact, and Q0 a point out-
side P then a hyperplane through Q0 separates Q0

from P .

Proof Consider updating as above with Q0 as prior
and based on geometric complexity. Observe that

ΨQ0
(P, Q) = 2〈P − Q, Q − Q0〉 + ‖Q0 − Q‖2 ,

hence this function is affine in the first variable. Fur-
thermore, as is easily checked, the compensation iden-
tity hold. Thus main theorem applies and Γmax(P|Q0) =

Dmin(P|Q0). Then argue as follows:



1. As Q0 /∈ P and as P is compact, Dmin(P) > 0.

2. Hence, by the main theorem, Γmax(P) > 0, and
we may choose Q such that Γ(Q) > 0.

3. Then Q 6= Q0 and we can consider the hyper-
plane π through Q0 which has the linesegment Q0Q

as normal. Consider that halfspace determined by π

which does not contain Q0. Then this halfspace (in-
cluding the hyperplane π) cannot contain any point
from P since, for any point S in the halfspace con-
cerned, ΨQ0

(S, Q) = ‖S − Q0‖
2 − ‖S − Q‖2 < 0.

We have thus found a separating hyperplane.


