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Computation of Universal Objects for Distributions
Over Co-trees

Henrik Densing Petersen, and Flemming Topsøe,Member; IEEE

Abstract—For an ordered set consider the model of distribu-
tions P for which an element which precedes another element
is considered the more significant one in the sense that the
implication a ≤ b ⇒ P (a) ≥ P (b) holds. It will be shown that
if the ordered set is a finite co-tree, then the universal predictor
for the model or, equivalently, the corresponding universal code,
can be determined exactly via an algorithm of low complexity.
Natural relations to problems on the computation of capacity and
on the determination of information projections are established.
More surprisingly, a direct connection to a problem of isotone
regressionalso appears possible.

Index terms– Algorithm, co-tree, isotone regression, universal
code, universal predictor.
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I. THE PROBLEM

We shall study finite co-trees, i.e. finite ordered setsΛ for
which every non-maximal elementa has a unique immediate
successor, denoteda+. For a ∈ Λ, a↓ denotes theleft section

Manuscript received May 20, 2009; revised November xx, 2011. F. Topsøe
has been supported by the Danish Natural Science Research Council and
by INTAS, project 00-738. Preliminary material was presented at the IEEE
Information Theory and Communications Workshop, Kruger National Park,
South Africa, December 1999, at the IEEE International Symposium on
Information Theory, Washington, DC, June 2001 and at the IEEE International
Symposium on Information Theory, Seoul, June-July 2009.

The authors are with the Department of Mathematical Sciences, University
of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark (e-mail:
hdp@math.ku.dk; topsoe@math.ku.dk).

of all b ∈ Λ with b ≤ a. The elements of a co-tree may be
depicted as nodes of an oriented graph. If there is only one
maximal node,a, the co-tree issuspendedwith a astop-node.
Thena↓ = Λ.
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Figure 1. Some simple suspended co-trees.

Simple examples are depicted in Fig. 1. Case1 is a linear
order. Note that nodes are given in astandard representation
with systematic indexing according to thelevelsof the nodes
which are counted from the top with the top nodea0 in level
0. The largest level of a node is theheightof the co-tree.

For a sequence (k1, · · · , kn) of natural numbers,
Λ[k1, · · · , kn] denotes the suspended co-tree withkν
immediate predecessors of each node in levelν − 1 for
1 ≤ ν ≤ n. These co-trees are co-trees withuniform
branching. The sequence(k1, · · · , kn) is the branching
pattern. The first three co-trees in Fig. 1 are of this type,
respectively,Λ[1, 1], Λ[2] andΛ[1, 2].

By M1
+(Λ) we denote the set of all distributions (always

understood to be probability distributions) overΛ. The order
modelP = P(Λ), which is the object we will study, is the
model of all distributionsP for whichP (a) ≥ P (b) whenever
a ≤ b. 1 By Ua we denote the uniform distribution overa↓.
These distributions as well as their mixtures are all members
of P(Λ). Conversely, anyP ∈ P(Λ) can be written in a unique
way as a convex mixture

P =
∑

a∈Λ

waUa . (1)

In other words, as is easily proved2:

1This model – and not the alternative choice of all order-preserving
distributions – is considered to be the natural one, a main reason being that
if a precedesb (a < b) this is taken as a sign thata is more “significant”
thanb, hence, for sensible distributions, one should haveP (a) ≥ P (b) rather
than the other way round. In terms of coding (see below) our choice appears
even more natural as it reflects the good sense of associatingthe shorter code
words to the more significant events.

2please note that in order to facilitate a focus on essentials, we shall relegate
all proofs of results which are not either well known or considered “easily
proved” to an appendix.
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Proposition 1.1:The order modelP(Λ) is a simplex with
the distributions(Ua)a∈Λ as extremal elements.

The decomposition (1) is thebarycentric decomposition of
P and the set

σ(P ) = {a|wa > 0} (2)

is thespectrumof P .
The setK(Λ) of codes overΛ is here identified with the set

of code-length functionsκ : Λ → [0,∞], which are required
to satisfyKraft’s equality

∑

a∈Λ

e−κ(a) = 1 .

For P ∈ M1
+(Λ) and κ ∈ K(Λ) we denote by〈κ, P 〉 the

average code-length,

〈κ, P 〉 =
∑

a∈Λ

κ(a)P (a) .

The overall goal is to choose a code so as to minimize this
quantity. If P is fixed, the minimum is attained for the code
adapted toP , given by

κ(a) = ln
1

P (a)
; a ∈ Λ ,

and the minimum value is theentropyof P ,

H(P ) =
∑

a∈Λ

P (a) ln
1

P (a)
.

Whenκ is adapted toP , we also express this by saying that
P is the distribution whichmatchesκ.

The redundancyassociated withP and κ, or, in more
suggestive terms, theredundancy ofκ with P as the “true”
distribution is denotedD(P‖κ) and defined as the difference
between actual and minimal possible average code-length, i.e.

D(P‖κ) = 〈κ, P 〉 −H(P ) . (3)

This quantity is nothing but the well knownKullback-Leibler
divergencebetweenP and the distributionQ which matches
κ, in standard notation,

D(P‖Q) =
∑

a∈Λ

P (a) ln
P (a)

Q(a)
.

We define minimax redundancyassociated with the order
model as the quantity

Rmin = inf
κ∈K(Λ)

R(κ)

with R(κ) given by

R(κ) = sup
P∈P

D(P‖κ); κ ∈ K(Λ) .

It may be seen directly, and also follows from our results, that
there exists a unique codeκ∗, the universal code, such that
R(κ∗) = Rmin. The distribution which matches the universal
code is theuniversal predictor. It is considered the most
unbiased representation of the modelP . The two universal
objects identified, are those we shall aim at characterizing
by an algorithm of low complexity. In order to achieve this,
we appeal to a special instance of a result from optimization

Case 1 Case 2 Case 3 Case 4
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Table I
UNIVERSAL PREDICTORS FOR THE CO-TREES INFIG. 1.

theory, which is much used in information theory and there
often identified by a reference to Kuhn and Tucker. We
formulate the result in a way adapted to our needs:

Proposition 1.2 (Kuhn-Tucker criterion):Consider the or-
der modelP = P(Λ) associated with a finite co-treeΛ. Let
P ∗ ∈ P and letκ∗ be the code adapted toP ∗. ThenP ∗ is the
universal predictor (equivalently,κ∗ is the universal code) if
and only if, for some constantR, the following two conditions
hold:

D(Ua‖κ
∗) = R for a ∈ σ(P ∗) , (4)

D(Ua‖κ
∗) ≤ R for all a ∈ Λ . (5)

When this is so,R is the minimax redundancy:Rmin = R.

The role of the result for our approach, is further commented
on in the next section.

As one consequence, one may reduce the search for the
universal objects associated with a general finite co-tree to the
search for suspended co-trees.3

ObjectsP ∗ andκ∗ will from now on denote the universal
predictor and the universal code of a co-treeΛ under discus-
sion. Thespectrumof Λ is the spectrum ofP ∗: σ(Λ) = σ(P ∗).
Nodes inσ(Λ) are referred to asactive nodesof Λ. The co-tree
Λ hasfull spectrumif all nodes are active.

Consider the four examples of Fig. 1. By Proposition 1.2 it
is easy to check thatP ∗ andRmin are as indicated in Table
I. The universal code is the code adapted toP ∗. Except for
Case 3, wherea1 is inactive, the examples have full spectrum.
Apparently, even simple co-trees can have inactive nodes.
Offhand, there is little we can say:

Proposition 1.3:Every maximal node of a co-tree is active.

We leave the simple proof to the reader. and add that less
trivially, cf. Proposition 5.2, also the minimal nodes of a
co-tree are active. In general, the structure ofσ(Λ) is quite

3Indeed, ifΛ is the direct sum of (suspended) co-treesΛν ; ν = 1, · · · , m
with associated minimax redundanciesRν and universal predictorsP ∗

ν then

P ∗ =
m
∑

ν=1

eRν

eR1 + · · ·+ eRm
P ∗

ν

is the universal predictor forΛ and ln
∑

ν eRν the associated minimax
redundancy.
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intricate and one may view the algorithmic determination of
this set for any co-tree as the main problem to be solved. Once
σ(Λ) is determined,κ∗ (hence alsoP ∗) andRmin can easily
be determined, cf. (15) and Corollary 5.1.

II. M OTIVATION

The natural interpretations related to codes as well as the
significance of the problem outlined as one ofgeneral univer-
sal prediction and coding(general, because many other models
than models related to order structure may be considered) is
recognized in the information theoretical literature since long.
Early works in this area include Fitingof [1] and Davisson [2].
The reader may also consult the survey article [3] by Feder
and Merhav.

The original motivation behind our very special study re-
lated only to order models in co-trees consists basically of
three parts. Firstly, to the best of our knowledge, this class is
the most comprehensive class for which an exact determination
of universal objects can be provided either directly or via a
reasonable algorithm. For the subclass of order models based
on linearly ordered sets, a complete result already exists.It
is due to Ryabko who developed a closed formula for the
universal predictor, cf. [4]. For the larger subclass of co-
trees with uniform branching, an algorithm was announced
in Topsøe [5] but the details were never published.

Secondly, our main results, Theorems 7.1, 8.1 and 9.1, may
also be considered as useful reservoirs of examples which may
serve as test cases for future research. However, we remark
that it appears very difficult, even theoretically impossible, to
develop exact results expressed in terms of standard functions
for other desirable models than those here considered, either
based on order structures other than co-trees (e.g. trees) or on
other constructs (such as Bernoulli models). Thus, the ideato
look into models based on sequences rather than individual
observations from an order modelP , is bound to fail. Severe
obstacles to such a program exists as will be revealed by a
reference to Galois theory (details will be provided in research
by Harremoës and Topsøe, in preparation).

As a final basic motivation we note, as pointed out to us
by Boris Ryabko, cf. also [6], that for certain applications
to biology, information about biological species is sometimes
available only in inconclusive form resulting – not in the
direct determination of their relative numbers – but only in
an ordering among the species, from the more frequent to the
less frequent ones. Modelling as done here based on a co-tree
is one possibility, though modelling based on trees rather than
co-trees appear just as interesting, or perhaps even more so.
However, models with trees in place of co-trees are without
reach if you insist on expressing the universal objects in closed
form.

When you look back and consider the methods applied,
further aspects appear which contribute to motivate the present
research. The reliance on Proposition 1.2 points to the inter-
esting connection between minimax redundancy and maximal
transmission rate,capacity, i.e. theredundancy-capacity the-
orem of Gallager and Ryabko, see [7]. In our situation, the
result involves the discrete memoryless channel withΛ as

input- as well as output alphabet and with the distributions
(Ua)a∈Λ as the conditional output distributions, given an input
letter (here a node inΛ). By the redundancy-capacity theorem,
the optimal distribution on the input side is given by the
barycentric coordinates of the universal predictorP ∗ and the
optimal distribution on the output side isP ∗ itself. We shall
not exploit this connection in the sequel. Rather, the situation
is that the results which we shall develop can be used to show
how to determine the optimal distributions and the capacityof
the special discrete memoryless channels that can arise in the
way described.

Another observation concerns a connection to the well
known problem of determininginformation projections. In
fact, to any co-tree we can associate a probability distribution
W ∗ through simple calculations such that the soughtP ∗ is
the information projection ofW ∗ on P(Λ) (for W ∗ take
the measure obtained by normalization ofW from Theorem
3.1). This fact – or the connection to the problem related to
capacity pointed to above – may be exploited to calculateP ∗

via standard numeric algorithms. However, we stress that this
will only lead to approximate determinations ofP ∗. As we are
here concerned with precise determinations, either via a direct
formula (possible only in special cases) or via an algorithm
which stops with the exact result after finitely many steps, we
shall not pursue this possibility. Another matter is that standard
algorithms may be useful anyhow in order to guess what the
spectrum is, and then exact formulas are easy to derive, cf.
the discussion related to (15) in Section VI.

Finally we comment on a connection to a problem of
isotone regressionwithin least squares analysis. This depends
on an observation of an anonymous referee who, based on the
information projection formulation given above, encouraged
the authors to investigate connections to an algorithm for
isotone regression worked out by Pardalos and Xue, cf. [8].
Looking into this has led to a conjecture involving the function
k defined byk(a) = ln 1

W (a) ; a ∈ Λ, viz. that the associated
isotone regression coincides with the relativized universal code
κ̃∗ defined in Section V. In other terms, the conjecture states
that f = κ̃∗ with f the unique isotone function onΛ (i.e.
a ≤ b ⇒ f(a) ≤ f(b)) which minimizes

∑

a∈Λ |f(a)−k(a)|2.
4

The two algorithms, ours and that of Pardalos and Xue,
are different but similar in structure – e.g. both work with a
notion of “blocking”– and may essentially compute the same
objects. Regarding complexity, Pardalos and Xue demonstrate
that their algorithm is in general very efficient whereas we
limit a detailed study of such issues to the case of co-trees
with uniform branching, see Section IX.

III. C O-TREES WITH FULL SPECTRUM

In this section we investigate when a given co-treeΛ has
full spectrum. The criterion we shall find will be expressed in
terms of the numbers

N(a) = |a↓|; a ∈ Λ

4Added in proof: The conjecture has now been settled. Detailswill be
published elsewhere.
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where| · · · | denotes the number of elements in· · · . We also
need the numbers

N(a) = N(a) lnN(a); a ∈ Λ .

Further, fora ∈ Λ, we introduce the notationa− for the set
of immediate predecessorsof a, i.e. the set of allb < a for
which no nodec satisfiesb < c < a. If e.g. a is a minimal
node,a↓ = {a}, N(a) = 1, N(a) = 0, anda− = ∅.

We associate the followingweightswith the nodes ofΛ:

W (a) =

∏

b∈a− N(b)N(b)

N(a)N(a)
; a ∈ Λ (6)

and also introduce the resultingnormalizing factor

Z =
∑

a∈Λ

W (a) . (7)

Theorem 3.1:A co-treeΛ has full spectrum if and only
if, for every pair of nodes(b, a) with b ∈ a−, the inequality
W (b) ≥ W (a) holds. And when this condition is satisfied,
the universal predictor is given by normalization ofW , i.e.
P ∗(a) = W (a)/Z for any a ∈ Λ. Furthermore,Rmin = lnZ
and the universal code is given by

κ∗(a) = Rmin+
(

N(a)−
∑

b∈a−

N(b)
)

.

[Proof in appendix]

We remark that when the condition stated holds, the strict
inequalityW (b) > W (a) will actually hold for all nodes with
b ∈ a−.

Note that the cases 1, 2, and 4 from Section I can be handled
based on this theorem.

If we conceive the result as an algorithm to check whether
the co-tree in question has full spectrum or not, we note that
the algorithm is very efficient as the number of inequalities
which need to be checked is at most the number of nodes in
the co-tree.

Let us have a closer look at Theorem 3.1 in the case of
a co-treeΛ[k1, · · · , kn] with uniform branching. For such a
co-tree, we denote byNν the common number ofN(a) for
nodes in levelν (ν = 0, · · · , n). TheNν ’s may be calculated
recursively as follows:

Nn = 1, Nν = 1 + kν+1Nν+1 for ν = n− 1, · · · , 0. (8)

From Theorem 3.1 we derive the following corollary:

Corollary 3.1: The co-treeΛ = Λ[k1, · · · , kn] has full
spectrum if and only if, for everyν = 0, 1, · · · , n− 2,

( 1

Nν

)

Nν
ρν

( 1

Nν+2

)1−Nν
ρν

≤
1

Nν+1
, (9)

where the numbersρ0, · · · , ρn−1 are given by

ρν = (1 + kν+1)Nν+1 = Nν +Nν+1 − 1 .

[Proof in appendix]

Specializing further we obtain the following corollary which
extends Ryabko’s theorem [4] in a natural way (Ryabko’s
theorem corresponds to the casek1 = · · · = kn = 1 which
givesNν = n− ν + 1 ; ν = 0, 1, · · · , n):

Corollary 3.2: Every co-treeΛ = Λ[k1, · · · , kn] with k1 ≥
k2 ≥ · · · ≥ kn has full spectrum and the universal predictor
P ∗ is given by

P ∗(a) = N−Nν
ν (Nν+1)

kν+1Nν+1/Z

= N−Nν
ν (Nν+1)

Nν−1/Z

for all points a in level ν (ν = 0, 1, · · · , n) with Z a
normalization constant.

IV. PREVIEW OF THE ALGORITHM

For the preview in this section as well as for later usage we
introduce some special notation and concepts for an arbitrary
co-treeΛ. A setB ⊆ Λ is hereditaryif b ≤ a, a ∈ B implies
b ∈ B. A blocking setfor a nodea ∈ Λ is a hereditary subset
B of a↓ \{a} which contains every minimal node ofa↓ \{a}.
The largest such set isa↓\{a}. Theexterior ofB in a, denoted
SB(a), and theceiling ofB in a, denotedTB(a), are the sets

SB(a) = a↓ \B , (10)

TB(a) = set of maximal nodes ofB . (11)

The nodes inTB(a) are the first nodes inB you meet on
paths froma to a minimal node. The exteriorSB(a) is always
non-empty. The same is true for the setsB andTB(a) unless
a is a minimal node ofΛ, in which case only the empty set
is blocking fora.

For any functionφ on Λ, φσ denotes theaccumulated
functiondefined as the set-function

φσ(∆) =
∑

b∈∆

φ(b)

with ∆ any subset ofΛ. Using this notation, we define the
bracket ofa in B, with B a blocking set fora, as the number

[a,B] =
N(a)−N

σ(
TB(a)

)

|SB(a)|
=

N(a)−N
σ(
TB(a)

)

N(a)−Nσ(TB(a))
.

(12)
By [a]max we denote the maximal value of[a,B] with B a
blocking set fora. It turns out that among the blocking setsB
for a with maximal bracket, there exists a set-theoretically
largest one (Proposition 7.3). This uniquely defined set is
denotedB∗(a) and the corresponding ceiling and exterior are
denoted respectivelyT ∗(a) andS∗(a).

Our algorithm is in two parts. Part I determines all theB∗’s
and lists the corresponding maximal brackets. The result can
be shown graphically for co-trees of moderate size, cf. Fig.2,
3 and 4. There we have also indicated in black the top-nodes
as well as all nodes in ceilings (T ∗’s) for theB∗’s constructed
during Part I. We remark that all nodes of the co-tree will be
black after Part I if and only if the co-tree has full spectrum
(and if and only if all tests introduced below are positive).

The search carried out during Part I starts from the bottom
with the minimal nodes. The resulting brackets are all 0
and ceilings are empty. Then move up the co-tree you are
investigating. This is done incrementally so that when you
work with a specific node, saya, you have already inspected
every node ina↓\{a}. The first thing to test is ifB = a↓\{a}
could be the sought blocking setB∗(a). This is done by testing
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if the bracket[a,B] dominates all maximal brackets calculated
for nodes inTB(a) (= a− for this first attempt). If this is not
the case, you indicate the failure on the graph by adding a
“dagger” after the value[a,B]. And then you replaceB by a
somewhat smaller set and repeat the procedure until the test
carried out is positive. For examples of moderate size as in
the figures shown, you can guess which replacements to make.
For the formal algorithm – to be developed rigorously in the
sequel – this is done in a systematic way as indicated later in
the flow diagram in Fig. 6, page 9.

{

4−3≈2.25 †

4/2≈2.77

3 ≈ 3.30

0 0

Figure 2. The algorithm for the Case-3 co-tree.

15 − 4 − 10 ≈ 12.05

4 − 2 ≈ 4.16

0 2 ≈ 1.39

0

10 − 3 − 5 ≈ 11.68

3 ≈ 3.30

0 0

0

{

5−4≈2.50 †

5/2≈4.02

4 ≈ 5.55

0

0

0

Figure 3. The algorithm for a “general” co-treeΛ.

For the co-trees of figures 2, 3 and 4 you are done after com-
pletion of Part I. In these cases the spectrum coincides with
the set of black nodes. The brackets calculated for the active
nodes are the universal code-lengths measured relative to the
shortest code-length. The calculation of minimum redundancy
and the universal code is straight forward as explained in the
section to follow.

{

14−3−10≈10.63 †

(14−3−3−5)/2≈11.15

3 − 2 ≈ 1.91

2 ≈ 1.39

0

10 − 3 − 5 ≈ 11.68

3 ≈ 3.30

0 0

0

{

5−4≈2.50 †

5/2≈4.02

4 ≈ 5.55

0

0

0

Figure 4. The algorithm for the previous co-tree with deletion of one minimal
node.

To get a feel for the numerical figures, we mention that for
the co-tree in Fig. 3, Corollary 5.1 implies that

Rmin = ln
(

8 + 2−2 + 3−3 + 2 · 5−5/2 + 2−6+

+ 2−10335−5 + 2183−155−5
)

,

which is approximately 2.12 measured in natural units, corre-
sponding to 3.06 bits. This may be compared with the 3 bits
necessary to encode the 8 minimal nodes which are equally
probable under the universal predictor.

The sensitivity of the spectrum due to small changes of the
co-tree is illustrated by removing one minimal node from the
co-tree in Fig. 3. This leads to the co-tree in Fig. 4 for which
an extra inactive node emerges in a part of the co-tree which
has not been affected by the removal. Thus one cannot decide
“locally” if a node is active or not. For the co-tree in Fig. 4 one
findsRmin ≈ 2.01 natural units≈ 2.90 bits – compared to the
approximately 2.81 bits needed to encode the 7 minimal nodes
which have equal probabilities under the universal predictor.







12−11≈3.44 †

(12−2·5)/2≈6.86 †

12/4≈7.45

11 − 2 · 5 ≈ 10.28

5 ≈ 8.05

0

Figure 5. A co-tree with “overshadowing”.

Our last concrete example is shown in Fig. 5. For this co-
tree, Part I leads to the nodes in levels 0, 2 and 3 as the
possible active nodes (the “black nodes”). However, the two
nodes in level 2 are not active. This is seen by applying
Part II of the algorithm which runs from the top and down,
at each step turning a black node into an inactive node if
the corresponding exterior set, sayS∗(a), “overshadows” the
black node in question. In the case shown, the set consistingof
the 8 minimal nodes is the blocking set with maximal bracket
for the top-node, hence the two nodes in level 2 are “shadowed
away” and become inactive. For another example illustrating
how Part I and Part II of the algorithm play together, the
reader may turn to the discussion in Section IX of the co-tree
Λ[1, 1, 1, 4, 5, 1, 2, 3], cf. Table 2. The reader may also check
that no black nodes are “shadowed away” during Part II of
the algorithm for the co-trees in Fig. 2, 3 and 4.

More details about the algorithm as well as a proof of its
correctness will be given in the following sections.

V. RELATIVIZATION

With this section we embark on the technical development
leading to an algorithm.

Experience tells us that for typical optimization problemsof
the nature we are studying, “normalization” (via a “partition
function” or constant) is natural. This is for instance reflected
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by the appearance ofZ in Table 1. A natural idea then
is to facilitate the search for universal objects by a prior
normalization. We find it advantageous to work with codes
rather than with distributions. Then, rather than normalizing
via a division, we should normalize by a suitable subtraction.
This leeds to objects measured relative to optimal performance
and we speak about a process ofrelativization.

Relativization may be defined quite generally. However,
we shall only have co-trees in mind for the present study.
Therefore, letΛ denote a fixed co-tree and denote as usual by
Rmin the minimax redundancy for the order modelP = P(Λ).
Motivated by the considerations above, we introduce the
relativized universal codeas the function

κ̃∗ = κ∗ − Rmin .

We first characterize this function among allmonotonefunc-
tionsφ : Λ → R. Here, monotonicity means thatφ(b) ≤ φ(a)
wheneverb ≤ a. A nodea ∈ Λ is φ-active if either a is a
maximal node or elseφ(a) < φ(a+) (recall thata+ denotes
the immediate successor ofa). If a is not φ-active, a is φ-
inactive. If φ = κ̃∗ (or if φ = κ∗), we regain the notion of
active and inactive nodes introduced in Section I.

Proposition 5.1:A real-valued functionφ defined onΛ
coincides with the relativized universal codeκ̃∗ if and only
if it is monotone and satisfies the two requirements:

φσ(a↓) = N(a) for everyφ-active nodea , (13)

φσ(a↓) ≤ N(a) for every nodea ∈ Λ . (14)

[Proof in appendix]

Inspection of the proof shows how to obtain the universal
codeκ∗ from the relativized universal codẽκ∗ by a simple
process of de-relativization:

Corollary 5.1: The minimum redundancy can be obtained
from the relativized universal code by the formulaRmin =
ln
∑

a∈Λ e−κ̃∗(a) and the universal code is given byκ∗ =
κ̃∗ +Rmin.

For each nodea ∈ Λ, the left-sectiona↓ defines a co-tree
in its own right. As another corollary to Proposition 5.1 the
following result is easily proved:

Corollary 5.2: If a ∈ σ(Λ), then the relativized universal
code for the co-treea↓ is obtained by restricting the relativized
universal code forΛ to a↓. In particular,σ(a↓) = σ(Λ) ∩ a↓.

We stress the importance of the assumption thata be active.
Without that assumption new active nodes ina↓ may appear,
e.g.a itself, cf. Proposition 1.3 and Case 3 from Fig. 1 (and
Fig. 2).

For the further study, consider, for anya ∈ Λ, the control
of a, denoteda, defined as the closest active node greater than
or equal toa (i.e. a ∈ σ(Λ), a ≥ a and noc ∈ σ(Λ) satisfies
a ≤ c < a). By Proposition 1.3,a is well defined for alla ∈ Λ.
Clearly, a = a if and only if a ∈ σ(Λ). The significance of
the notion is summarized in the following simple facts:

Lemma 5.1:Let a ∈ Λ. Then, for anyb with a ≤ b ≤ a,
P ∗(b) = P ∗(a) and, therefore, alsõκ∗(b) = κ̃∗(a) holds,

whereas, ifb > a, P ∗(b) < P ∗(a) and κ̃∗(b) > κ̃∗(a) hold.
[Proof in appendix]

Together with other facts, the lemma is used for the proof
of the following useful result:

Proposition 5.2:Every minimal node ofΛ is active. The
relativized universal code is non-negative and vanishes onthe
minimal nodes – and nowhere else. The universal predictor as-
sumes its maximal value on every minimal node and any other
node has a strictly smaller probability. [Proof in appendix]

The proposition illuminates the definition ofκ̃∗. Indeed, we
realize thatκ̃∗ measures code-length relative to the shortest
codeword. This property is specific to co-trees and need not
hold if relativization is considered more generally.

As a last application of the structure related to the notion
of control, we establish the following result:

Proposition 5.3:For any node which is not active, the in-
equality of (14) is sharp, i.e. for such a node,κ̃∗σ(a) < N(a).
[Proof in appendix]

VI. I DEAS ON THE WAY TO AN ALGORITHM

Again, we consider the order modelP for a co-treeΛ. We
aim at developing an efficient algorithm for the determination
of the universal objects. Instead of going directly into this we
shall take time in this section first to explain the ideas behind.

First, in order to motivate the introduction of blocking sets
and brackets, we observe that if, somehow, the spectrumσ(Λ)
is known, κ̃∗ is easy to calculate. As̃κ∗(a) = κ̃∗(a) holds
generally, we need only worry about the values ofκ̃∗ for active
nodes. So, leta ∈ σ(Λ). If a is minimal, κ̃∗(a) = 0. If a
is not minimal, denote byT the set of maximal nodes in
(

a↓∩σ(Λ)
)

\{a}. By Proposition 5.2,T is a “cross-section” of
a↓ in the sense that every path froma to a minimal node meets
T in exactly one point. We putB =

⋃

t∈T t↓ andS = a↓ \B.
Then κ̃∗ assumes the same value,κ̃∗(a), on all nodes inS
and, considering the decomposition ofa↓ in the two setsS
andB, we find from Proposition 5.1 that

N(a) = (κ̃∗)σ(a↓) = |S| · κ̃∗(a) + (κ̃∗)σ(B)

= |S| · κ̃∗(a) +
∑

t∈T

(κ̃∗)σ(t↓) = |S| · κ̃∗(a) +
∑

t∈T

N(t)

= |S| · κ̃∗(a) +N
σ
(T ) ,

and conclude that

κ̃∗(a) =
N(a)−N

σ
(T )

|S|
=

N(a)−N
σ
(T )

N(a)−Nσ(T )
, (15)

recognizable as a bracket according to the definition (12).
Note that the formula holds for all active nodes, including
the minimal ones (for whichT = B = ∅ andS = {a}).

The further development depends on certain relations be-
tween blocking sets and their associated brackets. The prop-
erties we need are derived from certaintransitivity identities,
stated in Lemma 7.1. Of special interest are blocking sets with
maximal brackets. As indicated in Section IV, for each node
there exists a set-theoretically largest blocking set fora with
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maximal bracket. This is the setB∗(a) and the associated
exterior and ceiling are the setsS∗(a) andT ∗(a).

We can now define setsT ∗
0 , T

∗
1 , · · · , the ceiling hierarchy,

by a construction “from the top” : We start withT ∗
0 , by

definition the set of maximal nodes ofΛ. Then, asT ∗
1 , we

take the union of all sets of the formT ∗(t) with t ∈ T ∗
0 . We

continue “down the co-tree” . Formally, fori ≥ 1, we put

T ∗
i =

⋃

t∈T∗
i−1

T ∗(t) . (16)

Clearly, the setsT ∗
i are eventually empty. Byσ(Λ) we denote

the union
σ(Λ) =

⋃

i≥0

T ∗
i . (17)

For any nodea, the projection of a on σ(Λ) is the unique
node pr(a) ∈ σ(Λ) for which a ∈ S∗(pr(t)). We do not
know if this notion coincides with the notion of control, i.e.
if pr(a) = a holds generally. Anyhow, it is sufficiently close
that we can argue with it in much the same way as in the
beginning of this section, thereby deriving a formula forκ̃∗.

To any nodes ∈ σ(Λ) \ T ∗
0 we associate the unique node

µ(t) ∈ σ(Λ) for which s ∈ T ∗(µ(t)) (it is the “mother” of
s).

Using the notions just introduced, we can, in our first main
result, Theorem 7.1, characterize the universal code as well
as the spectrumσ(Λ). We point out that perhapsσ(Λ) =
σ(Λ) holds generally, but we do not know this. In spite of
this unsettled issue, Theorem 7.1 is satisfactory as no essential
saving in efficiency seems to result ifσ(Λ) = σ(Λ) was known
to hold.

The construction behind Theorem 7.1 depends on the block-
ing sets B∗(a). During Part I of the algorithm all these
blocking sets will be constructed. A naive search will require
exponential time in the size of the problem. To develop an
efficient algorithm, new ideas are needed. What we will do is
to revert the construction and work “from the bottom” through
the minimality componentsM0,M1, · · · ,Mh. Here,h is the
height ofΛ and the decompositionΛ = M0 ∪M1 ∪ · · · ∪Mh

is obtained by successive removals of minimal nodes, i.e.Mi

is the set of minimal nodes of the co-tree

Λ \
⋃

0≤j<i

Mj .

The reason why a construction from the bottom is to prefer
is that when you work from the top, and consider candidates
for the B∗-,S∗- and T ∗-sets without knowing these sets for
nodes further down the co-tree, you risk that after some time
an inconsistency occurs and this will force you to discard
previous work, and to start afresh. Quite differently, whenyou
work from the bottom, the sets concerned remain unchanged
once constructed as they are not influenced by the development
further up in the co-tree. It should, however, be remarked that
sets already constructed may later turn out to be superfluous
as sets associated with nodes higher up in the co-tree, say
nodesb > a, may “overshadow” sets already constructed in
the sense thatS∗(b) ⊇ S∗(a) may happen, cf. the discussion
of Λ[1, 2, 4] in Fig. 5. The insight needed to see that Part I of

the algorithm works as intended will be developed in Section
VIII.

A basic element of the algorithm is a subroutine, referred to
as thecentral subroutine. It is called several times during Part
I. The flow diagram is sketched in Fig. 6. As input to the sub-
routine one takes a nodea ∈ Λ, and as output the subroutine
provides you withB∗(a), T ∗(a) and [a]max = [a,B∗(a)]. It
is understood that the corresponding objects associated with
nodes ina↓ \ {a} are already known when the subroutine
for a is called. When the central subroutine has been called
for all nodes in the co-tree as input, all ceilingsT ∗(a) and
all maximal brackets[a]max will be known and Part I of
the overall algorithm is completed. For the final part of the
algorithm, Part II, we work “from the top” by appealing to
Theorem 7.1. This provides you directly with the relativized
universal code from which the universal code (hence also the
universal predictor) may easily be constructed as explained in
Section V.

VII. C ONSTRUCTION FROM THE TOP

We start by developing some properties of blocking sets and
brackets.

Proposition 7.1:Let B be a blocking set fora. Then the
bracket[a,B] vanishes ifa is a minimal node and is positive
otherwise. [Proof in appendix]

We shall show that the universal code can be constructed
based on the brackets alone. Proposition 5.1 is an important
step in this direction but there are obstacles to overcome
in connection with the necessary checking of inequalities
related both to (14) and to the requirement of monotonicity.
It turns out that these problems can be overcome, based on
certain identities which allows one to compare brackets among
each other. Two simple constructions are involved,filling and
restriction. Specifically, ifB is a subset ofΛ, andb any node,
the filling of B at b is the setB ∨ b = B ∪ b↓ and the
restriction ofB to b↓ is the setB ∧ b = B ∩ b↓. Typically,
these constructions are used ifB is a blocking set fora, b < a
andb /∈ B. ThenB ∨ b is a new blocking set fora andB ∧ b
is a blocking set forb.

Lemma 7.1 (transitivity identities, basic case):Let a > b,
let B be a blocking set fora and assume thatb /∈ B. Put
B+ = B ∨ b andB− = B ∧ b. Then the following identities
hold:

|SB+(a)|
(

[b, B−]− [a,B+]
)

= |SB(a)|
(

[b, B−]− [a,B]
)

,

(18)

|SB(a)|
(

[a,B]− [a,B+]
)

= |SB−(b)|
(

[b, B−]− [a,B+]
)

,

(19)

|SB−(b)|
(

[b, B−]− [a,B]
)

= |SB+(a)|
(

[a,B]− [a,B+]
)

.

(20)

[Proof in appendix]

In order to ease the notation, we agree that if a set of the
form B ∧ b is blocking forb, we may say thatB is blocking
for b and writeSB(b) in place ofSB∧b(b) and [b, B] in place
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of [b, B ∧ b]. In the formulation of Lemma 7.1 we may thus
write SB(b) rather thanSB−(b) and[b, B] rather than[b, B−].

As all terms of the form|S·(·)| are positive, it is clear that
we can use (18)-(20) for comparisons of brackets. We shall
soon see instances of this. For now we note that the lemma
implies that the numbers[a,B], [a,B+] and [b, B] are either
identical or else[a,B] lies strictly between[a,B+] and[b, B],
i.e. either [a,B+] < [a,B] < [b, B] or [b, B] < [a,B] <
[a,B+] holds.

The transitive nature of the lemma is best revealed by
generalizing the result.5

With reference to notions from Section IV, a blocking set
for a ∈ Λ with maximal bracket isset-theoretically maximal
(minimal) if it is not a proper subset (superset) of some other
blocking set fora with maximal bracket.

Proposition 7.2:Let B∗ be a blocking set fora ∈ Λ with
maximal bracket.

(i) (monotonicity): The inequality[a]max ≥ [b]max holds for
everyb ∈ TB∗(a). If B∗ is set-theoretically minimal, the sharp
inequality [a]max > [b]max holds;

(ii) (boundedness): The inequality[a]max ≤ [b, B∗] holds
for everyb ∈ SB∗(a) \ {a}, and the inequality is sharp ifB∗

is set-theoretically maximal. [Proof in appendix]

Exploiting these results we obtain a useful uniqueness
property:

Proposition 7.3: (uniqueness) For every nodea, there exist
two uniquely defined blocking sets fora with maximal bracket,
B∗(a) and B∗(a), characterized as, respectively the set-
theoretically largest such set and the set-theoretically smallest
such set. In particular, for every blocking setB for a with
maximal bracket, the inclusionsB∗(a) ⊆ B ⊆ B∗(a) hold.
[Proof in appendix]

We do not know ifσ(Λ) = σ(Λ). This will be the case if,
for a ∈ Λ, there is a unique blocking set fora with maximal
bracket, i.e. ifB∗(a) = B∗(a) holds generally.

For the constructions to follow, we have chosen to focus on
the largest sets, theB∗(a)’s. We denote byT ∗(a) the ceiling
in a associated withB∗(a) and byS∗(a) the exterior ina
associated withB∗(a). These are the sets we shall use for the
construction of̃κ∗.

Consider the ceiling hierarchy(T ∗
i )i≥0 introduced in Sec-

tion VI. Here and below, the largest index withT ∗
i 6= ∅ is

denotedδ. Clearly, δ ≤ h, the heighth of Λ, but often it
is smaller, e.g. for Case 3 of Fig. 1,δ = 1 and h = 2. In
the extreme case when every maximal node is also a minimal
node,T ∗

0 is the only non-empty set in the hierarchy andδ = 0.

5what we have in mind is the following result, which can be proved by
induction: Letk ≥ 2 and consider nodesa1, · · · , ak with a1 > · · · > ak .
Assume thatB is a blocking set fora1 and thatak /∈ B. PutBi = B ∨ ai
for i = 2, · · · , k andBk+1 = B. Then

k
∑

i=2

|SBi
(a1)|

(

[ai−1, Bi]− [ai, Bi+1]
)

= |SB(a1)|
(

[a1, B]− [ak, B]
)

.

Based on the ceiling hierarchy we define a decomposition
(S∗

i )0≤i≤δ of Λ as follows:

S∗
i =

⋃

a∈T∗
i

S∗(a) = {a ∈ Λ|pr(a) ∈ T ∗
i } . (21)

With reference to the ceiling hierarchy and associated
notions, we can now state the main result of this section:

Theorem 7.1:The relativized universal code is given by

κ̃∗(a) = [pr(a)]max for all a ∈ Λ , (22)

and the spectrum ofΛ is the following subset ofσ(Λ):

σ(Λ) = T ∗
0 ∪ {t ∈ σ(Λ) \ T ∗

0 | [µ(t)]max > [t]max} . (23)

[Proof in appendix]

VIII. T HE CENTRAL SUBROUTINE

We continue the study of universal objects associated with
the modelP(Λ) over a co-treeΛ.

The construction in Theorem 7.1 builds on the setsB∗(a).
As noted in Section VI, the theorem cannot be used directly
to obtain an algorithm of low complexity. Instead, we speed
up the construction by working “from the bottom” based on
the decompositionΛ = M0 ∪ M1 ∪ · · · ∪ Mh in minimality
components.

We shall determine theB∗-sets for all nodes. For nodes in
M0 this is trivial, and we start by considering nodes inM1,
continue with nodes inM2, and so on until we get at the nodes
in Mh. We will assume that the decomposition in minimality
components is given off-hand and not be concerned with the
time it takes to determine this decomposition. Anyhow, this
can be achieved by an efficient algorithm based on a systematic
indexing of the nodes as in the examples shown in Fig. 1.

The two propositions to follow are important technical tools
needed to develop an efficient algorithm.

Proposition 8.1: (Γ-structure) Leta ∈ Λ. Then, for every
b ∈ S∗(a), the inclusionS∗(b) ⊆ S∗(a) or, equivalently,
B∗(a) ∧ b ⊆ B∗(b) holds. [Proof in appendix]

The name attached to the result lies in the shape of the
letter “Γ” and will appear natural when we specialize to co-
trees with uniform branching in the next section.

The stronger result actually proved in the appendix supports
the view that “normally”B∗(a) = B∗(a).

For our second auxiliary result, let us agree to say that a
blocking setB for a nodea has themonotonicity propertyif
[a,B] ≥ [t]max for everyt ∈ TB(a).

Proposition 8.2: (Characterization): For anya ∈ Λ, B∗(a)
can be characterized as the largest blocking set fora with the
monotonicity property. [Proof in appendix]

When applying this result we have a construction “from the
bottom” in mind. Then the characterization makes good sense
since, when searching for the setB∗(a), all setsB∗(b) with
b ∈ a↓\{a} will be known and thus the monotonicity property
can be checked for any candidate setB we may suggest for
B∗(a).
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We emphasize that when estimating the complexity of the
algorithms under development, we will neglect any contribu-
tion from efforts to make basic information about co-trees
studied accessible to us in a convenient form. We shall thus
talk aboutessential complexityof the algorithms. The basic
information we will need can be listed as follows:

• the decomposition in minimality components,Λ = M0 ∪
· · · ∪Mh,

• the mapa y a− which makes the immediate predeces-
sors of any node accessible to us,

• the mapa y a↓ which gives access to the left sections,
• the mapa y N(a) and, finally,
• the mapa y N(a).
Of course, there is some redundancy in this list (especially,

N is given in terms ofN ). However, the list is chosen for
convenience in view of the algorithm to follow. It is clear
that if we identify a co-tree using the standard representation,
the basic information can be provided by efficient algorithms
operating on the underlying set of finite sequences.

The algorithm we shall now describe is based on Theorem
7.1 which shows that if we know, for every nodea, the ceiling
T ∗(a) as well as the maximal bracket[a]max, then it is easy
to determine the relativized universal code, and hence the
universal code and the universal predictor. The algorithm calls
several times thecentral subroutine, see Fig. 6, which, for a
given inputa, calculates the key objects associated witha,
taken to be the setsB∗(a) andT ∗(a) and the number[a]max.
Note that we find it convenient to work with bothB∗(a) and
T ∗(a), though the one may of course be determined from the
other.

For the minimal nodesa ∈ M0, we already know what the
key objects are and there is no reason to call any subroutine
for these nodes. To determine the key objects associated with
any node, we first call the central subroutine for nodes in the
minimality componentM1, then for nodes inM2 and so on
until we get to the nodes inMh (with h the height ofΛ).

Let us have a closer look at the central subroutine. Consider
a particular inputa ∈ Λ \ M0. When the subroutine is
called it is assumed that key objects about preceeding nodes
have already been determined. This will be the case by the
procedure chosen as nodes in(M0),M1, · · · ,Mh are called
in succession.

We useB, T and α as place-holders for the sought key
objects associated witha. The largest blocking set fora
altogether isa↓ \ {a}. This is the first set we will test and
our initial assignment box putsB := a↓ \ {a}. We also right
away assign the appropriate set toT and the appropriate value
to α.

After the introductory assignments, we arrive at the central
box, the(b, β)-box. It is important that when we come to this
box, which may occur many times during the execution of the
subroutine,B, T , andα are known to have certain properties:
B must be a blocking set fora, T = TB(a) andα = [a,B]
must hold, and then we stress thatB∗(a) ⊆ B must be known
to hold. In order to carry out the calculations in the(b, β)-box,
it is understood that there is a natural way to list the nodes
in T , say ast1, · · · , tk (the standard representation ofΛ may
be used for this purpose). For the calculation, we go through

Input a

B := a↓\{a}

T := a−

α := [a,B]

b := Argmax
t∈T

[t]max

β := [b]max

α ≥ β

B := (B\b↓) ∪B∗(b)

T := (T \{b})∪T ∗(b)

α := [a,B]

Output

B∗(a) = B

T ∗(a) = T

[a]max = α

RETURN

No

Yes

Figure 6. Flow diagram for the central subroutine.

all brackets[t]max with t ∈ T , note the largest value and
then consider the first node amongt1, · · · , tk for which the
corresponding bracket attains this value. By definition, this is
theArgmax-node. As place-holders for this node and for the
corresponding maximal bracket we useb, respectivelyβ and
thus carry out the assignments

b := Argmax
t∈T

[t]max ; β := [b]max .

Concerning the calculation of brackets in the central box and
elsewhere in the subroutine, this is based on basic information
about the co-tree (N ’s andN ’s) and on output (T ∗’s) from
previous calls of the subroutine according to the formula

[t]max =
N(t)−

∑

s∈T∗(t) N(s)

N(t)−
∑

s∈T∗(t) N(s)
. (24)

After the central box comes the test-box “α ≥ β?” . We
realize that what is tested is really ifB has the monotonicity
property. If it does,B = B∗(a) by Proposition 8.2 and we go
to the output box and then return to the algorithm.

Assume now that the test is negative, i.e.[a,B] < [b]max.
It is a key point of the algorithm that thenb ∈ S∗(a) must
hold. Assume the contrary. Then, asB∗(a) ⊆ B, b ∈ T ∗(a)
and by monotonicity we then have[a]max ≥ [b]max. Consider
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any t ∈ T and note that

[t]max ≤ [b]max ≤ [a]max .

By boundedness, we must conclude from this thatt ∈ B∗(a)
since, if t ∈ S∗(a), [a]max < [t, B∗(a)] ≤ [t]max would hold,
contradicting the inequalities above. ThusT ⊆ B∗(a). SinceT
is the ceiling ofB in a and sinceB∗(a) ⊆ B we conclude that
in fact B = B∗(a) must hold. ThenB does after all have the
monotonicity property of Proposition 8.2. This contradicts the
result of the test. All in all we conclude that indeedb ∈ S∗(a).

Knowing this, we can apply the gamma structure, Propo-
sition 8.1, and find thatB∗(a) is a subset of the set

(

B \
{b}

)

∪B∗(b). This set is a blocking set fora asb cannot be a
minimal node (thenβ = 0 would hold and the test would have
been positive). We take this set as our new set to be tested and
make the proper assignments ofB, T andα in the next box
of the flow diagram. These possible key objects are then fed
into the (b, β)-box and we continue until, eventually, the test
for the monotonicity property is positive.

Remarks. Naturally, if the test is negative and there are
several nodes inT with [b, B∗(b)] maximal, we may econo-
mize and restrict the candidate set further. In more detail,put
m = maxt∈T [t]max and assume that there are several nodes
in T , sayb1, · · · , bk with maximal bracketm. Then we may
as our new assigned key objects take

B :=
(

B \
k
⋃

ν=1

b↓ν

)

∪
k
⋃

ν=1

B∗(bν) , (25)

T :=
(

T \
k
⋃

ν=1

{bν}
)

∪
k
⋃

ν=1

T ∗(bν) , (26)

α := [a,B] . (27)

It follows from our analysis above that the new setB
still containsB∗(a). Further, theα’s increase through the
subroutine. One way to see this when multiple reductions
are performed as in (25) -(27) is to make the reductions step
by step. First, putB0 = B (the old setB) and then define
successive reductions by putting

Bν =
(

Bν−1 \ b
↓
ν

)

∪B∗(bν)

for ν = 1, · · · , k. Then the setBk is equal to the set defined
in (25). This relies on successive applications of (19) and on
monotonicity. Details are left to the reader. This remark will
be important for the special co-trees to be discussed in the
next section.

Other modifications may speed up the execution of the
subroutine, e.g. one may note that nodes inM1 can also, just
as minimal nodes, be dealt with outside the subroutine and
that some of the information about calculated brackets[t]max

at one stage may be reused for the next stage. We shall not be
concerned here with such fine-tunings for general co-trees.

The full algorithm for the calculation of̃κ∗, and hence the
sought universal objects, consists of the following steps:

• initialization providing basic information about the co-
tree,

• trivial assignment of key objects to nodes inM0,
• call of the central subroutine for all nodes inM1,
• · · ·
• call of the central subroutine for all nodes inMh,
• top-down construction of the ceiling hierarchy and simul-

taneous listing of the values of̃κ∗, cf. Theorem 7.1.

The steps until the final step constitutes Part I of the
algorithm. The final step is Part II.

By the foregoing discussion, it is clear that the algorithm
does indeed calculate the desired objects. It is also pretty
clear that this is achieved in polynomial time in the size
of the problem. Let us discuss this in more detail but only
aim at a rough estimate of the efficiency of the algorithm.
Firstly, as remarked before, we shall neglect the time con-
sumed during initialization. Also, we shall not be concerned
with the memory requirements of the algorithm or with the
extra cost incurred by administrative operations involvedin
the memory management. Further, we shall not discriminate
between various basic operations such as additions, subtrac-
tions, multiplications, divisions and comparisons of numbers
as well as0, 1-tests (based on known entities). Theessential
complexityof the algorithm, denotedC(Λ), is then taken to
be the number of basic operations needed from start to end of
the algorithm with the reservations as indicated above.

We shall estimateC(Λ) in terms of the numbern of nodes
in Λ. Clearly,C(Λ) ≤ n ·maxa∈Λ C(a) whereC(a) denotes
the essential complexity of the central subroutine when it is
called with the nodea as input.

For a fixed, we can estimateC(a). Regarding the initial
assignments, only the calculation of[a,B] needs to be taken
into account. As[a,B] = N(a)−

∑

t∈a− N(t), at most|a−|
basic operations are needed, hence at mostn such operations.

For the cycle “(b, β)-box to test-box to new assignments” ,
this will be visited at most|a↓| many times, hence at most
n times. And for one run through the cycle we need at most
|T | ≤ n basic operations for the determination of(b, β) (as
the numbers[t]max with t ∈ T are already known). We permit
ourselves to ignore the minimal requirement needed to carry
out theα ≥ β test. But we have to consider the requirement
related to the new assignments ofB, T andα. RegardingB,
we need to know, for each node, whether the node is in the set
or not. This can be decided by checking membership for each
of the three setsB, b↓ andB∗(b). As the setsb↓ andB∗(b)
are known, we only need to test membership forB, and this
requires at mostn tests. Similarly forT . And regardingα, we
realize from (15) that at most2 · |T | ≤ 2n basic operations are
needed. The new assignments thus require at most4n basic
operations.

The rough estimates above show thatC(a) ≤ n + n(n +
4n) ≤ 6n2.

We have now completed all elements in the proof of our
second main theorem:

Theorem 8.1:The algorithm described above calculates the
ceiling hierarchy and thereby the universal objects associated
with a co-treeΛ in polynomial time. The essential complexity
as defined above is at most6 · n3 wheren is the number of
nodes inΛ.
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Remark. By studying “worst possible scenarios” regarding
the possibilities for the geometric locations of the ceilings
calculated by the central subroutine it should be possible to
bring down the estimate6n3 quite significantly. We shall look
into this in Section IX, but only for co-trees with uniform
branching.

IX. CO-TREES WITH UNIFORM BRANCHING

Consider a co-treeΛ of heightn with uniform branching.
Let (k1, · · · , kn) be the branching pattern. Denote byΛν the
set of all nodes in levelν. Put Kν = |Λν | and, for a node
a ∈ Λν , put Nν = N(a) and Nν = N(a). Clearly, Kν =
k1 · · · kν , thus, recursively,

K0 = 1, Kν = kνKν−1 for ν = 1, · · · , n. (28)

Regarding the convenient calculation of theNν ’s, see (8).
For the determination of̃κ∗, we shall specialize the algo-

rithm of the previous section to the present situation of a
co-tree with uniform branching. For reasons of symmetry –
see also the discussion related to (25)-(27) – we need only
work with certain special blocking sets. By[ν, µ] we denote
the bracket[a,B] for a nodea ∈ Λν with the blocking set
B = a↓ ∩

⋃

i≥µ Λi for which thenTB(a) = a↓ ∩ Λµ. These
brackets are well-defined for points(ν, µ) with 0 ≤ ν ≤ n−1
and ν + 1 ≤ µ ≤ n. We extend the definition by adding the
point (n, n+1). This point represents a minimal node and the
empty blocking set. Therefore, we put[n, n+ 1] = 0. For all
other brackets we find that

[ν, µ] =
Nν − kν+1 · · · kµNµ

Nν − kν+1 · · · kµNµ
. (29)

=
KνNν −KµNµ

KνNν −KµNµ
. (30)

The bracket diagramconsists of all these brackets. A numer-
ical example is shown in Table 2.

Given ν, define[ν]max andτν by

[ν]max = max
µ>ν

[ν, µ] , (31)

τν = Argmax
µ>ν

[ν, µ] . (32)

Then, for a nodea ∈ Λν , T ∗(a) = a↓ ∩ Λτµ . 6 The numbers
[ν]max are themaximal bracketsand theτν ’s are theceiling
numbers.

0.00
8 12.62 12.69 12.76 12.84 9.55 5.76 6.59 5.55 8
7 18.51 18.77 19.04 19.32 13.19 5.97 8.68 7
6 25.53 26.24 27.00 27.83 16.94 3.25 6
5 81.21 91.91 106.17 126.14 85.39 5
4 77.03 100.59 147.73 289.12 4
3 6.33 6.33 6.33 3
2 6.33 6.33 2
1 6.34 1

µ/ν 0

Table 2. Bracket diagram forΛ[1, 1, 1, 4, 5, 1, 2, 3]

6to be sure, theArgmax in (32) has to be understood as the first index
for which the maximum is reached, since we have not been able to exclude
the possibility that the maximum is reached for several values ofµ.

The ceiling numbers can be determined directly from the
bracket diagram. For instance, forΛ[1, 1, 1, 4, 5, 1, 2, 3], we
find from the column in Table 2 withν = 2 that τ2 = 4 and
that [2]max ≈ 147.73. Then, by Theorem 7.1, the nodes in
levels 0, 5, 7 and 8 are the active nodes. Further, the values
of κ̃∗ for nodes in levels 0,1,2,3 and 4 is 81.21 and the values
of κ̃∗ for nodes in levels 5,6,7 and 8 are, respectively 5.97,
5.97, 5.55 and 0.

Using the strategy as exemplified above for the calculation
of κ̃∗, the full bracket diagram must be calculated and this
amounts to aboutn2/2 basic computations. This can be
improved considerably by appeal to the algorithm developed
in Section VIII. ForΛ[1, 1, 1, 4, 5, 1, 2, 3] one may for instance
reduce the number of calculations of brackets from 36 (corre-
sponding to Table 2) to 13 (will follow from results below).
The basic facts we need are Propositions 8.1 and 8.2. The
algorithm dictates that the bracket diagram is calculated for
descending values ofν and ascending values ofµ. To initialize,
one sets[n]max = 0 and τn = n + 1. Then one calculates in
succession[n − 1]max and τn−1, then [n − 2]max and τn−2

and so on until[0]max andτ0 are calculated. On the way, the
only tests that are performed are of the type “[ν, µ] ≥ [µ, τµ]?”
and, in fact, not all these tests have to be performed as the
result is bound to be negative (and henceτν > µ) in case,
for a value ofξ with ν < ξ < µ, one has already found that
τξ > µ. This follows by Proposition 8.1.

In order to study more closely which tests can be neglected
and which not, we introduce the abstract notion of aΓ-
diagram. These diagrams are first discussed in their own right.
After having developed a main property, Lemma 9.1 below,
we return to the actual problem concerning co-trees.

Given are natural numberst0, · · · , tn with n ≥ 1 such that:

tn = n+ 1 , (33)

ν + 1 ≤ tν ≤ n for all 0 ≤ ν ≤ n− 1 , (34)

if ν ≤ µ < tν , then tµ ≤ tν . (35)

Then theΓ-diagramG = G(t0, · · · , tn) consists of all points
(ν, µ) with 0 ≤ ν ≤ n for which ν + 1 ≤ µ ≤ tν . More
precisely,G is a Γn-diagramsandn is the height of G. As
a singular case we allow thatn = 0. There is only oneΓ0-
diagram, thetrivial diagramconsisting only of the point(0, 1).

By (35), if you consider the column from(ν, ν + 1) to
(ν, tν) and place a horizontal bar on top of and to the right
of (ν, tν) then you meet no points inG until you reach the
diagonal element(tν , tν + 1). Having the shape of the letter
“Γ” in mind, this property accounts for the terminology “Γ-
diagram” . For a possibly more illuminating way of expressing
the key property, see below.

A site (ν0, µ0) ∈ G = G(t0, · · · , tn) is a test sitefor G,
if ν < n and G(s0, · · · , sn) is also aΓn-diagram where
all the si are equal toti exceptsν which is set toµ. For
example, all sites(ν, τν) and (ν, ν + 1) with ν < n are test
sites. For theΓ10-diagram displayed in Fig. 8, we have 17 test
sites, corresponding to the marked positions. For a generalΓ-
diagramG, we denote by〈G〉 the number of test sites.

Two operations onΓ-diagrams are considered: Therestric-
tion of G(t0, · · · , tn) to {ν, · · · , n} is the Γn−ν-diagram
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G(tν − ν, · · · , tn − ν) and the direct sum of the two Γ-
diagramsG(t0, · · · , tn) and G(s0, · · · , sm) is the Γn+m-
diagramG(t0, · · · , tn−1, s0 + n, · · · , sm + n). Fig. 10, page
15 provides an example of a direct sum.

For a Γn-structure G = G(t0, · · · , tn) we define the
spectral levelsσ0, · · · , σγ by σ0 = 0, σi = tσi−1 for all values
of i ≥ 1 until you reach the indexγ with σγ = n. We call
γ = γ(G) the spectral indexof G. The spectral index of
the trivial Γ-structure is0, all otherΓ-structures have positive
spectral indices.

Note that the spectral levelsσ0, · · · , σγ can be constructed
geometrically as indicated in Fig. 9 by “letting the sun shine
from the left” and noting the column numbers of the sunlit
columns. The spectral indexγ(G) is the number of sunlit
columns minus1. Using the “sunshine terminology” we can
also express the essentialΓ-structure, formally given by the
requirement (35), by saying that when the sun illuminates part
of a column, it illuminates the entire column. And this property
must also hold for restrictions of theΓ-diagram.

Input ν

µ := ν + 1

α := [ν, µ]
β := [µ]max

α ≥ β

µ := τµ

α := [ν, µ]

Output

τν = µ

[ν]max = α

RETURN

No

Yes

Figure 7. The central subroutine for co-trees with uniform branching.

The combinatorial result we need is the following:

Lemma 9.1:For anyΓn-structureG, 〈G〉 = 2n− γ(G), in
particular,〈G〉 ≤ 2n. [Proof in appendix]

After this excursion into combinatorics we return to the
study of a given co-treeΛ = Λ[k1, · · · , kn] with ceiling
numbersτo, · · · , τn. TheΓ-diagram associated withΛ is the
diagramG = G(τ0, · · · , τn). That this is indeed aΓ-diagram
follows from Proposition 8.1.7

7In passing, we conjecture that everyΓ-diagram can arise in this way. To
illustrate the conjecture, observe that there are 5Γ3-diagrams and these may
be realized asΓ-diagrams associated with the co-trees with branching patterns,
respectively (1, 1, 1), (1, 1, 2), (1, 2, 3), (2, 1, 2) and (1, 2, 4) (regarding
the last pattern, see also Fig. 5).

∨
∨∨

∨
∨∨

∨

∨

∨
∨

∨
∨∨

∨
∨
∨∨

Figure 8. AΓ10-diagram with test sites.

Figure 9. Sunlit culumns for the diagram in Fig. 8.

The algorithm we shall discuss consists of three parts:
• initialization,
• construction of theΓ-diagram,
• determination of the spectral levels, final output.
The initialization consists of the calculation of the numbers

Nν , Kν, KνNν and KνNν for ν = 0, · · · , n. For this,
the formulas (8), (28) and (30) are used. In total,4n basic
operations are needed for the calculations. You may also
consider as part of the initialization the assignment of start
valuesτn = n + 1 and [n]max = 0 for the next step in the
algorithm.

The key part of the algorithm is the calculation of theΓ-
diagram, i.e. the numbersτν , as well as the calculation of the
associated maximal brackets, the[ν]max’s. This is achieved by
successive calls of thecentral subroutine. Though basically the
same as for general co-trees, there are essential simplifications
as also indicated earlier. This is partly achieved by symmetry
considerations, partly by our focus only on those sites in the
Γ-diagram where we really have to make a test. The flow
diagram is sketched in Fig. 7. The subroutine is called for
all ν, starting with the highest value,n− 1, and ending with
the valueν = 0. When all these calls have been made you
realize that you only have to calculate a bracket (following
(30)) and to perform a test corresponding to test sites of the
Γ-diagram. Therefore, referring to Lemma 9.1, no more than
4n basic operations are involved in the calls of the subroutine
(for this, a test “α ≥ β?” as well as a calculationα := [ν, µ]
is counted as a basic operation).

The final part of the algorithm is a “top-down” de-
termination of the output of the algorithm, understood to
be the spectral levelsσ0 = 0, σ1 = τσ0 , · · · , σγ = n
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and the associated maximal brackets. We suggest that these
data are listed in the form(σ0, [σ0]max) (= (0, [0]max),
(σ1, [σ1]max), · · · , (σγ , [σγ ]max) (= (n, 0)). Each such pair is
considered to involve only one basic operation, thus addingat
mostn such operations. If you also want to calculateRmin as
part of the final output, anothern basic operations are needed.

Considering the above discussion, we have proved our last
main result which may be summarized as follows:

Theorem 9.1:Consider a co-treeΛ = Λ[k1, · · · , kn]. Ap-
ply the modification of the algorithm from Section VIII as
described above. Then the number of tests performed during
execution of the algorithm is at most2n and the essential
complexity of the entire algorithm, understood as the number
of basic operations needed to carry out initialization, determi-
nation of theΓ-diagram and the listing of all pairs of spectral
levels and associated maximal brackets is at most9n. [Proof
in appendix]

X. CONCLUSIONS AND FINAL COMMENTS

The paper offers a reasonably complete study of algorithms
for the precise determination of universal objects associated
with the model of all distributions over a co-tree for which
the implicationa < b ⇒ P (a) ≥ P (b) holds. A relatively
simple situation corresponds to the case when the universal
predictor satisfies the implication above with strict inequality.
The key result here is Theorem 3.1 with Corollary 3.2 as a
natural extension of Ryabko’s result from 1979.

However, the main results concern general co-trees. It ap-
pears convenient to introduce a notion ofrelativizationapplied
to codes. This concept is believed to be of interest also outside
the scope of the present paper.

Theorem 7.1 provides basic insight into the structure of the
universal objects, but quite some extra work is involved before
a reasonable algorithm, presented in Theorem 8.1 is in house.
Only a crude estimate of the complexity of that algorithm
is discussed. For the special case of co-trees with uniform
branching this is much refined. The main result is Theorem
9.1.

The key to the results are purely combinatorial facts, iso-
lated in the transitivity identities in Lemma 7.1 for the general
algorithm and supplied with a count of test sites in Lemma
9.1 for the special case of co-trees with uniform branching.8

It is a curious feature of the technical analysis that the log-
arithmic function only appears rather sporadicly. Accordingly,
other functions may be considered. Without going into details,
this may result in computations of universal objects tied to
other notions of entropy and divergence than the standard
notions of pure Shannon theory.

Finally we note that the interesting connection to a problem
of isotone regression which was pointed out by a referee, cf.
the end of Section II, deserves a closer investigation.

8There may well be simpler, more direct proofs of Lemma 9.1 based on
links to other combinatorial structures. As an indication of this we note that the
number ofΓn-structures is theCatalan number 1

n+1

(

2n

n

)

, which appears in
many other contexts of combinatorial analysis. The formulafor the number
of Γn-structures may be proved by noting that these numbers satisfy the
recursion relationαn =

∑n
ν=1

αν−1αn−ν .

APPENDIX

Proof of Theorem 3.1: Assume thatΛ has full spec-
trum. A straightforward analysis shows that the Kuhn-Tucker
conditions of Proposition 1.2 can only be fulfilled withP ∗

given via W as described. AsP ∗ ∈ P(Λ), the stated
inequalities must hold. That, conversely,P ∗ is as stated when
the inequalities hold amounts to simple checking based on
Proposition 1.2. The formulaRmin = lnZ follows e.g. by
noting thatD(Ua‖P ∗) = lnZ whena is a minimal node.

Proof of Corollary 3.2: Once we have proved that (9)
holds whenk1 ≥ · · · ≥ kn, the formula forP ∗ follows from
Theorem 3.1 and (6). Note that the left hand side of (9), call it
G, is a geometric mean and that the corresponding arithmetic
mean is

A =
1

ρν
+

ρν −Nν

ρνNν+2
=

1 + kν+2

Nν+1(1 + kν+1)
≤

1

Nν+1
,

hence alsoG ≤ 1
Nν+1

, i.e. (9) does indeed hold.

Proof of Proposition 5.1: We start with some pre-
liminary observations related to any functionφ on Λ. Put
R = ln

∑

a∈Λ e−φ(a) and defineκ as the code obtained from
φ by “de-relativization”, i.e.κ = φ+R. Thenκ ∈ K(Λ). Let
P denote the matching distribution. We claim that, for every
nodea, the equivalences

D(Ua‖P ) = R ⇔ φσ(a↓) = N(a) , (36)

D(Ua‖P ) ≤ R ⇔ φσ(a↓) ≤ N(a) (37)

hold. These equivalences are proved in a similar manner and
we only give the details regarding (37). AddlnN(a) to the
inequality on the left hand side and appeal to the identity
(3), and you realize that this inequality is equivalent to the
inequalityκσ(a↓) ≤ N(a) +N(a)R, hence also, as claimed,
to the inequalityφσ(a↓) ≤ N(a).

Now assume that the conditions stated in the lemma hold
for a functionφ on Λ. By monotonicity ofφ, P ∈ P . Then,
by the assumptions (13) and (14), we see from (36) and (37)
that the conditions of the Kuhn-Tucker criterion, Proposition
1.2, are fulfilled. ThereforeP is the universal predictor and
henceφ = κ̃∗.

Necessity of the conditions of the lemma follow in a similar
way from necessity of the Kuhn-Tucker conditions.

Proof of Lemma 5.1:We may assume thata ∈ Λ\σ(Λ).
Let P ∗ =

∑

c∈ΛwcUc be the barycentric decomposition of
P ∗. Then, for everyc with a ≤ c < a, wc = 0, henceP ∗(a) =
P ∗(a). If b > a, P ∗(b) < P ∗(a) = P ∗(a) aswa > 0. The
stated properties follow.

Proof of Proposition 5.2: Let a be a minimal node and
put b = a. Thenκ̃∗(a) = κ̃∗(b). By monotonicity ofκ̃∗, κ̃∗(b)
is bounded below by the average1N(b) (κ̃

∗)σ(b↓) thus, by (13),
κ̃∗(b) ≥ lnN(b). Now,

0 = N(a) ≥ (κ̃∗)σ(a↓) = κ̃∗(a) = κ̃∗(b) ≥ lnN(b)

andN(b) = 1, henceb = a follows. We conclude thata is
active. Thus minimal nodes are indeed active. We leave the
proof of the remaining parts of the proposition to the reader,
referring to the fact just established and to Proposition 5.1.
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Proof of Proposition 5.3: If a /∈ σ(Λ) thena > a and
κ̃∗σ(a) = κ̃∗σ(a) = N(a) > N(a) follows.

Proof of Proposition 7.1: If a is minimal, B = ∅ and
the definition gives[a, ∅] = 0. If a is not minimal, putM =
∑

t∈TB(a) N(t) and note thatN(a) > M ≥ 1, hence the
positivity of [a,B] follows from the manipulations

|SB(a)|[a,B]

= N(a) lnN(a)−
∑

t∈TB(a)

N(t) ln
N(t)

M
−M lnM

≥ N(a) lnN(a)−M lnM > 0 .

Proof of Lemma 7.1:In view of the equality

|SB(a)| = |SB+(a)|+ |SB−(b)| ,

each of the three identities can be derived from any of the other
two. It therefore suffices to verify (18). For this, we exploit
the equality above and the fact thatTB+(a) is the disjoint
union of {b} and the proper set-differenceTB(a) \ TB−(b).
Appealing also to the definition of brackets, we find that

|SB(a)|
(

[b, B−]− [a,B]
)

= |SB(a)|[b, B
−]−N(a) +N

σ
(TB(a))

=
(

|SB+(a)|+ |SB−(b)|
)

[b, B−]

−N(a) +N
σ
(TB+(a))−N(b) +N

σ
(TB−(b))

= |SB+(a)|
(

[b, B−]− [a,B+]
)

,

thus (18) holds.

Proof of Proposition 7.2:(i): If b is minimal,a cannot be
minimal and the result follows from Proposition 7.1. Assume
then thatb is not minimal and denote byB any blocking set
for b with maximal bracket. The setB0 = (B∗ \ {b})∪B is a
proper subset ofB∗ which is blocking fora. Then [a]max ≥
[a,B0] with sharp inequality ifB∗ is set-theoretically minimal.
By (19) applied to the setB0 it then follows that[a,B∗] ≥
[b, B], i.e. [a]max ≥ [b]max, with sharp inequality ifB∗ is
set-theoretically minimal.

(ii): This follows by applying (20) withB = B∗.

Proof of Proposition 7.3: Let B∗ be a set-theoretically
maximal blocking set fora with maximal bracket. Let̃B∗ be
any blocking set fora with maximal bracket. We shall prove
thatB̃∗ ⊆ B∗. Assume the contrary. Then there existsb ∈ B̃∗\
B∗, hence there also existsb

′

∈ T̃ ∗\B∗ whereT̃ ∗ denotes the
ceiling of B̃∗ in a. By monotonicity,[a, B̃∗] ≥ [b

′

, B∗]. And,
by boundedness,[b

′

, B∗] > [a,B∗]. The two inequalities show
that [a, B̃∗] > [a,B∗] which is a contradiction as[a,B∗] =
[a, B̃∗] = [a]max. We conclude, as desired, that̃B∗ ⊆ B∗.
The reverse inclusion is proved in a similar way when also
B̃∗ is set-theoretically maximal. As any two set-theoretically
maximal blocking sets fora with maximal brackets are equal,
the largest such set, denotedB∗(a), is well defined.

The facts needed to establish the results pertaining to
minimal blocking sets are proved in a similar way. Details
are left to the reader.

Proof of Theorem 7.1:Denote byφ the function onΛ
defined byφ(a) = [pr(a)]max.

We shall verify the conditions of Proposition 5.1.
First, to prove monotonicity ofφ, consider any path from a

maximal node to a minimal node. Lett0 > t1 > · · · > tk be
the nodes inσ(Λ) on the path (thustk is a minimal node ofΛ).
Then, by monotonicity, cf. Proposition 7.2,φ(t0) ≥ φ(t1) ≥
· · · ≥ φ(tk) and, by the definition ofφ, φ(a) = φ(ti) for nodes
on the path withti−1 < a ≤ ti (here,0 ≤ i < k). This proves
monotonicity along any path connecting a maximal node with
a minimal node. Clearly then,φ is monotone on all ofΛ. The
argument above also shows that all nodesb with ti > b > ti+1

are inactive, thus
σ(Λ) ⊆ σ(Λ) . (38)

Next, we consider a nodea ∈ σ(Λ), saya ∈ T ∗
i , and show

that (13) holds. PutUj = T ∗
j ∩a↓ andVj = S∗

j ∩a↓ for j ≥ i.
Let k be the largest integer such thatUj 6= ∅. Then (13) for
the nodea follows from the string of equalities:

φσ(a↓) =

k
∑

j=i

∑

b∈Vj

φ(b) =

k
∑

j=i

∑

t∈Uj

|S∗(t)|φ(t)

=

k
∑

j=i

∑

t∈Uj

(

N(t)−N
σ
(T ∗(t))

)

=

k
∑

j=i

(

N
σ
(Uj)−N

σ
(Uj+1)

)

= N(a) .

By (38), the validity of (13) for alla ∈ σ(Λ) follows.
Finally, consider a nodeb ∈ Λ \ σ(Λ). To finish the proof,

we need only establish the inequality (14) forb. In fact, we
shall show that the sharp inequalityφσ(b↓) < N(b) holds.
To this end, puta = pr(b) and B = B∗(a) ∩ b↓ and use
results already established and the boundedness property of
Proposition 7.2, to find that

φσ(b↓) = |SB(b)|φ(b) +
∑

t∈TB(b)

φσ(t↓)

= |SB(b)|[a]max +
∑

t∈TB(b)

N(t)

< |SB(b)|[b, B] +N
σ
(TB(b)) = N(b) .

We have now seen thatφ = κ̃∗, hence (22) holds. As the
spectrum consists of the points of increase ofκ̃∗, (23) follows.

Proof of Proposition 8.1: We shall actually prove a
formally stronger result, viz. that, forb ∈ S∗(a) \ {a},

B∗(a) ∧ b ⊆ B∗(b) . (39)

Assume, for the purpose of an indirect proof, that this is not
the case. Then, for someb ∈ S∗(a) \ {a}, there existst ∈
(

T ∗(a) ∧ b
)

\B∗(b). We find that

[a]max ≥ [t]max ≥ [t, B∗(b)] ≥ [b, B∗(b)]

= [b]max ≥ [b, B∗(a)] > [a]max .

Indeed, the first inequality follows by monotonicity ast ∈
T ∗(a), the second follows asB∗(b) is blocking fort, the third
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follows by boundedness ast ∈ b↓\B∗(b), the equality is trivial,
the next inequality follows asB∗(a) is blocking forb and the
last one follows by boundedness asb ∈ S∗(a)\{a}. From the
resulting contradiction we conclude that (39) holds.

Proof of Proposition 8.2: Let B be the largest blocking
set fora with the monotonicity property. AsB∗(a) is a block-
ing set fora and has the monotonicity property,B∗(a) ⊆ B.
To prove the reverse inclusion, assume, for the purpose of
an indirect proof, that this is not the case. Then there exists
t ∈ TB(a) ∩ S∗(a) and we find that

[a,B] ≥ [t]max ≥ [t, B∗(a)] > [a]max ≥ [a,B] .

This is a contradiction and we conclude thatB ⊆ B∗(a),
henceB = B∗(a) as claimed.

Proof of Lemma 9.1:The proof is by induction on the
spectral index. To start the induction we have to prove the
implication G ∈ Γn, γ(G) = 1 ⇒ 〈G〉 = 2n − 1. This is
proved by induction onn. The induction start is easy. Then
assume that the implication holds for indices smaller thann.
Let G ∈ Γn satisfyγ(G) = 1, i.e. (0, n) ∈ G. Consider

G∗ = G \ {(n, n+ 1)} \ {(ν, n) | 0 ≤ ν ≤ n− 2}.

ThenG∗ ∈ Γn−1 andγ(G∗) = 1. Thus〈G∗〉 = 2n−3 by the
induction hypothesis.

In order to compute〈G〉 and 〈G∗〉, first remark that for a
point (ν, µ) with µ ≤ n − 2, the equivalence(ν, µ) ∈ G ⇔
(ν, µ) ∈ G∗ holds and the point is a test site forG if and only if
it is a test site forG∗. It remains to consider points(ν, µ) with
µ = n or µ = n− 1. Let {ν < n− 1|tν = n} = {r1, · · · , rk}
with r1 < · · · < rk. Thenk ≥ 1 and r1 = 0. Likewise, let
{ν < n − 2|tν = n − 1} = {s1, · · · , sl} with s1 < · · · < sl.
Here, l = 0 may happen corresponding to the case with no
sites of the form requested. Note that by theΓ-structure ofG,
s1 > rk. All k + 1 sites(ν, µ) ∈ G with µ = n are test sites
for G, whereasG∗ only has one site withµ = n and this site
((n− 1, n)) is not a test site. Among thek+ l+1 sites(ν, µ)
with µ = n− 1 in G as well as inG∗, there are1+ l+1 test
sites inG (the sites(rk, n−1), (s1, n−1), · · · , (sl, n−1) and
(n− 2, n− 1)), whereas all these sites are test sites forG∗. It
follows that there are

(

(k+1)+(l+2)
)

−
(

0+(k+ l+1)
)

= 2
more test sites inG than inG∗, hence〈G〉 = 2n−1 as desired.

We now go back to the main induction proof and assume
that the claimed result holds for allΓ-structures with a spectral
index less than some fixed numberγ ≥ 2. Consider aΓ-
diagramG = G(t0, · · · , tn) with γ(G) = γ. Note thatG is
the direct sum ofG′ = G(t0, · · · , tt0 , t0+1) and the restriction
G′′ of G to {t0, · · · , n} as indicated in Fig. 10. Asγ(G′) = 1,
〈G′〉 = 2t0 − 1 by the first part of the proof and by the
induction hypothesis,〈G′′〉 = 2(n − t0) − (γ − 1). Clearly,
〈G〉 = 〈G′〉+〈G′′〉. Therefore, we find that〈G〉 = 2n−γ(G).
This is the desired result and the induction is complete.
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