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Abstract—For an ordered set consider the model of distribu-

of all b € A with b < a. The elements of a co-tree may be

tions P for which an element which precedes another element depicted as nodes of an oriented graph. If there is only one

is considered the more significant one in the sense that the

implication a < b = P(a) > P(b) holds. It will be shown that
if the ordered set is a finite co-tree, then the universal preittor
for the model or, equivalently, the corresponding universacode,
can be determined exactly via an algorithm of low complexity
Natural relations to problems on the computation of capaciy and
on the determination of information projections are establshed.
More surprisingly, a direct connection to a problem of isotone
regressionalso appears possible.

Index terms— Algorithm, co-tree, isotone regression, universal

code, universal predictor.
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I. THE PROBLEM
We shall study finite co-trees, i.e. finite ordered sktfor

which every non-maximal elementhas a unique immediate

successor, denoted". Fora € A, a* denotes thdeft section
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maximal nodeg, the co-tree isuspendedvith a astop-node

Thenat = A.
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Figure 1. Some simple suspended co-trees.

Simple examples are depicted in Fig. 1. Casis a linear
order. Note that nodes are given irstandard representation
with systematic indexing according to thevelsof the nodes
which are counted from the top with the top nadgin level
0. The largest level of a node is theightof the co-tree.

For a sequence(ky,---,k,) of natural numbers,
Alky,--- ,kn] denotes the suspended co-tree wifh
immediate predecessors of each node in level 1 for
1 < v < n. These co-trees are co-trees withiform
branching The sequence(ky,--- ,k,) is the branching
pattern The first three co-trees in Fig. 1 are of this type,
respectivelyA[1, 1], A[2] and A[1, 2].

By M1 (A) we denote the set of all distributions (always
understood to be probability distributions) over The order
modelP? = P(A), which is the object we will study, is the
model of all distributions? for which P(a) > P(b) whenever
a < b. 1 By U, we denote the uniform distribution over.
These distributions as well as their mixtures are all member
of P(A). Conversely, any’ € P(A) can be written in a unique
way as a convex mixture

P:ZwaUa.

a€A

1)

In other words, as is easily provéd

1This model — and not the alternative choice of all order-@nésg
distributions — is considered to be the natural one, a mainar being that
if a precedesd (a < b) this is taken as a sign that is more “significant”
thanb, hence, for sensible distributions, one should h&ye) > P(b) rather
than the other way round. In terms of coding (see below) ooicehappears
even more natural as it reflects the good sense of assocthgnghorter code
words to the more significant events.

?please note that in order to facilitate a focus on essentigishall relegate
all proofs of results which are not either well known or calesed “easily
proved” to an appendix.



Proposition 1.1: The order modefP(A) is a simplex with Case 1| Case 2| Case3| Case4
the distributiongU, ).ca as extremal elements. o(A) A A A fary A
The decomposition (1) is thiearycentric decomposition of P*(a0) 4 1|1 1| 11 07 1
P and the set 0 27 Z 27 Z 16 Z 3125 Z
7(P) = {alw. > 0} @ O AR I A
is the spectrumof P. . . 3 . P*(a..) 1 2% L 2% L
The setK(A) of codes oven\ is here identified with the set
of code-length functions : A — [0, oo}, which are required Rpin=mZ |18l [ n35 | il | n226979

to satisfyKraft's equality
Z e ) =1, Table |

oo UNIVERSAL PREDICTORS FOR THE COTREES INFIG. 1.

For P € Mi(A) andx € K(A) we denote by(x, P) the
average code-length
theory, which is much used in information theory and there
(w, P) = Z”(a)P(a)' often identified by a reference to Kuhn and Tucker. We
ach formulate the result in a way adapted to our needs:
The overall goal is to choose a code so as to minimize this

quantity. If P is fixed, the minimum is attained for the code Proposition 1.2 (Kuhn-Tucker criterion)Consider the or-
adapted toP, given by der modelP = P(A) associated with a finite co-trek. Let

P* € P and lets* be the code adapted #*. ThenP* is the

k(a)=In——;a €A, universal predictor (equivalently* is the universal code) if
P(a) and only if, for some constait, the following two conditions
and the minimum value is thentropyof P, hold:
HP) =Y Pla) mPL _ D(U,||x*) = R for a € o(P*), 4)
aen (a) D(U,||x*) < Rforalla € A. )

Whenn is_ad_aptgd toP,_we also express this by saying thaWhen this is SOR is the minimax redundanci, — R.
P is the distribution whichmatchess.
The redundancyassociated withP and «, or, in more The role of the result for our approach, is further commented
suggestive terms, theedundancy ofs with P as the “true” on in the next section.
distribution is denotedD(P||x) and defined as the difference As one consequence, one may reduce the search for the

between actual and minimal possible average code-length, universal objects associated with a general finite co-trebe
search for suspended co-treés.
D(P||x) = (x, P) — H(P). ®) Objects P* and x* will from now on denote the universal

This quantity is nothing but the well knowkullback-Leibler Predictor and the universal code of a co-treeinder discus-

divergencebetweenP and the distributiorQ which matches Sion. Thespectrunof A is the spectrum oP*: o(A) = o(P¥).
x, in standard notation, Nodes ino(A) are referred to aactive nodesf A. The co-tree

Pla) A hasfull spectrumif all nodes are active.

D(P||Q) = Z P(a)In . Consider the four examples of Fig. 1. By Proposition 1.2 it
a€A Q(a) is easy to check thaP* andR,,;, are as indicated in Table

We define minimax redundancyassociated with the order!- The universal code is the code adaptedito. Except for

model as the quantity Case 3, where; is mactwe, the examples have _fuII s_pectrum.

Apparently, even simple co-trees can have inactive nodes.

Rmin = inf R(k) Offhand, there is little we can say:
KEK(A)

with R(x) given by Proposition 1.3: Every maximal node of a co-tree is active.

R(k) = sup D(P||r); & € K(A). _V_Ve leave the simple proof to the readc_er._ and add that less
PeP trivially, cf. Proposition 5.2, also the minimal nodes of a

It may be seen directly, and also follows from our resultat thCO-tree are active. In general, the structureo¢f) is quite

there exists a unique code’, the universal codesuch that s .

R(x*) = R..... The distribution which matches the univers Indeed, ifA is the direct sum of (suspended) co-trétes; v = 1,--- ,m
(’<J ) — ‘lmin- IStri u_' Wi I. - univ %ith associated minimax redundanciBs and universal predictor®; then

code is theuniversal predictor It is considered the most N .

unbiased representation of the model The two universal Pr=Y - e P

objects identified, are those we shall aim at characterizing s

by an algorithm of |QW ?OmpleXity- In order to aChielve. thi.S-PS the universal predictor for and In3" eRv the associated minimax
we appeal to a special instance of a result from optimizatiegdundancy.



intricate and one may view the algorithmic determination afiput- as well as output alphabet and with the distributions
this set for any co-tree as the main problem to be solved. Orég,).ca as the conditional output distributions, given an input
o(A) is determineds* (hence alsaP*) andR,,i, can easily letter (here a node in). By the redundancy-capacity theorem,
be determined, cf. (15) and Corollary 5.1. the optimal distribution on the input side is given by the
barycentric coordinates of the universal predicksr and the
optimal distribution on the output side B* itself. We shall
not exploit this connection in the sequel. Rather, the titna

The natural interpretations related to codes as well as tRehat the results which we shall develop can be used to show
significance of the problem outlined as onegeheral univer- how to determine the optimal distributions and the capaufity
sal prediction and codingeneral, because many other modelge special discrete memoryless channels that can ariein t
than models related to order structure may be consideredjigy described.
recognized in the information theoretical literature sitang. Another observation concerns a connection to the well
Early works in this area include Fitingof [1] and Davissoih [2 known problem of determiningnformation projections In
The reader may also consult the survey article [3] by Fedgict, to any co-tree we can associate a probability disiivbu
and Merhav. W* through simple calculations such that the sougtitis

The original motivation behind our very special study rethe information projection ofiV’* on P(A) (for W* take
lated only to order models in co-trees consists basically g#fe measure obtained by normalization1df from Theorem
three parts. Firstly, to the best of our knowledge, thissclas 3.1). This fact — or the connection to the problem related to
the most comprehensive class for which an exact determmattapacity pointed to above — may be exploited to calculte
of universal objects can be provided either directly or via da standard numeric algorithms. However, we stress that th
reasonable algorithm. For the subclass of order modelsibaggll only lead to approximate determinations Bff. As we are
on linearly ordered sets, a complete result already exists.here concerned with precise determinations, either viaecdli
is due to Ryabko who developed a closed formula for thfermula (possible only in special cases) or via an algorithm
universal predictor, cf. [4]. For the larger subclass of cavhich stops with the exact result after finitely many steps, w
trees with uniform branching, an algorithm was announcegall not pursue this possibility. Another matter is thansiard
in Topsge [5] but the details were never published. algorithms may be useful anyhow in order to guess what the

Secondly, our main results, Theorems 7.1, 8.1 and 9.1, mgyectrum is, and then exact formulas are easy to derive, cf.
also be considered as useful reservoirs of examples whigh niilae discussion related to (15) in Section VI.
serve as test cases for future research. However, we remarkinally we comment on a connection to a problem of
that it appears very difficult, even theoretically impo#silio  isotone regressiomithin least squares analysis. This depends
develop exact results expressed in terms of standard &msction an observation of an anonymous referee who, based on the
for other desirable models than those here consideredreitmformation projection formulation given above, encowgdg
based on order structures other than co-trees (e.g. trees) othe authors to investigate connections to an algorithm for
other constructs (such as Bernoulli models). Thus, the ideaisotone regression worked out by Pardalos and Xue, cf. [8].
look into models based on sequences rather than individugloking into this has led to a conjecture involving the fuont
observations from an order mod@| is bound to fail. Severe f defined byk(a) = In ﬁ; a € A, viz. that the associated
obstacles to such a program exists as will be revealed bysatone regression coincides with the relativized unialerede
reference to Galois theory (details will be provided in egs&  %* defined in Section V. In other terms, the conjecture states
by Harremoés and Topsge, in preparation). that f = £* with f the unique isotone function on (i.e.

As a final basic motivation we note, as pointed out to us< b = f(a) < f(b)) which minimizesy_ ., |f(a)—k(a)[*.
by Boris Ryabko, cf. also [6], that for certain application$
to biology, information about biological species is somets The two algorithms, ours and that of Pardalos and Xue,
available only in inconclusive form resulting — not in theare different but similar in structure — e.g. both work with a
direct determination of their relative numbers — but only inotion of “blocking”— and may essentially compute the same
an ordering among the species, from the more frequent to #igiects. Regarding complexity, Pardalos and Xue demdestra
less frequent ones. Modelling as done here based on a co-treg their algorithm is in general very efficient whereas we
is one possibility, though modelling based on trees ratfi@n t |imit a detailed study of such issues to the case of co-trees
co-trees appear just as interesting, or perhaps even morevgieth uniform branching, see Section IX.

However, models with trees in place of co-trees are without
reach if you insist on expressing the universal objectsasedi
form.

When you look back and consider the methods applied,'n this section we investigate when a given co-tredas
further aspects appear which contribute to motivate thegore full spectrum. The criterion we shall find will be expressed i
research. The reliance on Proposition 1.2 points to the-intéerms of the numbers
esting connection between minimax redundancy and maximal N(a) = latl:

o o X (a) =|a"]; a € A
transmission ratecapacity i.e. theredundancy-capacity the-
orem of Gallager and Ryabko, see [7]. In our situation, the snyged in proof: The conjecture has now been settled. Detaills be
result involves the discrete memoryless channel withas published elsewhere.

II. MOTIVATION

Ill. CO-TREES WITH FULL SPECTRUM



where| - - - | denotes the number of elements-in. We also Corollary 3.2: Every co-tree\ = Alky,- - , k| with k1 >
need the numbers ko > --- > k, has full spectrum and the universal predictor

N(a) = N(a)InN(a); a € A. P* is given by
P*(a) — N_NU(NV+1)I€U+]NU+1/Z

v

Further, fora € A, we introduce the notation— for the set
of immediate predecessods «, i.e. the set of alb < a for = N, Y (N, )Nz
which no nodec satisfiesb < ¢ < a. If .g. a is a minimal
node,a* = {a}, N(a) =1, N(a) =0, anda™ = .

We associate the followingreightswith the nodes ofA:

— Hbea* N(b)N(b)

for all pointsa in level v (v = 0,1,---,n) with Z a
normalization constant.

W(a) N@N@ a€cA (6) IV. PREVIEW OF THE ALGORITHM
] a. o For the preview in this section as well as for later usage we
and also introduce the resultimprmalizing factor introduce some special notation and concepts for an arpitra
7 — Z W(a). @) co-treeA. A se_tB C A is hereditaryif b <a,a€ B implies
och b € B. A blocking seffor a nodea € A is a hereditary subset

B of a*\ {a} which contains every minimal node of \ {a}.
The largest such setis \ {a}. Theexterior of B in a, denoted
Sp(a), and theceiling of B in a, denotedl's(a), are the sets

Theorem 3.1:A co-tree A has full spectrum if and only
if, for every pair of nodegb, a) with b € o, the inequality
W(b) > W(a) holds. And when this condition is satisfied
the universal predictor is given by normalization 1of, i.e. Sp(a) =a*\ B, (10)
P*(a) = W(a)/Z for any a € A. FurthermoreRyin = InZ Ts(a) = set of maximal nodes aB . (11)

and the universal code is given by
The nodes iMl's(a) are the first nodes il you meet on

K" (a) = Rumin +(N(a) -3 N(b)) - paths froma to a minimal node. The exteridiz (a) is always
bea~ non-empty. The same is true for the s&sand Tz (a) unless
[Proof in appendik a is a minimal node ofA, in which case only the empty set

. is blocking fora.
We remark that when the condition stated holds, the strlctFOr any functioné on A, ¢° denotes theaccumulated

inequality W (b) > W (a) will actually hold for all nodes with functiondefined as the set-function

bea.
Note that the cases 1, 2, and 4 from Section | can be handled ¢ (A) = Z o(b)
based on this theorem. beA

If we conceive the result as an algorithm to check wheth%th A any subset of\. Using this notation, we define the

the co-tree in question has full spectrum or not, we note ﬂﬁlacket ofa in B, with B a blocking set foi, as the number
the algorithm is very efficient as the number of inequalities ' ’

which need to be checked is at most the number of nodes in[a Bl = N(a) - N (Tp(a)) _ Nfa) - N’ (Ts(a))

the co-tree. T |SE(a)] ~ N(a) — N°(Tp(a))
Let us have a closer look at Theorem 3.1 in the case of )

a co-treeA[k;, - - - , k,] with uniform branching. For such aBy [a]max We denote the maximal value ¢4, B] with B a

co-tree, we denote by, the common number oN (a) for blocking set fora. It turns out that among the blocking sets
nodes in levelb (v =0, --- ,n). The N,’s may be calculated for e with maximal bracket, there exists a set-theoretically

recursively as follows: largest one (Proposition 7.3). This uniquely defined set is
denotedB*(a) and the corresponding ceiling and exterior are
No=1, Ny =1+kypiNpsrforv=mn—1,--,0. (8) genoted respectively(a) and $*(a).
From Theorem 3.1 we derive the following corollary: Our algorithm is in two parts. Part | determines all the's
and lists the corresponding maximal brackets. The result ca
Corollary 3.1: The _co-treeA = Alky, - k] has full pe opown graphically for co-trees of moderate size, cf. Ejg.
spectrum if and only if, for every =0,1,---,n -2, 3 and 4. There we have also indicated in black the top-nodes
1\3%/ 1 \l-p% 1 as well as all nodes in ceilingg'¢’s) for the B*’s constructed
(N_u) (Nu+2) < Noi1' ©) during Part I. We remark that all nodes of the co-tree will be
where the numbergo, - - - , pn_; are given by black after Part | if and only if the co-tree has full spectrum
oo (and if and only if all tests introduced below are positive).
pr=04+k,41)Nyy1 =N, + Nyy1 — 1. The search carried out during Part | starts from the bottom
with the minimal nodes. The resulting brackets are all 0
and ceilings are empty. Then move up the co-tree you are
Specializing further we obtain the following corollary whi investigating. This is done incrementally so that when you
extends Ryabko’s theorem [4] in a natural way (Ryabkoisork with a specific node, say, you have already inspected
theorem corresponds to the casge= --- = k, = 1 which every node iru*\ {a}. The first thing to test is i3 = a*\ {a}
givesN,=n—v+1;v=0,1,---,n): could be the sought blocking sBt‘(a). This is done by testing

[Proof in appendik



if the brackefa, B] dominates all maximal brackets calculated To get a feel for the numerical figures, we mention that for
for nodes inTz(a) (= a~ for this first attempt). If this is not the co-tree in Fig. 3, Corollary 5.1 implies that
the case, you indicate the failure on the graph by adding a
“dagger” after the valuéu, B]. And then you replacé3 by a Ruin = In (8 +272437% 425752 42704
somewhat smaller set and repeat the procedure until the test —1093s—5 1860155 —5

. maler . ; +27103%5 75 4 9183719570
carried out is positive. For examples of moderate size as in
the figures shown, you can guess which replacements to majgich is approximately 2.12 measured in natural units,eorr
For the formal algorithm — to be developed rigorously in thgnonding to 3.06 bits. This may be compared with the 3 bits
sequel — this is done in a systematic way as indicated laterrBcessary to encode the 8 minimal nodes which are equally
the flow diagram in Fig. 6, page 9. probable under the universal predictor.

The sensitivity of the spectrum due to small changes of the
co-tree is illustrated by removing one minimal node from the
co-tree in Fig. 3. This leads to the co-tree in Fig. 4 for which
an extra inactive node emerges in a part of the co-tree which

o330 has not been affected by the removal. Thus one cannot decide
“locally” if a node is active or not. For the co-tree in Fig. A&
0 0 finds Ry, ~ 2.01 natural unitsx 2.90 bits — compared to the
Figure 2. The algorithm for the Case-3 co-tree. approximately 2.81 bits needed to encode the 7 minimal nodes

which have equal probabilities under the universal predict

TE_1-T0 T2-T1~3.44 }
-t ) (12—2.5)/2~6.86 1
T3/4~7.45

1—-2-5~10.28

o e
AN/

0 Figure 5. A co-tree with “overshadowing”.

Figure 3. The algorithm for a “general” co-tree Our last concrete example is shown in Fig. 5. For this co-
tree, Part | leads to the nodes in levels 0, 2 and 3 as the
) possible active nodes (the “black nodes”). However, the two
For the co-trees of figures 2, 3 and 4 you are done after CORydes in level 2 are not active. This is seen by applying
pletion of Part I. In these cases the spectrum coincides Wit || of the algorithm which runs from the top and down,
the set of black nodes. The brackets calculated for theeactiyy oach step turning a black node into an inactive node if
nodes are the universal code-lengths measured relativeeto §,o corresponding exterior set, sy(a), “overshadows” the
shortest code-length. The calculation of minimum redusgany|sck node in question. In the case shown, the set consisting
and the universal code is straight forward as explaineden tfhe 8 minimal nodes is the blocking set with maximal bracket
section to follow. for the top-node, hence the two nodes in level 2 are “shadowed
away” and become inactive. For another example illustgatin
how Part | and Part Il of the algorithm play together, the
reader may turn to the discussion in Section IX of the co-tree
A[1,1,1,4,5,1,2,3], cf. Table 2. The reader may also check
that no black nodes are “shadowed away” during Part Il of
the algorithm for the co-trees in Fig. 2, 3 and 4.
More details about the algorithm as well as a proof of its
correctness will be given in the following sections.

V. RELATIVIZATION

With this section we embark on the technical development
leading to an algorithm.
Experience tells us that for typical optimization probleofis

Figure 4. The algorithm for the previous co-tree with deletof one minimal the n.ature we are StUijlng, “normc'.;lllz.atlon’.’ (V'a a “paoi
node. function” or constant) is natural. This is for instance retiel




by the appearance of in Table 1. A natural idea thenwhereas, ifb > @, P*(b) < P*(a) and&*(b) > %*(a) hold.
is to facilitate the search for universal objects by a prigProof in appendik
normalization. We find it advantageous to work with codes
rather than with distributions. Then, rather than norniiagjz
via a division, we should normalize by a suitable subtractio
This leeds to objects measured relative to optimal perfag@a  Proposition 5.2: Every minimal node ofA is active. The
and we speak about a processrelitivization relativized universal code is non-negative and vanishethen
Relativization may be defined quite generally. Howevesinimal nodes — and nowhere else. The universal predictor as
we shall only have co-trees in mind for the present studyumes its maximal value on every minimal node and any other

Therefore, letA denote a fixed co-tree and denote as usual Bde has a strictly smaller probabilitroof in appendik
Rumin the minimax redundancy for the order modek P(A).

Motivated by the considerations above, we introduce the The proposition illuminates the definition &f. Indeed, we

Together with other facts, the lemma is used for the proof
of the following useful result:

relativized universal codas the function realize thatz* measures code-length relative to the shortest
codeword. This property is specific to co-trees and need not

£* = K" — Ruin - hold if relativization is considered more generally.
We first characterize this function among aibnotonefunc- As a last application of the structure related to the notion

tions¢ : A — R. Here, monotonicity means thatbh) < ¢(a) of control, we establish the following result:

wheneverb < a. A nodea € A is ¢-activeif either a is @ prgposition 5.3: For any node which is not active, the in-

maximal node or els&(a) < ¢(a™) (recall thatat denotes equality of (14) is sharp, i.e. for such a no@? (a) < N(a).
the immediate successor aj. If a is not ¢-active, a is ¢- [Proof in appendik

inactive If ¢ = k* (or if ¢ = x*), we regain the notion of

active and inactive nodes introduced in Section |.
VI. IDEAS ON THE WAY TO AN ALGORITHM

Proposition 5.1: A real-valued functiony defined onA
coincides with the relativized universal co@é if and only
if it is monotone and satisfies the two requirements:

Again, we consider the order modgl for a co-treeA. We
aim at developing an efficient algorithm for the determioati
of the universal objects. Instead of going directly intcsthie

#° (a*) = N(a) for every ¢-active nodeu, (13) shall take time in this section first to explain the ideas béhi
¢° (a*) < N(a) for every noden € A . (14) First, in order to motivate the introduction of blocking set
_ _ and brackets, we observe that if, somehow, the spectum
[Proof in appendik is known, &* is easy to calculate. Ag*(a) = &*(a) holds

Inspection of the proof shows how to obtain the universgenerally, we need only worry about the valuegofor active

codex* from the relativized universal code* by a simple hodes. So, let € o(A). If a is minimal, £*(a) = 0. If @
process of de-relativization: is not minimal, denote byl" the set of maximal nodes in

_ . _ éaima(A)) \{a}. By Proposition 5.27" is a “cross-section” of
Corollary 5.1: The minimum redundancy can be obtainegd i, the sense that every path framo a minimal node meets

from the relativized universal code by the formBa,in = 7, exactly one point. We puB = J,.-t* andS = a*\ B

vt ; . . B . — Vie B .
EzaeAe () and the universal code is given by = Then i+ assumes the same valug;(a), on all nodes inS
A" + Runin- and, considering the decomposition @f in the two setsS

For each node € A, the left-sectionat defines a co-tree and B, we find from Proposition 5.1 that
in its own right. As another corollary to Proposition 5.1 the- o x o
J Yo Trep N(a) = (7*)7(a*) = |S| - &*(a) + (7*)" (B)

following result is easily proved: o
= |S]- & (@) + Y (F)7 () = [S] - 7 (a) + D N (1)
teT teT

=S| &*(a) + N'(T),

Corollary 5.2: If a € o(A), then the relativized universal
code for the co-tree' is obtained by restricting the relativized
universal code for\ to a*. In particular,c(a*) = o(A) Nat.

We stress the importance of the assumption dhia¢ active. and conclude that

Without that assumption new active nodesainmay appear, N(a) — NU(T) N(a) — N (T)
e.g.a itself, cf. Proposition 1.3 and Case 3 from Fig. 1 (and  #"(a) = 5] = N(a) =N (D) (15)
Fig. 2).

recognizable as a bracket according to the definition (12).
Note that the formula holds for all active nodes, including
minimal ones (for which" = B =) and S = {a}).

The further development depends on certain relations be-
tween blocking sets and their associated brackets. The prop
erties we need are derived from cert#iansitivity identities
stated in Lemma 7.1. Of special interest are blocking sets wi

Lemma 5.1:Let a € A. Then, for anyb with « < b <@, maximal brackets. As indicated in Section 1V, for each node
P*(b) = P*(a) and, therefore, als@*(b) = &*(a) holds, there exists a set-theoretically largest blocking setafavith

For the further study, consider, for amye A, the control
of a, denotedz, defined as the closest active node greater th
or equal toa (i.e.@ € o(A), @ > a and noc € o(A) satisfies
a < ¢ < @). By Proposition 1.3g is well defined for alk € A.
Clearly,a = « if and only if a € o(A). The significance of
the notion is summarized in the following simple facts:



maximal bracket. This is the sd8*(a) and the associatedthe algorithm works as intended will be developed in Section
exterior and ceiling are the sefs'(a) andT*(a). VIII.

We can now define sefg;, T, - - -, the ceiling hierarchy A basic element of the algorithm is a subroutine, referred to
by a construction “from the top”: We start witlliy, by as thecentral subroutinelt is called several times during Part
definition the set of maximal nodes @f. Then, asTy, we |. The flow diagram is sketched in Fig. 6. As input to the sub-
take the union of all sets of the forffi*(¢) with ¢t € T;;. We routine one takes a nodec A, and as output the subroutine

continue “down the co-tree”. Formally, far> 1, we put provides you withB*(a), T*(a) and [a]max = [a, B*(a)]. It
. i} is understood that the corresponding objects associatéd wi
T = U (1) (16) nodes inat \ {a} are already known when the subroutine
teTiy for a is called. When the central subroutine has been called
Clearly, the setd* are eventually empty. BF(A) we denote for all n_odes in the co-tree as input, all ceilin@$(a) and
the union all maximal bracketa)ma.x Will be known and Part | of
F(A) = U T 17) the overall algorithm is completed. For the final part of the

algorithm, Part Il, we work “from the top” by appealing to
o _ _ Theorem 7.1. This provides you directly with the relatidze
For any nodeu, the projection of a on &(A) is the unique universal code from which the universal code (hence also the

node pr(a) € @(A) for which a € S*(pr(t)). We do not universal predictor) may easily be constructed as expigine
know if this notion coincides with the notion of control, .i.e Section V.

if pr(a) = @ holds generally. Anyhow, it is sufficiently close
that we can argue with it in much the same way as in the VIl. CONSTRUCTION FROM THE TOP
beginning of this section, thereby deriving a formula for.
To any nodes € 5(A) \ Ty we associate the unique nod
wu(t) € a(A) for which s € T*(u(t)) (it is the “mother” of
s). Proposition 7.1:Let B be a blocking set forn. Then the
Using the notions just introduced, we can, in our first maibracket[a, B] vanishes ifa is a minimal node and is positive
result, Theorem 7.1, characterize the universal code ak watherwise. Proof in appendik
as the spectrunz(A). We point out that perhapg(A) =
o(A) holds generally, but we do not know this. In spite o
this unsettled issue, Theorem 7.1 is satisfactory as nmtake

i>0

We start by developing some properties of blocking sets and
Srackets.

We shall show that the universal code can be constructed
Based on the brackets alone. Proposition 5.1 is an important
T - i step in this direction but there are obstacles to overcome
saving in efficiency seems to resultifA) = o(A) was known in connection with the necessary checking of inequalities

to hold. related both to (14) and to the requirement of monotonicity.

The construction behind Theorem 7.1 depends on the blo‘fhurns out that these problems can be overcome, based on

ing sets 5(a). During Part | of the algorithm all theSE_’certain identities which allows one to compare bracketsramo

blocking sets will be constructed. A naive search will requi each other. Two simple constructions are involviéing and

exp(_)nential ti_me in the_size of the problem. To devglop Hstriction Specifically, if B is a subset of\, andb any node,
efficient algorithm, new ideas are needed. What we will do Jg, filing of B at b is the setB v b — B U b* and the

to revert the construction and work “from the bottom” thrbug . ciriction of B to b* is the setB A b — B A b Typically

thg minimality components/,, ,Ml’ wo M. Here,his the  yose constructions are useddfis a blocking set for, b < a

height of A and the decompositioh = Mo U M, U---U M), andb ¢ B. ThenB Vb is a new blocking set for and B A b

is obtained by successive removals of minimal nodes Mig. is a blocking set fob.

is the set of minimal nodes of the co-tree

Lemma 7.1 (transitivity identities, basic casd)et a > b,
AN M let B be a blocking set for and assume that ¢ B. Put
0=j<i BT = BvbandB~ = B Ab. Then the following identities
The reason why a construction from the bottom is to pref@P'di

is that when you work from the top, and consider candidat - +1\ _ -

for the B*-,5*- and T*-sets without knowing these sets fof§ +(a)l([b’B |~ la. B ]) B |SB(G)|([b’B ] [G’B]) ’

nodes further down the co-tree, you risk that after some time (18)

an inconsistency occurs and this will force you to discard |SB(a)|([a,B] — [a,B+]) = |SBf(b)|([b,B‘] — [a,B+]) :

previous work, and to start afresh. Quite differently, wiyen (19)

work from the bottom, the sets concerned remain unchanged

once constructed as they are not influenced by the develdpmeh®s- ()| ([b, B7] - [a, B]) = |Sp+(a)| ([fla B] —a, B+]) -

further up in the co-tree. It should, however, be remarked th (20)

sets already constructed may later turn out to be superflui Soof in appendik

as sets associated with nodes higher up in the co-tree, say

nodesb > a, may “overshadow” sets already constructed in In order to ease the notation, we agree that if a set of the

the sense that*(b) O S*(a) may happen, cf. the discussiorform B A b is blocking forb, we may say thaB3 is blocking

of A[1,2,4] in Fig. 5. The insight needed to see that Part | dbr b and write S () in place of Spap(b) and [b, B] in place



of [b, B Abl. In the formulation of Lemma 7.1 we may thus Based on the ceiling hierarchy we define a decomposition
write Sp(b) rather thanSg- (b) and[b, B] rather thar{b, B~]. (S )o<i<s Of A as follows:
As all terms of the formS.(-)| are positive, it is clear that ) ) .
we can use (18)-(20) for comparisons of brackets. We shall Si = U §%(a) = {a € Alpr(a) € T7'} . (21)
soon see instances of this. For now we note that the lemma acTy
implies that the numberi, B], [a, BT] and [b, B] are either  With reference to the ceiling hierarchy and associated
identical or elsia, B lies strictly betweera, B*] and[b, B], notions, we can now state the main result of this section:
I[;i'Belt]hﬁ(r)l[g’s_B ] <'la, Bl <'[b,B] or b, B] < [a, B] < Theorem 7.1:The relativized universal code is given by
The transitive nature of the lemma is best revealed by 7*(a) = [pr(a)]max for all a € A, (22)
generalizing the resul. _ )
With reference to notions from Section IV, a blocking se®nd the spectrum af is the following subset of (A ):
for. ac A.vv.ith maximal bracket isset-theoretically maximal o(A) =T U{t € F(A)\ Tg| [4(t)]max > [Hmax} - (23)
(minimal)if it is not a proper subset (superset) of some other
blocking set fora with maximal bracket. [Proof in appendik

Proposition 7.2:Let B* be a blocking set fon € A with
maximal bracket. VIII. T HE CENTRAL SUBROUTINE

(i) (monotonicity): The inequalitya]max = [b]max hOlds for e continue the study of universal objects associated with
everyb € Tg-(a). If B* is set-theoretically minimal, the sharpype modelP(A) over a co-tree\.
inequality [a]max > [b]max hoOlds; The construction in Theorem 7.1 builds on the sBtga).

(ii) (boundedness): The inequalify]ma. < [b, B*] holds A noted in Section VI, the theorem cannot be used directly
for everyb € Sp-(a) \ {a}, and the inequality is sharp B 5 optain an algorithm of low complexity. Instead, we speed
is set-theoretically maximalProof in appendik up the construction by working “from the bottom” based on

Exploiting these results we obtain a useful uniquenel¥ decompositiol\ = Mo U My U - U My in minimality
property: components. _ _

We shall determine thé&*-sets for all nodes. For nodes in

Proposition 7.3: (uniqueness) For every nodethere exist )/, this is trivial, and we start by considering nodeslify,
two uniquely defined blocking sets fawith maximal bracket, continue with nodes i/, and so on until we get at the nodes
B*(a) and B.(a), characterized as, respectively the sein M;,. We will assume that the decomposition in minimality
theoretically largest such set and the set-theoreticaligllest components is given off-hand and not be concerned with the
such set. In particular, for every blocking sBtfor a with time it takes to determine this decomposition. Anyhow, this
maximal bracket, the inclusionB.(a) C B C B*(a) hold. can be achieved by an efficient algorithm based on a systemati
[Proof in appendik indexing of the nodes as in the examples shown in Fig. 1.

We do not know ifo(A) = #(A). This will be the case if, The two propositions to follow are important technical ol

for a € A, there is a unique blocking set farwith maximal heeded to develop an efficient algorithm.

bracket, i.e. ifB.(a) = B*(a) holds generally. Proposition 8.1: (I'-structure) Leta € A. Then, for every
For the constructions to follow, we have chosen to focus ane S*(a), the inclusionS*(b) C S*(a) or, equivalently,

the largest sets, thB*(a)'s. We denote byl'*(a) the ceiling B*(a) A b C B*(b) holds. Proof in appendik

n a a_ssomat_ed lNlthB (a) and by §*(a) the exterior ina The name attached to the result lies in the shape of the

associated wittB*(a). These are the sets we shall use for the e . -

construction ofe* . letter ‘T and will appear natural when we specialize to co-

) . . . . . trees with uniform branching in the next section.
Consider the ceiling hierarchif’;');>o introduced in Sec- = o000 vesult actually proved in the appendix sugport
tion VI. Here and below, the largest index wiffi* # 0 is 9 yP bp PP

denoted. Clearly, o < h, the heighth of A, but often it thig;e;vu:hsécgr?éma?!%lig*(?()e;ljtg I((e(?l'Js agree to say that a
is smaller, e.g. for Case 3 of Fig. 8,= 1 andh = 2. In y ' 9 y

the extreme case when every maximal node is also a minirr%?(:kmg seth3 for a nodea has themonotonicity propertyf

. ) : > .
node,T; is the only non-empty set in the hierarchy ahe 0. s B] > [t]max for everyt € Tg(a)
Proposition 8.2: (Characterization): For any € A, B*(a)
Swhat we have in mind is the following result, which can be by can be characterized as the largest blocking set: foith the
induction: Letk > 2 and consider nodes;,--- ,ar With a; > --- > ay. monotonicity property FPI’OOf in appendi}<

Assume thatB is a blocking set for; and thatay, ¢ B. PutB; = BV a;

fori=2,---,kand By, = B. Then When applying this result we have a construction “from the

k bottom” in mind. Then the characterization makes good sense
Z ‘SBi(al)‘OaiflyBi] - [ai,Bm}) since, when searching for the sBt(a), all setsB*(b) with
= b € a*\ {a} will be known and thus the monotonicity property
can be checked for any candidate étve may suggest for
B*(a).

= |Sp(a1)]([ar, B] - [ax, B -



We emphasize that when estimating the complexity of the [ I nput a ]
algorithms under development, we will neglect any contribu

tion from efforts to make basic information about co-trees
studied accessible to us in a convenient form. We shall thus

talk aboutessential complexitpf the algorithms. The basic
. . : : . B :=a*\{a}
information we will need can be listed as follows: b := Arg max|t]max
« the decomposition in minimality components= My U To—a— teT
...U]\/[h, /B = [b]max
« the mapa ~ o~ which makes the immediate predeces{ « := [a, B]
sors of any node accessible to us,

« the mapa ~ a* which gives access to the left sections,
« the mapa ~ N(a) and, finally,

N is given in terms ofN). However, the list is chosen for
convenience in view of the algorithm to follow. It is clear
that if we identify a co-tree using the standard represemtat

« the mapa ~ N(a). Yes o Z}
Of course, there is some redundancy in this list (espegially
No

the basic information can be provided by efficient algorish Qut put B = (B\bY) U B*(b)
operating on the underlying set of finite sequences. B*(a) =B o
The algorithm we shall now describe is based on Theorgm T := (T\{b})UT*(b)

7.1 which shows that if we know, for every nodgthe ceiling T*(a) =T
T*(a) as well as the maximal bracket],,.x, then it is easy
to determine the relativized universal code, and hence the [@)max = a
universal code and the universal predictor. The algorithafisc
several times theentral subroutingsee Fig. 6, which, for a
given inputa, calculates the key objects associated with
taken to be the setB*(a) andT™*(a) and the numbeja],ax. @
Note that we find it convenient to work with bofB*(a) and
T*(a), though the one may of course be determined from the
other.
For the minimal nodes € M, we already know what the Figure 6. Flow diagram for the central subroutine.
key objects are and there is no reason to call any subroutine
for these nodes. To determine the key objects associatéd wit
any node, we first call the central subroutine for nodes in tlal brackets[t],.x with ¢ € T, note the largest value and
minimality component);, then for nodes inV; and so on then consider the first node among- - - , ¢, for which the
until we get to the nodes inf, (with i the height ofA). corresponding bracket attains this value. By definitiors th
Let us have a closer look at the central subroutine. Considhe Arg max-node. As place-holders for this node and for the
a particular inputa € A\ My. When the subroutine is corresponding maximal bracket we userespectively3 and
called it is assumed that key objects about preceeding nodess carry out the assignments
have already been determined. This will be the case by the
procedure chosen as nodes(ibly), My, - -- , M, are called b:= Argmax[tlmax; 6 := [blmax -
in succession. ter
We useB, T and o as place-holders for the sought key Concerning the calculation of brackets in the central bak an
objects associated witlh. The largest blocking set for elsewhere in the subroutine, this is based on basic infoomat
altogether isat \ {a}. This is the first set we will test and about the co-treeX’s and N’s) and on outputT*’s) from

our initial assignment box putB := a* \ {a}. We also right previous calls of the subroutine according to the formula
away assign the appropriate setfitaand the appropriate value

to a. N(t) = > ser-@ N(s)
After the introductory assignments, we arrive at the céntra [tmax = N@t) - e (1) N(s)’

box, the(b, 5)-box It is important that when we come to this ’

box, which may occur many times during the execution of the After the central box comes the test-box > §?”. We

subroutine,B, T, and« are known to have certain propertiesrealize that what is tested is really # has the monotonicity

B must be a blocking set for, T = T(a) anda = [a, B] property. If it does,B = B*(a) by Proposition 8.2 and we go

must hold, and then we stress ttiit(a) C B must be known to the output box and then return to the algorithm.

to hold. In order to carry out the calculations in tfte3)-box, Assume now that the test is negative, {@.B] < [b]max-

it is understood that there is a natural way to list the nodésis a key point of the algorithm that theln e S*(a) must

in T, say asly, - - - , ¢ (the standard representation dfmay hold. Assume the contrary. Then, & (a) C B, b € T*(a)

be used for this purpose). For the calculation, we go throughd by monotonicity we then haye],ax > [b]max. Consider

a = [a, B]

(24)
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anyt € T and note that « trivial assignment of key objects to nodes iy,
« call of the central subroutine for all nodes i,
[t]max S [b]max S [a]max .

By boundedness, we must conclude from this thatB*(a) ~ * call of the central subroutine for all nodes My,
since, ift € S*(a), [almax < [t, B*(a)] < [t]max Would hold, « top-down construction of the ceiling hierarchy and simul-
contradicting the inequalities above. THOSC B*(a). SinceT’ taneous listing of the values a&f', cf. Theorem 7.1.

is the ceiling ofB in a and sinceB*(a) C B we conclude that
in fact B = B*(a) must hold. ThenB does after all have the
monotonicity property of Proposition 8.2. This contraditiie
result of the test. All in all we conclude that indeled S*(a).
Knowing this, we can apply the gamma structure, Prop

The steps until the final step constitutes Part | of the
algorithm. The final step is Part II.

By the foregoing discussion, it is clear that the algorithm
does indeed calculate the desired objects. It is also pretty
. i " i Qlear that this is achieved in polynomial time in the size
sition 8'}’ and find thaB*(a) is a subset of the sefB \  f ihe problem. Let us discuss this in more detail but only
{b}) UB*(b). This set is a blocking set far asb cannot be a iy 5t 5 rough estimate of the efficiency of the algorithm.
minimal node (ther? = 0 would hold and the test would haVeFirstIy, as remarked before, we shall neglect the time con-

been positive). We tal_<e this set as our newlset to be tested g[)feq during initialization. Also, we shall not be concerne
make the proper aSS|gnmentst_T anda n the next box with the memory requirements of the algorithm or with the
of the flow diagram. These possible key objects are then fgh ., ¢ost incurred by administrative operations involied
into the (b, 5)-box and we continue until, eventually, the tesf,o emory management. Further, we shall not discriminate
for the monotonicity property is positive. between various basic operations such as additions, subtra

Remarks. Naturally, if the test is negative and there aréons, multiplications, divisions and comparisons of nem
several nodes iff” with [b, B*(b)] maximal, we may econo- as well as0, 1-tests (based on known entities). Tassential

mize and restrict the candidate set further. In more dgtati, complexityof the algorithm, denoted’(A), is then taken to
m = max;er[t|max and assume that there are several nodBg the number of basic operations needed from start to end of

in T, saybs, - , b, with maximal bracketn. Then we may the algorithm with the reservations as indicated above.
as our new assigned key objects take We shall estimat€’(A) in terms of the numben of nodes
. . in A. Clearly, C(A) < n-max,cp C(a) whereC(a) denotes
L X the essential complexity of the central subroutine whers it i
B = (B\ U b’%) Y U B (b), (25) called with the node: as input.
o - For a fixed, we can estimat€’(a). Regarding the initial
T = (T\ U {b}) U U T*(b,), (26) assignments, only the calculation fof, B] needs to be taken
e et} into account. A§a, B] = N(a) — >_,.,- N(t), at mostja~|
a = [a,B]. (27) basic operations are needed, hence at magich operations.

For the cycle {b, )-box to test-box to new assignments”,

It follows from our analysis above that the new sBt this will be visited at mosfa*| many times, hence at most
still contains B*(a). Further, thea’s increase through the n times. And for one run through the cycle we need at most
subroutine. One way to see this when multiple reductiofi&| < n basic operations for the determination @f 3) (as
are performed as in (25) -(27) is to make the reductions stéye numberst] ... with ¢t € T are already known). We permit
by step. First, putBy = B (the old setB) and then define ourselves to ignore the minimal requirement needed to carry
successive reductions by putting out thea > 3 test. But we have to consider the requirement
B " « related to the new assignments Bf 7" and a. RegardingB,

By, = (B”* \bV) U B(b) we need to know, for each node, whether the node is in the set
for v =1,---, k. Then the se,, is equal to the set definedOr not. This can be decided by checking membership for each
in (25). This relies on successive applications of (19) and &f the three setsB, b* and B*(b). As the sets* and B*(b)
monotonicity. Details are left to the reader. This remark wiare known, we only need to test membership fyrand this
be important for the special co-trees to be discussed in ti@§luires at most tests. Similarly forl". And regardingx, we
next section. realize from (15) that at mog&t-|T'| < 2n basic operations are

Other modifications may speed up the execution of tfeded. The new assignments thus require at mwediasic
subroutine, e.g. one may note that nodeg4n can also, just operations.
as minimal nodes, be dealt with outside the subroutine andThe rough estimates above show tit&tz) < n + n(n +
that some of the information about calculated brackgts,. 4n) < 6n.
at one stage may be reused for the next stage. We shall not b¥/e have now completed all elements in the proof of our
concerned here with such fine-tunings for general co-treessecond main theorem:

The full algorithm for the calculation o&*, and hence the Theorem 8.1:The algorithm described above calculates the
sought universal objects, consists of the following steps:  C€iling hierarchy and thereby the universal objects assedi
with a co-treeA in polynomial time. The essential complexity
« initialization providing basic information about the co-as defined above is at mo&t n® wheren is the number of
tree, nodes inA.
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Remark. By studying “worst possible scenarios” regarding The ceiling numbers can be determined directly from the
the possibilities for the geometric locations of the cejfin bracket diagram. For instance, farf1,1,1,4,5,1,2,3], we
calculated by the central subroutine it should be possible find from the column in Table 2 withv = 2 that» = 4 and
bring down the estimatén® quite significantly. We shall look that [2],,.. ~ 147.73. Then, by Theorem 7.1, the nodes in
into this in Section IX, but only for co-trees with uniformlevels 0, 5, 7 and 8 are the active nodes. Further, the values
branching. of &* for nodes in levels 0,1,2,3 and 4 is 81.21 and the values
of #* for nodes in levels 5,6,7 and 8 are, respectively 5.97,
5.97, 5.55 and 0.

Using the strategy as exemplified above for the calculation
Consider a co-tre@ of heightn with uniform branching. of z*, the full bracket diagram must be calculated and this

IX. CO-TREES WITH UNIFORM BRANCHING

Let (ki,--- ,ky,) be the branching pattern. Denote By the amounts to about:?/2 basic computations. This can be
set of all nodes in level. Put K, = |A,| and, for a node improved considerably by appeal to the algorithm developed
a € A, put N, = N(a) and N, = N(a). Clearly, K, = in Section VIII. ForA[1,1,1,4,5,1,2, 3] one may for instance
k1---ky, thus, recursively, reduce the number of calculations of brackets from 36 (eorre

sponding to Table 2) to 13 (will follow from results below).
The basic facts we need are Propositions 8.1 and 8.2. The
Regarding the convenient calculation of thg's, see (8). algorithm dictates that the bracket diagram is calculated f
For the determination of*, we shall specialize the algo-descending values ofand ascending values pf To initialize,
rithm of the previous section to the present situation of @€ Set§n|ma.x = 0 and7, = n + 1. Then one calculates in
co-tree with uniform branching. For reasons of symmetry successionn — 1]max and 7,1, then[n — 2], and 7,2
see also the discussion related to (25)-(27) — we need o@iyd so on unti[0],,.x andr, are calculated. On the way, the
work with certain special blocking sets. By, ;] we denote only tests that are performed are of the type fi] > [u,7,,]?”
the bracket[a, B] for a nodea € A, with the blocking set and, in fact, not all these tests have to be performed as the
B=a'nN U,s, Ai for which thenTg(a) = atn A,. These result is bound to be negative (and henge> u) in case,
brackets are well-defined for points, 1) with 0 < v <n—1 for a value of§ with v < £ < 1, one has already found that
andv + 1 < p < n. We extend the definition by adding there > 4. This follows by Proposition 8.1.
point (n, n+1). This point represents a minimal node and the In order to study more closely which tests can be neglected
empty blocking set. Therefore, we pt, + 1] = 0. For all and which not, we introduce the abstract notion ofl*a
other brackets we find that diagram These diagrams are first discussed in their own right.
Nk LN After having developed a main property, Lemma 9.1 below,
v v4+1 " hpdVp

K():l, K, =kK, 1 forV:L"' , N (28)

[v, 1] = N & PN (29) we return to the actual problem concerning co-trees.
v bl i Given are natural numbetsg, - - - , ¢,, with n > 1 such that:
_ K,N,-K,N, (30)

- K,N, - K,N, th=n+1, (33)

The bracket diagranconsists of all these brackets. A numer- vtlst,<niorald<v<n-1, (34)
ical example is shown in Table 2. if v<pu<t,, thent, <t,. (35)
Givenv, define[v]ma andz, by Then thel'-diagramG = G(tg, - - ,t,) consists of all points
[V]max = max[v, u|, (31) (v,p) with 0 < v < n for whichv +1 < u < ¢t,. More

n=v precisely,G is aT,-diagramsandn is the heightof G. As

7, = Argmax[v, ] . (32) a singular case we allow that = 0. There is only ond’y-

e diagram, therivial diagram consisting only of the poinf0, 1).

Then, for a node: € Ay, T*(a) = a* N A-,. ® The numbers By (35), if you consider the column fronfw, v + 1) to
[Vlmax are themaximal bracketsand ther,’s are theceiling (,,¢,) and place a horizontal bar on top of and to the right

numbers of (v,t,) then you meet no points it until you reach the
0.00| diagonal elementt,,t, + 1). Having the shape of the letter

8 [12.62] 12.69 12.76] 12.84 9.55|5.76[6.59[5.55] 8 “I™ in mind, this property accounts for the terminology-*
g %ggé %EZ %g:gg %ggg igéi ggg 8'668 7 diagram”. For a possibly more illuminating way of expregsin
5 [81.21] 91.91]106.17126.1485.39 5 the key property, see below.
4 [77.03]100.59147.73[289.12 4 A site (1o, 10) € G = G(to,--- ,t,) is atest sitefor G,
3 [6.33] 6.33] 6.33] 3 if v < n and G(sp,---,s,) is also al',-diagram where
2] 633 633 2 all the s; are equal tot; excepts, which is set tou. For
Hl/y 6634 ! example, all sitegv,7,) and (v,v + 1) with v < n are test

. sites. For thd;y-diagram displayed in Fig. 8, we have 17 test
Table 2. Bracket diagram fok[1,1,1,4,5, 1,2, 3] sites, corresponding to the marked positions. For a gefferal
_ . diagram@, we denote byG) the number of test sites.
6to be sure, theArgmaz in (32) has to be understood as the first index . . . . .
for which the maximum is reached, since we have not been abéxdlude Two operations orf’-diagrams are considered: Thestric-

the possibility that the maximum is reached for several aglaf .. tion of G(tg,---,t,) to {v,---,n} is the I';,_,-diagram
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G(t, — v, -+ ,t, — v) and thedirect sumof the two T'- |:|
diagrams G(tg, - ,t,) and G(sg, - ,Sm) IS the Ty ip- V]
diagramG(to, -+ ,tp—1,50 + n,- -, $m +n). Fig. 10, page
15 provides an example of a direct sum.

For a I',-structure G = G(tg, - ,t,) we define the
spectral levelsr, - - - , 0., by og = 0, 0; = t,,_, for all values
of ¢ > 1 until you reach the index with o, = n. We call \Vi
v = v(G) the spectral indexof G. The spectral index of N/
the trivial I'-structure is0, all otherI'-structures have positive V|
spectral indices.

Note that the spectral levets), - - - , o, can be constructed
geometrically as indicated in Fig. 9 by “letting the sun hinFigure 8. AT'jo-diagram with test sites.
from the left” and noting the column numbers of the sunlit
columns. The spectral index(G) is the number of sunlit
columns minusl. Using the “sunshine terminology” we can Q/ [ ]

<K

V]

[ K
<<
<<

V

KIS

also express the essentialstructure, formally given by the
requirement (35), by saying that when the sun illuminatest pa
of a column, it illuminates the entire column. And this praye
must also hold for restrictions of the-diagram.

| nput v D

/
~

N |

[ ]

Figure 9. Sunlit culumns for the diagram in Fig. 8.

pi=v+1

B = [:u’]max

a:= v,y

The algorithm we shall discuss consists of three parts:
v « initialization,
es - 2> « construction of the'-diagram,
No
M= T[L

« determination of the spectral levels, final output.

The initialization consists of the calculation of the numghe
N,, K,, K,N, and K,N, for v = 0,---,n. For this,
the formulas (8), (28) and (30) are used. In tothl, basic
operations are needed for the calculations. You may also
consider as part of the initialization the assignment oftsta
valuest,, = n + 1 and [n]m.x = 0 for the next step in the
algorithm.

The key part of the algorithm is the calculation of the

diagram, i.e. the numbers, as well as the calculation of the
@ associated maximal brackets, fa,.x’s. This is achieved by
successive calls of theentral subroutineThough basically the
Figure 7. The central subroutine for co-trees with uniforrarighing. same as for general co-trees, there are essential simfptifisa
as also indicated earlier. This is partly achieved by symynet

The combinatorial result we need is the following: considerations, partly by our focus only on those sites & th
I’-diagram where we really have to make a test. The flow
diagram is sketched in Fig. 7. The subroutine is called for
all v, starting with the highest value, — 1, and ending with

After this excursion into combinatorics we return to théhe valuer = 0. When all these calls have been made you
study of a given co-tree\ = Alky,--- ,k,] with ceiling realize that you only have to calculate a bracket (following
numbersr,, - - - , .. The [-diagram associated witth is the (30)) and to perform a test corresponding to test sites of the
diagramG = G(ro, - - , 7). That this is indeed &-diagram I'-diagram. Therefore, referring to Lemma 9.1, no more than
follows from Proposition 8.17 4n basic operations are involved in the calls of the subroutine
(for this, a test & > 5?” as well as a calculation := [v, ]

7In passing, we conjecture that evelfydiagram can arise in this way. To iS counted as a basic operation).

illustrate the conjecture, observe that there aiés&diagrams and these may  The final part of the algorithm is a “top-down” de-

be realized a$'-diagrams associated with the co-trees with branching et L .
respectively (1,1,1), (1,1,2), (1,2,3), (2,1,2) and (1,2,4) (regarding termination of the output of the algorithm, understood to

the last pattern, see also Fig. 5). be the spectral levelsy = 0,01 = T4y, - ,0y = 1

Lemma 9.1:For anyT’,-structureG, (G) = 2n — vy(G), in
particular,{(G) < 2n. [Proof in appendik
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and the associated maximal brackets. We suggest that these APPENDIX

data are listed in the formoo, [00|max) (= (0, [0]max), Proof of Theorem 3.1: Assume thatA has full spec-

(01, [01]max); -+ (0, [05]max) (= (n,0)). Each such pairis trym. A straightforward analysis shows that the Kuhn-Tucke
considered to involve only one basic operation, thus addingconditions of Proposition 1.2 can only be fulfilled with*

mostn such operations. If you also want to calcul®gin 8 given via W as described. AsP* € P(A), the stated

part of the final output, another basic operations are neededinequalities must hold. That, conversely: is as stated when
Considering the above discussion, we have proved our Igs¢ inequalities hold amounts to simple checking based on

main result which may be summarized as follows: Proposition 1.2. The formul®,,;, = InZ follows e.g. by

Theorem 9.1:Consider a co-treés = Afk1, --- , kn]. Ap- noting thatD(U,||P*) = In Z whena is a minimal node.

ply the modification of the algorithm from Section VIII as Proof of Corollary 3.2: Once we have proved that (9)
described above. Then the number of tests performed duringlds whenk, > --- > k,,, the formula forP* follows from
execution of the algorithm is at mogt and the essential Theorem 3.1 and (6). Note that the left hand side of (9), tall i
complexity of the entire algorithm, understood as the numbg, is a geometric mean and that the corresponding arithmetic
of basic operations needed to carry out initializationed®i- mean is

nation of theF-dia_lgram and_ the listing of f_;lll pairs of spectral . 1 L N, _ 14 kyyo 1
:ﬁvzllasp::;ji;ssomated maximal brackets is at rastProof pv pNur2  Nypi(L+kugr) = Nopr
hence alsaz < ﬁ i.e. (9) does indeed hold. [ ]
X. CONCLUSIONS AND FINAL COMMENTS Proof of Proposition 5.1: We start with some pre-

The paper offers a reasonably complete study of algorith liminary observations related to any functi@n on A. Put

. Y . . =1 —9(2) and definex as the code obtained from
for the precise determination of universal objects assedia D2 aen €

: N .~ & by “de-relativization”, i.e.x = ¢ + R. Thenk € K(A). Let
with the model of all distributions over a co-tree for whmﬁZS : e .
the implicationa < b = P(a) > P(b) holds. A relatively P denote the matching distribution. We claim that, for every

. S 2 nogdeaq, the equivalences
simple situation corresponds to the case when the umversafj q

predictor satisfies the implication above with strict inalify. D(U,||P) = R < ¢°(a*) = N(a), (36)
The key resuI'F here is Theorem 3.1 with Corollary 3.2 as a D(U,||P) < R < ¢°(a*) < N(a) (37)
natural extension of Ryabko’s result from 1979.
However, the main results concern general co-trees. It enpld. These equivalences are proved in a similar manner and
pears convenient to introduce a notiorrelfativizationapplied We only give the details regarding (37). AddN(a) to the
to codes. This concept is believed to be of interest alsddritsinequality on the left hand side and appeal to the identity
the scope of the present paper. (3), anq you realize that this inequality is equwalent_ te th
Theorem 7.1 provides basic insight into the structure of tfgequality <% (a*) < N(a) + N(a)R, hence also, as claimed,
universal objects, but quite some extra work is involvecbef 0 the inequalityp? (a*) < N(a). _
a reasonable algorithm, presented in Theorem 8.1 is in housdYOW assume that the conditions stated in the lemma hold
Only a crude estimate of the complexity of that algorithfPr @ functiong on A. By monotonicity of¢, P € P. Then,
is discussed. For the special case of co-trees with unifoR¥ the assumptions (13) and (14), we see from (36) and (37)

branching this is much refined. The main result is Theorefat the conditions of the Kuhn-Tucker criterion, Propiosit
9.1. 1.2, are fulfilled. ThereforeP is the universal predictor and

The key to the results are purely combinatorial facts, is@€NCe¢ = ™. - _ o
lated in the transitivity identities in Lemma 7.1 for the geal Necessity of the conditions of the lemma follow in a similar
algorithm and supplied with a count of test sites in Lemm#42y from necessity of the Kuhn-Tucker conditions. =

9.1 for the special case of co-trees with uniform branching. Proof of Lemma 5.1:We may assume thatc A\ o(A).
Itis a curious feature of the technical analysis that the loget P* = > _, w.U. be the barycentric decomposition of
arithmic function only appears rather sporadicly. Accogly, P*. Then, for every: with a < ¢ < @, w, = 0, henceP*(a) =
other functions may be considered. Without going into d®&tai P*(@). If b > @, P*(b) < P*(a) = P*(a) aswg > 0. The
this may result in computations of universal objects tied ttated properties follow. [ |
other notions of entropy and divergence than the standard Proof of Proposition 5.2: Let a be a minimal node and

notions of pure Shannon theory. utb = a@. Thenz*(a) = £*(b). By monotonicity ofz*, *(b)

Finally we note that the interesting connection to a proble% —avo (1]
of isotone regression which was pointed out by a referee, &bounded below by the avera%(n )7(b%) thus, by (13),

the end of Section Il, deserves a closer investigation. R*(b) 2 In N(b). Now,
0= N(a) > (%) (a*) = &*(a) = &*(b) > In N(b)
8There may well be simpler, more direct proofs of Lemma 9.letasn )
links to other combinatorial structures. As an indicatiéthis we note thatthe and N (b) = 1, henceb = a follows. We conclude that is

; 12 ; ; . . . .
number of',-structures is the€atalan number_— ("), which appears in  5ctive, Thus minimal nodes are indeed active. We leave the
many other contexts of combinatorial analysis. The fornfalathe number

of I',-structures may be proved by noting that these numbersfysaltie pI’OOf.Of the remainilng parts Qf the proposition to the reader
recursion relation, = 3°"_; c—1an—y. referring to the fact just established and to Propositidn |



Proof of Proposition 5.3:If a ¢ o(A) thena > a and
#*(a) = &*°(a) = N (@) > N(a) follows. [ ]

Proof of Proposition 7.1: If a is minimal, B = () and
the definition givega, 0] = 0. If a is not minimal, putM =
> tery(a) N(t) and note thatV(a) > M > 1, hence the
positivity of [a, B] follows from the manipulations

1SB(a)l[a, B]

N NG

)InN(a —MInM

- > Nt
teTs(a)

> N(a)lnN(a) —MInM >0.

Proof of Lemma 7.1:In view of the equality
|Sp(a)| = [Sp+(a)| + [SB-(b)[,

14

Proof of Theorem 7.1:Denote by¢ the function onA
defined by¢(a) = [pr(a)]max-

We shall verify the conditions of Proposition 5.1.

First, to prove monotonicity op, consider any path from a
maximal node to a minimal node. L&t > t; > --- > ¢ be
the nodes irg(A) on the path (thus; is a minimal node of\).
Then, by monotonicity, cf. Proposition 7.2(ty) > ¢(t1) >

- > ¢(t,) and, by the definition of, ¢(a) = ¢(¢;) for nodes
on the path witht;_; < a < t; (here,0 < i < k). This proves
monotonicity along any path connecting a maximal node with
a minimal node. Clearly therj is monotone on all of\. The
argument above also shows that all nobdlegth ¢; > b > ¢,
are inactive, thus

(M) CF(A). (38)

Next, we consider a nodec 7(A), saya € T}, and show
that (13) holds. Put/; = T Nna* andV; = Syn ot for j > i.

each of the three identities can be derived from any of therott-€t & be the Iargest integer such tHai; # 0. Then (13) for
two. It therefore suffices to verify (18). For this, we exploith® nodeu follows from the string of equalities:

the equality above and the fact th@k+ (a) is the disjoint
union of {b} and the proper set-differen@®s(a) \ Tz- (b).
Appealing also to the definition of brackets, we find that

Sp(@] (.57~ la.B])
~ |S5(a)|[b, B7] - N(a) + < 2(a))
= (185+(@)] + 1S5- )] ) b, B
~ N(a) + N'(Tp+(a)) - (b) N(Tp- (b))
= |Sp+ (@) ([b. B7] ~ [0, BY]),
thus (18) holds. [ |

Proof of Proposition 7.2:(i): If bis minimal,a cannot be

minimal and the result follows from Proposition 7.1. Assumz

then thatb is not minimal and denote b§3 any blocking set
for b with maximal bracket. The sé8, = (B*\ {b})UB is a
proper subset oB* which is blocking fora. Then[a]max >

[a, Bp] with sharp inequality ifB* is set-theoretically minimal.

By (19) applied to the seB; it then follows that[a, B*] >
[b, B], i.€. [almax > [blmax, With sharp inequality ifB* is
set-theoretically minimal.

(ii): This follows by applying (20) withB = B*. [ ]

_ Z S o) = z IEROILI0

Jj=i beV; Jj=i teU;
k
=33 (N -V w)
=i teU;
= k (NU(UJ') —NU(UJ'H)) =N(a).

J=1

By (38), the validity of (13) for alla € o(A) follows.

Finally, consider a nodé € A\ (A). To finish the proof,
we need only establish the inequality (14) forin fact, we
shall show that the sharp inequalig (b*) < N(b) holds.
o this end, puta = pr(b) and B = B*(a) N b* and use
results already established and the boundedness proferty o
Proposition 7.2, to find that

¢7(b") = [Sp®)e(b) + Y ¢7(t)
teTgr(b)

|SB mdx+ Z N
teTr (b)

< |Sp()|[b, B] + N’ (T5(b)) = N(b).

Proof of Proposition 7.3: Let B* be a set-theoretically We have now seen that = £*, hence (22) holds. As the
maximal blocking set for. with maximal bracket. LeB* be spectrum consists of the points of increas&tf(23) follows.
any blocking set fow with maximal bracket. We shall prove ]
that B* C B*. Assume the contrary. Then there exists B*\
B*, hence there also existse T*\ B* whereT* denotes the
ceiling of B* in a. By monotonicity,[a, B*] > [b', B*]. And,
by boundednesﬂy', B*] > [a, B*]. The two inequalities show
that [a, B*] > [a, B*] which is a contradiction af:, B*] =
[a, B*] = [a]max. We conclude, as desired, th&* C B*.
The reverse inclusion is proved in a similar way when al

Proof of Proposition 8.1: We shall actually prove a

formally stronger result, viz. that, fdre S*(a) \ {a},
B*(a) ANb C B.(b). (39)

Assume, for the purpose of an indirect proof, that this is not
e case. Then, for someec S*(a) \ {a}, there existst €

B* is set-theoretically maximal. As any two set-theoreticall (X~ (@) A b) \ B.(b). We find that
maximal blocking sets fos with maximal brackets are equal, [@]max > [tlmax = [t B« (b)] > [b, B, (b)]
the largest such set, denot&i(a), is well defined. — ] > [b, B*(a)] > [d]

The facts needed to establish the results pertaining to
minimal blocking sets are proved in a similar way. Details Indeed, the first inequality follows by monotonicity as
are left to the reader. B 7T*(a), the second follows aB.,(b) is blocking for¢, the third
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follows by boundedness as- b*\ B, (b), the equality is trivial, —
the next inequality follows a®*(a) is blocking forb and the
last one follows by boundednessias S*(a)\ {a}. From the !
resulting contradiction we conclude that (39) holds. = DD_

G//

Proof of Proposition 8.2: Let B be the largest blocking
set fora with the monotonicity property. A8*(a) is a block- |
ing set fora and has the monotonicity propert®*(a) C B.

To prove the reverse inclusion, assume, for the purpose of
an indirect proof, that this is not the case. Then there &xist - |
t € Tg(a) N S*(a) and we find that - | |

[a, B] > [tImax > [t, B*(a)] > [a]max > [a, B].

This is a contradiction and we conclude thdat C B*(a), I G’
henceB = B*(a) as claimed. [ |

Proof of Lemma 9.1: The proof is by induction on the
spectral index. To start the induction we have to prove the
implication G € T',,, v(G) = 1 = (G) = 2n — 1. This is
proved by induction om. The induction start is easy. Then

ure 10. [lllustration of last part of the proof of Lemma 9.1

P S discussed with dr. P. Harremoés and a number of related

assume that th_e implication holds for indices sm_aller than results, but for other models, have been developed, thoagh n

Let G € I', satisfyy(G) =1, i.e.(0,n) € G. Consider yet published. The recommendations of the referees resulte
G*=G\{(n,n+ 1)\ {(r,n) |0 <v<n-—2}. in substantial changes of the presentation intended toawepr

readability and in the observation of an interesting cotinac

to a problem of isotone regression (cf. end of Section II).

Finally, we thank J. Caesar for technical assistance.

ThenG* € T',,_; andv(G*) = 1. Thus(G*) = 2n —3 by the
induction hypothesis.

In order to computdG) and (G*), first remark that for a
point (v, 1) with © < n — 2, the equivalencév, u) € G <
(v, v) € G* holds and the point is a test site 6rif and only if

it ; * ; ; ; ; [1] B. Fitingof, “Coding in the case of unknown and changinggssage
itis a test site foiG™. It remains to consider pom(s/, ,u) with statistics,” Probl. Inform. Transmissignvol. 2, no. 2, pp. 3-11, 1966,
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