
1

Computation of universal objects for distributions
over co-trees

Henrik Densing Petersen University of Copenhagen
Department of Mathematical Sciences

Universitetsparken 5,
2100 Copenhagen, Denmark
Email: m03hdp@math.ku.dk

Flemming Topsøe University of Copenhagen
Department of Mathematical Sciences

Universitetsparken 5,
2100 Copenhagen, Denmark
Email: topsoe@math.ku.dk

Abstract—For an arbitrary ordered set, one may consider the
model of all distributions P for which an element which precedes
another element is considered the more significant one in the
sense that the implicationa ≤ b ⇒ P (a) ≥ P (b) holds. It will
be shown that if the ordered set is a finite co-tree, then the
universal predictor for the indicated model or, equivalently, the
corresponding universal code, can be determined exactly via an
algorithm of low complexity.
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I. I NTRODUCTION, BACKGROUND AND MOTIVATION

Throughout the paper we study finite co-trees, i.e. finite
ordered setsΛ for which every non-maximal elementa has a
unique immediate successor, denoteda+ (thusa+ is the only
elementb > a for which no elementc satisfiesa < c < b). To
prevent misunderstanding, the order structure means that the
conditions of transitivity, reflexivity and anti-symmetry(x ≤
y ∧ y ≤ x ⇒ x = y) hold.
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Figure 1. Some simple suspended co-trees

We often think of a co-tree as anoriented graphand refer
to the elements asnodes. If an arrow points froma to b,
then a < b. Among special nodes we find theminimal and
the maximal nodes. If there is only one maximal node, we
say that the co-tree issuspendedwith the maximal node as
top node. Some examples of suspended co-trees are depicted
in Figure 1. Case1 is a linear order (characterized by the
fact that also the reverse order is a co-tree), Case2 is the
simplest non-linear co-tree and cases3 and4 are only slightly
more complicated. We shall return to the examples later in this
section. Note that we have named the nodes in a systematic
manner corresponding to theirlevels. The top node is in level
0 and is denoteda0 (really thought of asa∅). Nodes in level
k are indexedaε1,··· ,εk

with a string ε1, · · · , εk of natural
numbers of lengthk as index. They are defined recursively
such thataε1,··· ,εk−1

is the immediate successor of all nodes
of the formaε1,··· ,εk−1,εk

. Since we count levels from the top,
the minimal nodes may well be in different levels (as in Case
4).

The indicated indexing of the nodes in a finite suspended
co-tree points to a unique representation up to isomorphism.
Indeed,Λ can be identified with a finite subset of the setN of
finite strings (including the empty string) of natural numbers
such that∅ ∈ Λ and such thatΛ is closed underrestriction
(aε1,··· ,εk

∈ Λ, ν ≤ k ⇒ aε1,··· ,εν ∈ Λ) and under “last
element diminishing” (aε1,··· ,εk,n ∈ Λ ⇒ aε1,··· ,εk,m ∈ Λ for
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m ≤ n). The height of Λ can be defined as the length of
the longest string in the setN which identifiesΛ. We shall
later refer a few times to the representation described as the
standard representationof Λ.

Cases 1-3 from Figure 1 are co-trees withuniform branch-
ing. In general, these co-trees are defined by a sequence
(k1, · · · , kn) of natural numbers. ThenΛ[k1, · · · , kn] denotes
the suspended co-tree withkν immediate predecessors of each
node in levelν−1 for 1 ≤ ν ≤ n. The sequence(k1, · · · , kn)
is the branching patternof the co-tree. Thus the co-trees in
Cases 1-3 from Figure 1 areΛ[1, 1], Λ[2] andΛ[1, 2], whereas
the last co-tree is not of this type. Co-trees with uniform
branching are identified with a product set of finite strings
under the standard representation.

Among the subsets of a co-treeΛ, the left sectionsplay a
special role. Notation and definition is given by

a↓ = {b ∈ Λ|b ≤ a} .

We use the general notation| · | for “the number of elements
in ·” , and put N(a) = |a↓|. We also need the non-negative
real numbersN(a) defined fora ∈ Λ by

N(a) = N(a) ln N(a) . (1)

A subsetB ⊆ Λ is hereditary if the implication a ∈ B ⇒
a↓ ⊆ B holds or, equivalently, ifB is a union of left-sections.

By M1
+(Λ) we denote the set of all distributions (always

understood to be probability distributions) overΛ. The order
modelP = P(Λ), which is the object we will study, is defined
as the model of all distributionsP for which P (a) ≥ P (b)
whenevera ≤ b 1. We shall assign “representative” objects to
this model, either in the form of theuniversal predictoror in
the form of theuniversal code, objects which will be defined
carefully below. Before we do so, we comment on the basic
structure ofP(Λ).

The uniform distributions over the left sections are of special
significance. Indeed, denoting byUa the uniform distribution
over a↓, we find that all these distribution and then also all
mixtures of them are members of the modelP(Λ). Conversely,
any distributionP ∈ P(Λ) can be written in a unique way as
a convex mixture of uniform distributions over left sections:

P =
∑

a∈Λ

waUa . (2)

In other words, the following structural result holds:

Proposition 1.1:The order modelP(Λ) is a simplex with
the distributions(Ua)a∈Λ as extremal distributions.

We take this result as background information. The inter-
ested reader will not find it hard to provide a proof. The
decomposition (2) is thebarycentric decomposition ofP and,

1This model – and not the alternative choice of all order-preserving
distributions – is considered to be the natural one, a main reason being that
if a precedesb (a ≤ b) this is taken as a sign thata is more “significant”
thanb, hence, for sensible distributions, one should haveP (a) ≥ P (b) rather
than the other way round. In terms of coding (see below) our choice appears
even more natural as it reflects the good sense of associatingthe shorter code
words to the more significant events.

with reference to this decomposition, thespectrumof P is
defined by

σ(P ) = {a|wa > 0} . (3)

One of the objects we shall search for is related tocoding.
In this paper, acodeover thealphabetΛ is identified with
a code length functionκ : Λ → [0,∞], required to satisfy
Kraft’s equality

∑

a∈Λ

e−κ(a) = 1 .

Note that we have chosen to work with theoretical (natural)
units, hence use exponentiation with respect to the natural
base. The set of all codes overΛ is denotedK(Λ).

For P ∈ M1
+(Λ) and κ ∈ K(Λ) we denote by〈κ, P 〉 the

average code length,

〈κ, P 〉 =
∑

a∈Λ

κ(a)P (a) .

The overall goal is to choose a code so as to minimize this
quantity. If P is fixed, the minimum is attained for the code
adapted toP , given by

κ(a) = ln
1

P (a)
for a ∈ Λ ,

and the minimum value is theentropyof P ,

H(P ) =
∑

a∈Λ

P (a) ln
1

P (a)
.

Whenκ is adapted toP , we also express this by saying that
P is the distribution whichmatchesκ.

Let P ∈ M1
+(Λ) and κ∗ ∈ K(Λ). The redundancy

associated withP and κ∗, or, in more suggestive terms, the
redundancy ofκ∗ with P as the “true” distribution is denoted
D(P‖κ∗) and defined as the difference between the actual
average code length and the minimal achievable value, i.e.

D(P‖κ∗) = 〈κ∗, P 〉 − H(P ) . (4)

This quantity is nothing but the well knownKullback-Leibler
divergencebetweenP and the distributionP ∗ matchingκ∗,
in standard notation:

D(P‖P ∗) =
∑

a∈Λ

P (a) ln
P (a)

P ∗(a)
.

The basic identity (4) is mostly written in the form

〈κ∗, P 〉 = D(P‖κ∗) + H(P ) , (5)

and referred to as thelinking identity. We need another basic
identity, thecompensation identityof [9], which makes more
precise the fact that(P, Q) y D(P‖Q) is convex inP :

k
∑

ν=1

αν D(Pν‖Q) =

k
∑

ν=1

αν D(Pν‖P
∗) + D(P ∗‖Q) , (6)

valid for any convex combinationP ∗ =
∑k

ν=1 ανPν and any
distributionQ. In terms of codes, the identity reads

k
∑

ν=1

αν D(Pν‖κ) =

k
∑

ν=1

αν D(Pν‖κ
∗) + D(P ∗‖κ) , (7)
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with κ just any code and withκ∗ the code adapted to
P ∗ =

∑k
ν=1 ανPν . The compensation identity follows from

the linking identity, cf. [9].
Returning to the order modelP = P(Λ), we define two

quantities ofredundancy, firstly the guaranteed redundancy
of any codeκ∗ ∈ K(Λ) which is defined by

R(κ∗) = sup
P∈P

D(P‖κ∗)

and then theminimax redundancydefined by

Rmin = inf
κ∗∈K(Λ)

R(κ∗) .

Considering the constant code, we realize thatRmin is finite.
It may be seen directly, and also follows from results later

on, that there exists a unique codeκ∗, the universal code,
such thatR(κ∗) = Rmin. The distribution which matches the
universal code is theuniversal predictor. It is considered the
most unbiased representation of the modelP . The two univer-
sal objects identified, are those we shall aim at characterizing
by an algorithm of low complexity. In order to achieve this
goal we shall use a special instance of a result from general
optimization theory, which is much used in information theory
and there often ascribed to Kuhn and Tucker, cf. [1]. We
formulate the result in a way adapted to our needs:

Proposition 1.2 (Kuhn-Tucker criterion):Consider the or-
der modelP = P(Λ) associated with a finite co-treeΛ. Let
P ∗ ∈ P and letκ∗ be the code adapted toP ∗. Assume that,
for some constantR, the following two conditions hold:

D(Ua‖κ
∗) = R for a ∈ σ(P ∗) , (8)

D(Ua‖κ
∗) ≤ R for all a ∈ Λ . (9)

ThenP ∗ is the universal predictor,κ∗ the universal code and
Rmin = R.

Though essentially known, we provide a simple intrinsic
proof:

Proof: By convexity of redundancy in the first variable
– a consequence of (7) – and as theUa’s are the extremal
distributions ofP , it follows from (9) thatR(κ∗) ≤ R. On
the other hand, for everyκ ∈ K(Λ), we find, using (8) and
applying (7) with thewa’s the barycentric coordinates ofP ∗,
that

R(κ) =
∑

a∈σ(P∗)

waR(κ) ≥
∑

a∈σ(P∗)

wa D(Ua‖κ)

=
∑

a∈σ(P∗)

wa D(Ua‖κ
∗) + D(P ∗‖κ)

= R + D(P ∗‖κ) .

Thus, for everyκ, the in itself interesting inequalityR(κ) ≥
R + D(P ∗‖κ) holds. AsD(P ∗‖κ) ≥ 0 with equality if and
only if κ = κ∗, the stated result follows.

Through intrinsic reasoning, it is also possible to show
that one can indeed findP ∗ and κ∗ with properties as in
Proposition 1.2, cf. [8]. It is comforting to know this, however,
we do not need that result as we shall findP ∗ and κ∗

directly which satisfy the conditions of the proposition. We

Case 1 Case 2 Case 3 Case 4

σ(Λ) Λ Λ Λ \ {a1} Λ

P ∗(a0) 4

27
· 1

Z
1

27
· 1

Z
1

16
· 1

Z
27

3125
· 1

Z

P ∗(a·)
1

4
· 1

Z
2 × 1

Z
1

16
· 1

Z
1

Z
, 1

27
· 1

Z

P ∗(a··)
1

Z
2 × 1

Z
2 × 1

Z

Rmin = lnZ ln 151

108
ln 55

27
ln 17

8
ln 256979

84375

Table I
UNIVERSAL PREDICTORS FOR THE CO-TREES INFIGURE 1

do remark though that by exploiting the sufficiency as well
as the necessity of the conditions of Proposition 1.2 it is easy
to reduce the search for the universal objects associated with
a general finite co-tree to the similar search for suspended
co-trees2.

ObjectsP ∗ andκ∗ will from now on denote the universal
predictor and the universal code of a co-treeΛ under discus-
sion. Thespectrumof Λ is the spectrum ofP ∗: σ(Λ) = σ(P ∗).
Nodes inσ(Λ) are referred to asactive nodesof Λ. The co-
tree Λ has full spectrum if all nodes are active. Otherwise,
the spectrum isdeficient. An anchor is a distributionUa with
a ∈ σ(Λ).

It turns out that the difficulty in determiningP ∗ andκ∗ lies
in determining which nodes are active, i.e. in determining the
spectrum. Offhand, there is little we can say:

Proposition 1.3:Every maximal node of a co-tree is active.

Proof: If a maximal nodea is not active,P ∗(a) = 0 must
hold by Proposition 1.1. Letb be a node different froma (we
may assume thatΛ is not a singleton). ThenD(Ub‖P ∗) = ∞,
henceR(κ∗) = ∞ which is absurd.

Regarding the structure ofσ(Λ), a first guess may be that
Λ has full spectrum, but even for very simple co-trees this
is not so. One example is provided by Case 3 of Figure 1.
This fact is revealed by Table I which shows the nature of
the universal predictor and the associated spectrum for all
co-trees depicted in Figure 1. The correctness of the table
is easily checked by appeal to Proposition 1.2. In all cases,a
normalizing factor,Z, appears and the minimax redundancy is
lnZ, a fact that follows from Proposition 1.2 since all weights
of minimal nodes when discarding the normalizing factor is1
and since all minimal nodes are in the spectrum of the co-tree.
That this behaviour holds generally will be demonstrated later
in Proposition 3.2.

The natural interpretations related to codes as well as the
significance of the problem outlined as one ofgeneral univer-

2Indeed, ifΛ is the direct sum of (suspended) co-treesΛν ; ν = 1, · · · , m
with associated minimax redundanciesRν and universal predictorsP ∗

ν then

P ∗ =
m

X

ν=1

eRν

eR1 + · · · + eRm
P ∗

ν

is the universal predictor forΛ and ln
P

ν eRν the associated minimax
redundancy.
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sal prediction and coding(general, because many other models
than models related to order structure may be considered) is
recognized in the information theoretical literature since long.
Early works in this area include Fitingof [3] and Davisson [2].
The reader may also consult the survey article [4] by Feder
and Merhav. Regarding the interesting connection which exists
between minimax redundancy and maximal transmission rate,
capacity, i.e. the redundancy-capacity theoremof Gallager
and Ryabko, see [6]. In our situation, the result involves the
discrete memoryless channel withΛ as input- as well as output
alphabet and with the distributions(Ua)a∈Λ as the conditional
output distributions, given an input letter (here a node inΛ).
By the redundancy-capacity theorem, the optimal distribution
on the input side is given by the barycentric coordinates of
the universal predictorP ∗ and the optimal distribution on the
output side isP ∗ itself. We shall not exploit this connection
in the sequel. Rather, the situation is that the results which
we shall develop can be used to show how to determine the
optimal distributions and the capacity of the special discrete
memoryless channels that can arise in the way described.

The motivation behind our very special study related only
to order models in co-trees is many sided. Firstly, to the best
of our knowledge, this class is the most comprehensive class
for which an exact determination of universal objects can be
provided either directly or via a reasonable algorithm. For
the subclass of order models based on linearly ordered sets,
a complete result already exists. It is due to Ryabko who
developed a closed formula for the universal predictor, cf.[5].
For the larger subclass of co-trees with uniform branching,an
algorithm was announced in Topsøe [10] but the details were
never published.

Secondly, our main results, Theorems 5.1, 6.1 and 7.1, may
also be considered as useful reservoirs of examples which may
serve as test cases for future research. However, we remark
that it appears very difficult, even theoretically impossible, to
develop exact results expressed in terms of standard functions
for other desirable models than those here considered, either
based on order structures other than co-trees (e.g. trees) or on
other constructs (such as Bernoulli models). Thus, the ideato
look into models based on sequences rather than individual
observations from an order modelP , is bound to fail. Severe
obstacles to such a program exists as will be revealed by a
reference to Galois theory (details will be provided in research
by Harremoës and Topsøe, in preparation).

As a final motivation we note, as pointed out to us by
Boris Ryabko, cf. also [7], that for certain applications to
biology, information about biological species is sometimes
available only in inconclusive form resulting – not in the
direct determination of their relative numbers – but only in
an ordering among the species, from the more frequent to the
less frequent ones. Modelling as done here based on a co-
tree is one possibility, though modelling based on trees rather
than co-trees appear just as interesting, or perhaps even more
interesting. However, models with trees in place of co-trees are
without reach if you insist on expressing the universal objects
in closed form.

II. CO-TREES WITH FULL SPECTRUM

As indicated in the introduction, the difficulty in determin-
ing the universal objects lies in determining the spectrum.
In this section we study co-trees with full spectrum and
demonstrate how the universal objects may be determined for
these trees. It is convenient first to introduce some concepts:
For a nodea ∈ Λ, we denote bya− the set ofimmediate
predecessorsof a, i.e. the set of allb < a for which no node
c satisfiesb < c < a. Thusa− = ∅ if a is a minimal node.
Further, to each node we associate a certainweightdefined by

W (a) =

∏

b∈a− N(b)N(b)

N(a)N(a)
, (10)

and byZ we denote thenormalizing factor

Z =
∑

a∈Λ

W (a) . (11)

Theorem 2.1:A co-tree Λ has full spectrum if and only
if, for every pair of nodes(b, a) with b ∈ a−, the inequality
W (b) ≥ W (a) holds. And when this condition is satisfied,
the universal predictor is given by normalization ofW , i.e.
P ∗(a) = W (a)/Z for any a ∈ Λ. Furthermore,Rmin = lnZ.

Proof: Assume thatΛ has full spectrum. A straightfor-
ward analysis, which we shall leave to the reader, shows that
the Kuhn-Tucker conditions of Proposition 1.2 can only be
fulfilled with P ∗ given viaW as described. AsP ∗ ∈ P(Λ),
the stated inequalities must hold. That, conversely,P ∗ is as
stated when the inequalities hold amounts to simple checking
based on Proposition 1.2. The formulaRmin = lnZ follows
e.g. by noting thatD(Ua‖P ∗) = lnZ when a is a minimal
node.

The probability distribution, call itW ∗, obtained by nor-
malization ofW may be considered for any co-tree. One will
see that the sought universal predictor,P ∗, is the information
projection of W ∗ on P(Λ). This fact – or the connection to
a problem related to capacity indicated towards the end of
Section I – may be exploited to calculateP ∗ via standard
algorithms, cf. Chapter 13 of [1]. However, we stress that this
will only lead to approximate determinations ofP ∗. As we
are here concerned with precise determinations ofP ∗, either
via a direct formula (possible only in special cases) or via an
algorithm which stops with the exact result after finitely many
steps, we shall not pursue this possibility. Another matteris
that standard algorithms may be useful anyhow in order to
guess what the spectrum is, and then exact formulas are easy
to derive, cf. the discussion related to (19) in Section IV.

If we conceive Theorem 2.1 as an algorithm to check
whether the co-tree in question has full spectrum or not, we
note that the algorithm is very efficient as the number of
inequalities which need to be checked is at most the number
of nodes in the co-tree.

Let us have a closer look at Theorem 2.1 in the case of
a co-treeΛ[k1, · · · , kn] with uniform branching. For such a
co-tree, we denote byNν the common number ofN(a) for
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nodes in levelν (ν = 0, · · · , n). TheNν ’s may be calculated
recursively as follows:

Nn = 1, Nν = 1 + kν+1Nν+1 for ν = n − 1, · · · , 0. (12)

From Theorem 2.1 we derive the following corollary:

Corollary 2.1: The co-treeΛ = Λ[k1, · · · , kn] has full
spectrum if and only if, for everyν = 0, 1, · · · , n − 2,

( 1

Nν

)

Nν
ρν

( 1

Nν+2

)1−Nν
ρν

≤
1

Nν+1
, (13)

where the numbersρ0, · · · , ρn−1 are given by

ρν = (1 + kν+1)Nν+1 = Nν + Nν+1 − 1 .

The simple derivation is left to the reader.
Specializing further we obtain the following corollary which

extends Ryabko’s theorem [5] in a natural way (Ryabko’s
theorem corresponds to the casek1 = · · · = kn = 1 which
givesNν = n − ν + 1 ; ν = 0, 1, · · · , n):

Corollary 2.2: Every co-treeΛ = Λ[k1, · · · , kn] with k1 ≥
k2 ≥ · · · ≥ kn has full spectrum and the universal predictor
P ∗ is given by

P ∗(a) = N−Nν
ν (Nν+1)

kν+1Nν+1/Z

= N−Nν
ν (Nν+1)

Nν−1/Z

for all points a in level ν (ν = 0, 1, · · · , n) with Z a
normalization constant.

Proof: Once we have proved that (13) holds whenk1 ≥
· · · ≥ kn, the formula forP ∗ follows from Theorem 2.1
and (10). Note that the left hand side of (13), call itG, is
a geometric mean and that the corresponding arithmetic mean
is

A =
1

ρν
+

ρν − Nν

ρνNν+2

which can be written as
1 + kν+2

Nν+1(1 + kν+1)
,

thus, whenk1 ≥ · · · ≥ kn, A ≤ 1
Nν+1

, hence alsoG ≤ 1
Nν+1

holds, i.e. (13) does indeed hold.

Note that the cases 1,2, and 3 from Section I can be
discussed based on the results of this section.

III. R ELATIVIZATION

Experience tells us that for typical optimization problemsof
the nature we are studying, “normalization” (via a “partition
function” or constant) is natural. This is for instance reflected
by the appearance ofZ in Table 1. A natural idea then is to
facilitate the search for universal objects by a prior normal-
ization. We find it advantageous to work with codes rather
than with distributions. Then, rather than normalizing viaa
division, we should normalize by a suitable subtraction. This
then leeds to objects measured relative to optimal performance
in some sense, and we speak about a process ofrelativization.

Relativization may be defined quite generally. However,
we shall only have co-trees in mind for the present study.

Therefore, letΛ denote a fixed co-tree and denote as usual by
Rmin the minimax redundancy for the order modelP = P(Λ).
Motivated by the considerations above, we introduce the
relativized universal codeas the function

κ̃∗ = κ∗ − Rmin .

We first characterize this function among allmonotonefunc-
tions φ : Λ → R. Here, monotonicity means thatφ(b) ≤ φ(a)
wheneverb ≤ a. A nodea ∈ Λ is φ-active if either a is a
maximal node or elseφ(a) < φ(a+) (recall thata+ denotes
the immediate successor ofa). If a is not φ-active, a is φ-
inactive. If φ = κ̃∗ (or if φ = κ∗), we regain the notion of
active and inactive nodes introduced in Section I.

For the convenient formulation of the result below, we
introduce theaccumulated functionφσ as the function defined
on subsets ofΛ by

φσ(∆) =
∑

b∈∆

φ(b) . (14)

Proposition 3.1:A real-valued functionφ defined onΛ
coincides with the relativized universal codeκ̃∗ if and only
if it is monotone and satisfies the two requirements:

φσ(a↓) = N(a) for everyφ-active nodea , (15)

φσ(a↓) ≤ N(a) for every nodea ∈ Λ . (16)

Proof: We start with some preliminary observations re-
lated to any functionφ on Λ. Put R = ln

∑

a∈Λ e−φ(a) and
defineκ as the code obtained fromφ by “de-relativization”,
i.e. κ = φ + R. Then κ is indeed a code:κ ∈ K(Λ). Let
P denote the matching distribution. We claim that, for every
nodea, the equivalences

D(Ua‖P ) = R ⇔ φσ(a↓) = N(a) , (17)

D(Ua‖P ) ≤ R ⇔ φσ(a↓) ≤ N(a) (18)

hold. These equivalences are proved in a similar manner and
we only give the details regarding (18). AddlnN(a) to the
inequality on the left hand side and appeal to the linking
identity (5), and you realize that this inequality is equivalent
to the inequalityκσ(a↓) ≤ N(a) + N(a)R, hence also, as
claimed, to the inequalityφσ(a↓) ≤ N(a).

Now assume that the conditions stated in the lemma hold
for a functionφ on Λ. By monotonicity ofφ, P ∈ P . Then,
by the assumptions (15) and (16), we see from (17) and (18)
that the conditions of the Kuhn-Tucker criterion, Proposition
1.2, are fulfilled. ThereforeP is the universal predictor and
henceφ = κ̃∗.

Necessity of the conditions of the lemma follow in a similar
way from necessity of the Kuhn-Tucker conditions which was
stated after the proof of Proposition 1.2. In view of the focus
on sufficiency, we do not provide the details.

We note that by applying the procedure in the first part of the
proof, one obtains the universal codeκ∗ from the relativized
universal codẽκ∗ by a simple process of de-relativization:
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Corollary 3.1: The minimum redundancy and the universal
code can be obtained from the relativized universal code by
the formulas

Rmin = ln
∑

a∈Λ

e−κ̃∗(a)

κ∗(a) = κ̃∗(a) + Rmin for a ∈ Λ .

For each nodea ∈ Λ, the left-sectiona↓ defines a co-tree
in its own right. As an immediate corollary to Lemma 3.1 we
find the following result:

Corollary 3.2: If a ∈ σ(Λ), then the relativized universal
code for the co-treea↓ is obtained by restricting the relativized
universal code forΛ to a↓. In particular,σ(a↓) = σ(Λ) ∩ a↓.

We stress the importance of the assumption thata be active
in this result. Without this assumption new active nodes ina↓

may appear, indeeda will become active, cf. Proposition 1.3
or Case 3 from Figure 1.

For the further study, consider, for anya ∈ Λ, the control
of a, denoteda, defined as the closest active node greater than
or equal toa (i.e. a ∈ σ(Λ), a ≥ a and noc ∈ σ(Λ) satisfies
a ≤ c < a). By Proposition 1.3,a is well defined for alla ∈ Λ.
Clearly, a = a if and only if a ∈ σ(Λ). The significance of
the notion is summarized in the following simple facts:

Lemma 3.1:Let a ∈ Λ. Then, for anyb with a ≤ b ≤ a,
P ∗(a) = P ∗(a) and, therefore, alsõκ∗(a) = κ̃∗(a) holds,
whereas, ifb > a, thenP ∗(b) < P ∗(a) and hencẽκ∗(b) >
κ̃∗(a) holds.

Proof: We may assume thata ∈ Λ \ σ(Λ). Let P ∗ =
∑

c∈Λ wcUc be the barycentric decomposition ofP ∗. Then,
for everyc with a ≤ c < a, wc = 0, henceP ∗(a) = P ∗(a).
If b > a, P ∗(b) < P ∗(a) = P ∗(a) as wa > 0. The stated
properties follow.

Together with other facts, the lemma is used for the proof
of the following useful result:

Proposition 3.2:Every minimal node ofΛ is active. The
relativized universal code is non-negative and vanishes onthe
minimal nodes – and nowhere else. The universal predictor
assumes its maximal value on every minimal node and any
other node has a strictly smaller probability.

Proof: Let a be a minimal node and putb = a. Then
κ̃∗(a) = κ̃∗(b). By monotonicity of κ̃∗, κ̃∗(b) is bounded
below by the average 1

N(b) (κ̃
∗)σ(b↓) thus, by (15),κ̃∗(b) ≥

lnN(b). Now,

0 = N(a) ≥ (κ̃∗)σ(a↓) = κ̃∗(a) = κ̃∗(b) ≥ lnN(b)

and N(b) = 1, henceb = a follows. We conclude thata is
active. Thus minimal nodes are indeed active. We leave the
proof of the remaining parts of the proposition to the reader,
referring to the fact just established and to Proposition 3.1.

The proposition illuminates the definition of the relativized
universal codẽκ∗. Indeed, we realize that̃κ∗ measures code
length relative to the shortest codeword. This property is

specific to co-trees and does not hold if relativization is
considered more generally.

As a last application of the structure related to the notion
of control, we establish the following result:

Proposition 3.3:For any node which is not active, the in-
equality of (16) is sharp, i.e. for such a node,κ̃∗σ(a) < N(a).

Proof: If a /∈ σ(Λ) thena > a and κ̃∗σ(a) = κ̃∗σ(a) =
N(a) > N(a) follows.

IV. I DEAS ON THE WAY TO AN ALGORITHM

Again, we consider the order modelP for a co-treeΛ. We
aim at developing an efficient algorithm for the determination
of the universal objects. Instead of going directly into this we
shall take time in this section first to explain the ideas behind.

The algorithm builds strongly on properties of certain spe-
cial sets and certain associated numbers, calledbrackets. In
order to motivate the introduction of these objects, we first
observe that if, somehow, the spectrumσ(Λ) is known,κ̃∗ is
easy to calculate. As̃κ∗(a) = κ̃∗(a) holds generally, we need
only worry about the values of̃κ∗ for active nodes. So, let
a ∈ σ(Λ). If a is minimal, κ̃∗(a) = 0. If a is not minimal,
denote byT the set of maximal nodes in

(

a↓∩σ(Λ)
)

\{a}. By
Proposition 3.2,T is a “cross-section” ofa↓ in the sense that
every path froma to a minimal node meetsT in exactly one
point. We putB =

⋃

t∈T t↓ andS = a↓\B. Thenκ̃∗ assumes
the same value,̃κ∗(a), on all nodes inS and considering the
decomposition ofa↓ in the two setsS and B, we find from
Proposition 3.1 that

N(a) = (κ̃∗)σ(a↓) = |S| · κ̃∗(a) + (κ̃∗)σ(B)

= |S| · κ̃∗(a) +
∑

t∈T

(κ̃∗)σ(t↓) = |S| · κ̃∗(a) +
∑

t∈T

N(t)

= |S| · κ̃∗(a) + N
σ
(T ) ,

and we conclude that

κ̃∗(a) =
N(a) − N

σ
(T )

|S|
=

N(a) − N
σ
(T )

N(a) − Nσ(T )
. (19)

Note that this formula holds for all active nodes, includingthe
minimal ones (for whichT = B = ∅ andS = {a}).

The special sets we shall work with will mimic the roles of
the setsT , B andS above. We find it convenient to take “B-
type sets” as the basic type and derive “T ”- and “S”-type sets
from them. Thus, we call a setB a blocking set fora ∈ Λ if B
is a hereditary subset ofa↓ \ {a} which contains all minimal
nodes ofa↓ \ {a}. For such a set we define theexterior ofB
in a, SB(a), and theceiling of B in a, TB(a), by

SB(a) = a↓ \ B , (20)

TB(a) = set of maximal nodes ofB . (21)

The nodes inTB(a) are the first nodes inB we meet on paths
from a to a minimal node. Note that the exteriorSB(a) is
always non-empty. The same is true for the setsB andTB(a)
unlessa is a minimal node ofΛ, in which case only the empty
set is blocking fora. Occasionally, we also refer to theinterior
of B in a which is the setB\TB(a). Note thata↓ is the disjoint
union of the exterior, the ceiling and the interior ofB in a.
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Let B be a blocking set fora. Guided by (19), we define
the bracket ofa in B, by

[a, B] =
N(a) − N

σ(

TB(a)
)

|SB(a)|
.

Note that the denominator above has a similar structure as
the numerator. Indeed,|SB(a)| = N(a) − Nσ(TB(a)).

The algorithm we aim at depends crucially on the relations
between blocking sets and their associated brackets. The
properties we need are derived from certain combinatorial
identities, thetransitivity identitiesof Lemma 5.1 in the next
section. Of special interest are blocking sets for a nodea for
which [a, B] is maximal. By [a]max we denote the largest
value of [a, B] for all blocking setsB for a. It turns out
that among the blocking setsB for a with maximal bracket
([a, B] = [a]max), there exists a set-theoretically largest one
(Proposition 5.3). This uniquely defined set is denotedB∗(a)
and the corresponding ceiling and exterior are denoted by
T ∗(a) andS∗(a).

With access to these sets, we define setsT ∗
0 , T ∗

1 , · · · , the
ceiling hierarchy, by a construction “from the top” : We start
with T ∗

0 , by definition the set of maximal nodes ofΛ (the set
of “ancestors” ). Then, asT ∗

1 , we take the union of all sets of
the form T ∗(t) with t ∈ T ∗

0 . A node in T ∗
1 is a “daughter”

of the firstgeneration. We continue “down the co-tree” , thus
in the next step consider “daughters” of the 2.nd. generation
(i.e. nodes inT ∗(t) for somet ∈ T ∗

1 ). Formally, for i ≥ 1,

T ∗
i =

⋃

t∈T∗
i−1

T ∗(t) . (22)

Clearly, the setsT ∗
i are eventually empty. Byσ(Λ) we denote

the union
σ(Λ) =

⋃

i≥0

T ∗
i . (23)

Two notions related to the ceiling hierarchy turns out to be
useful. Firstly, for any nodea, the projection of a on σ(Λ)
is the unique nodet ∈ σ(Λ) for which a ∈ S∗(t). We do
not know if this notion coincides with the previously defined
notion of control (thea’s from Section III). Anyhow, it is
sufficiently close that we can argue with it in much the same
way as in the discussion in the beginning of this section,
thereby deriving a formula for̃κ∗. The second notion we
need associates to any nodes ∈ σ(Λ) \ T ∗

0 , the unique node
t ∈ σ(Λ) such thats ∈ T ∗(t). We call this node themother
of s. Using this notion we can characterize the spectrum as
a certain subset ofσ(Λ). The facts indicated constitute the
content of our first main result, Theorem 5.1. We point out
that perhapsσ(Λ) = σ(Λ) holds generally, but we do not
know this. In spite of this unclear point, the characterizations
of κ̃∗ andσ(Λ) in Theorem 5.1 will be completely satisfactory,
considering our aims. If you wish,σ(Λ) is the extended
spectrumof Λ.

The construction behind Theorem 5.1 depends on the block-
ing setsB∗(a). A naive search for these sets will require
exponential time in the size of the problem (e.g. measured by
the number of nodes inΛ). To develop an efficient algorithm,
new ideas are needed. What we will do is to revert the con-
struction and work “from the bottom” through theminimality

componentsM0, M1, · · · , Mh. Here,h is the height ofΛ and
the decompositionΛ = M0 ∪ M1 ∪ · · · ∪ Mh is obtained by
successive removals of minimal nodes, i.e.Mi is the set of
minimal nodes of the co-tree

Λ \
⋃

0≤j<i

Mj .

Let us explain in more detail why a construction from
the bottom is to prefer. Fact is that when you work from
the top, and consider candidates for theB∗-,S∗- andT ∗-sets
without knowing these sets for nodes further down the co-
tree, you risk that after some time an inconsistency occurs
and this will force you to discard previous work, and to start
afresh. Quite differently, when you work from the bottom,
the sets concerned remain unchanged once constructed as
they are not influenced by the development further up in the
co-tree. It should, however, be remarked that sets already
constructed may later turn out to be superfluous as sets
associated with nodes higher up in the co-tree, say nodes
b > a, may “overshadow” sets already constructed in the
sense thatS∗(b) ⊇ S∗(a) may happen. Anyhow, the main
point is that during construction from the bottom, you proceed
incrementally without discarding previous work. The insight
needed to see that the algorithm from the bottom works will
be developed in Section VI. As an indication of the good sense
in working from the bottom we may also point to the fact that
at least the start is unproblematic since then blocking setsare
empty and brackets vanish.

The central part of the algorithm is a certain subroutine,
referred to as thecentral subroutinewhich is called several
times during the execution of the overall algorithm. The flow
diagram for this subroutine is sketched in Figure 2. As input
to the subroutine one takes a nodea ∈ Λ, and as output the
subroutine provides you withB∗(a) and [a]max = [a, B∗(a)],
it being understood that the corresponding objects associated
with nodes ina↓ \ {a} are already known. Together with
B∗(a), also T ∗(a) is recorded. Therefore, when the central
subroutine has been called for all nodes in the co-tree as input,
all ceilings T ∗(a) and all maximal brackets[a]max will be
known. Then, as the last step in the construction ofκ̃∗, we
again work “from the top” by appealing to Theorem 5.1. This
provides you directly with the relativized universal code from
which the universal code (hence also the universal predictor)
may be constructed quite easily as explained in Section III.

V. CONSTRUCTION FROM THE TOP

We start by developing some properties of blocking sets and
brackets.

Proposition 5.1:Let B be a blocking set fora. Then the
bracket[a, B] vanishes ifa is a minimal node and is positive
otherwise.

Proof: If a is minimal, B = ∅ and the definition gives
[a, ∅] = 0. If a is not minimal, putM =

∑

t∈TB(a) N(t)
and note thatN(a) > M ≥ 1, hence the positivity of[a, B]
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follows from the manipulations

|SB(a)|[a, B]

= N(a) lnN(a) −
∑

t∈TB(a)

N(t) ln
N(t)

M
− M lnM

≥ N(a) lnN(a) − M lnM > 0 .

We shall show that based on the brackets alone (thus not
assuming any special knowledge about the spectrumσ(Λ)),
the universal code can be constructed. Proposition 3.1 is an
important step in this direction but there are obstacles to over-
come in connection with the necessary checking of inequalities
related both to (16) and to the requirement of monotonicity.It
turns out that these problems can be handled efficiently, based
on certain identities which allows one to compare brackets
among each other. These comparisons involve two simple type
of constructions,filling and restriction. Specifically, ifB is a
subset ofΛ, and b any node, thefilling of B at b, denoted
B ∨ b, is the setB ∪ b↓. Typically, this construction is used
if B is a blocking set for some nodea > b. Then, if b /∈ B,
the process of filling leads to a new blocking set fora. We
also consider therestriction ofB to b↓, denoted byB∧b, and
defined byB ∧ b = B ∩ b↓. If B is a blocking set for some
nodea > b andb /∈ B, the restrictionB∧b will be a blocking
set forb.

Lemma 5.1 (transitivity identities, basic case):Let a > b,
let B be a blocking set fora and assume thatb /∈ B. Put
B+ = B ∨ b andB− = B ∧ b. Then the following identities
hold:

|SB+(a)|
(

[b, B−] − [a, B+]
)

= |SB(a)|
(

[b, B−] − [a, B]
)

,

(24)

|SB(a)|
(

[a, B] − [a, B+]
)

= |SB−(b)|
(

[b, B−] − [a, B+]
)

,

(25)

|SB−(b)|
(

[b, B−] − [a, B]
)

= |SB+(a)|
(

[a, B] − [a, B+]
)

.

(26)

Proof: In view of the equality

|SB(a)| = |SB+(a)| + |SB−(b)| ,

each of the three identities can be derived from any of the other
two. It therefore suffices to verify (24). For this, we exploit
the equality above and the fact thatTB+(a) is the disjoint
union of {b} and the proper set-differenceTB(a) \ TB−(b).
Appealing also to the definition of brackets, we find that

|SB(a)|
(

[b, B−] − [a, B]
)

= |SB(a)|[b, B−] − N(a) + N
σ
(TB(a))

=
(

|SB+(a)| + |SB−(b)|
)

[b, B−]

− N(a) + N
σ
(TB+(a)) − N(b) + N

σ
(TB−(b))

= |SB+(a)|
(

[b, B−] − [a, B+]
)

,

thus (24) holds.

In order to ease the notation a bit, we agree that if a set
of the formB ∧ b is blocking forb, we may simply say that
B is blocking forb and writeSB(b) in place ofSB∧b(b) and
[b, B] in place of[b, B ∧ b]. In the formulation of Lemma 5.1
we may thus writeSB(b) rather thanSB−(b) and[b, B] rather
than [b, B−].

As all terms of the form|S·(·)| are positive, it is clear that
we can use (24)-(26) for comparisons of brackets. We shall
soon see instances of this. For now we note that the lemma
implies that the numbers[a, B], [a, B+] and [b, B] are either
identical or else[a, B] lies strictly between[a, B+] and[b, B],
i.e. either [a, B+] < [a, B] < [b, B] or [b, B] < [a, B] <
[a, B+] holds.

The transitive nature of the lemma is best revealed by
generalizing the result. This we shall do in Section VIII.

We continue with some important observations based on
Lemma 5.1 which involve special blocking sets. The blocking
set B for a has maximal bracketif [a, B] = [a]max. Such
a set is set-theoretically maximal (minimal)if it is not a
proper subset (superset) of some other blocking set fora with
maximal bracket.

Proposition 5.2:Let a ∈ Λ and letB∗ be a blocking set
for a with maximal bracket.

(i) (monotonicity): If b ∈ TB∗(a), then [a]max ≥ [b]max. If
B∗ is set-theoretically minimal, the sharp inequality[a]max >
[b]max holds;

(ii) (boundedness): Ifb ∈ SB∗(a) \ {a}, then [a]max ≤
[b, B∗] and this inequality is sharp ifB∗ is set-theoretically
maximal.

Proof: (i): If b is minimal,a cannot be minimal and the
result follows from Proposition 5.1. Assume then thatb is not
minimal and denote byB any blocking set forb with maximal
bracket. The setB0 = (B∗ \ {b}) ∪ B is a proper subset of
B∗ which is blocking fora. Then[a]max ≥ [a, B0] with sharp
inequality if B∗ is set-theoretically minimal. By (25) applied
to the setB0 it then follows that[a, B∗] ≥ [b, B], i.e. [a]max ≥
[b]max, with sharp inequality ifB∗ is set-theoretically minimal.

(ii): This follows by applying (26) withB = B∗.

Exploiting these results we obtain a useful uniqueness
property:

Proposition 5.3: (uniqueness) For every nodea, there exist
two uniquely defined blocking sets fora with maximal bracket,
B∗(a) and B∗(a), characterized as, respectively the set-
theoretically largest such set and the set-theoretically smallest
such set. In particular, for every blocking setB for a with
maximal bracket, the inclusionsB∗(a) ⊆ B ⊆ B∗(a) hold.

Proof: Let B∗ be a set-theoretically maximal blocking set
for a with maximal bracket. Let̃B∗ be any blocking set fora
with maximal bracket. We shall prove that̃B∗ ⊆ B∗. Assume
the contrary. Then there existsb ∈ B̃∗ \ B∗, hence there also
existsb

′

∈ T̃ ∗ \ B∗ where T̃ ∗ denotes the ceiling of̃B∗ in
a. By monotonicity,[a, B̃∗] ≥ [b

′

, B∗]. And, by boundedness,
[b

′

, B∗] > [a, B∗]. The two inequalities show that[a, B̃∗] >
[a, B∗] which is a contradiction as[a, B∗] = [a, B̃∗] = [a]max.
We conclude, as desired, thatB̃∗ ⊆ B∗. The reverse inclusion
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is proved in a similar way when alsõB∗ is set-theoretically
maximal. As any two set-theoretically maximal blocking sets
for a with maximal brackets are equal, the largest such set,
denotedB∗(a), is well defined.

The facts needed to establish the results pertaining to
minimal blocking sets are proved in a similar way. Details
are left to the reader.

We do not know if there is a unique blocking set fora with
maximal bracket, i.e. ifB∗(a) = B∗(a) holds generally.

For the constructions to follow, we have chosen to focus on
the largest sets, theB∗(a)’s. We denote byT ∗(a) the ceiling
in a associated withB∗(a) and by S∗(a) the exterior ina
associated withB∗(a). These are the sets we shall use for the
construction of̃κ∗. Recall the introduction in Section IV of the
ceiling hierarchy(T ∗

i )i≥0, cf. in particular (22) and (23). The
largest indexi with T ∗

i 6= ∅ is the ceiling index. The ceiling
index is at most the height ofΛ, but is often smaller, e.g. for
Case 3 of Figure 1,δ = 1 whereash = 2. In the extreme case
when every maximal node is also a minimal node,T ∗

0 is the
only non-empty set in the hierarchy and the ceiling index is
0.

Based on the ceiling hierarchy we define a decomposition
(S∗

i )0≤i≤δ of Λ, with δ the ceiling index:

S∗
i =

⋃

a∈T∗
i

S∗(a) = {a ∈ Λ|pr(a) ∈ T ∗
i } . (27)

The second characterization refers to the notion of projection
introduced in Section IV. For the mothert of a nodes ∈
σ(Λ) \ T ∗

0 we use the notationt = µ(s).
We can now state the main result of this section.

Theorem 5.1:With reference to the ceiling hierarchy and
associated notions, the relativized universal code is given by

κ̃∗(a) = [pr(a)]max for all a ∈ Λ , (28)

and the spectrum ofΛ is the following subset ofσ(Λ):

σ(Λ) = T ∗
0 ∪ {t ∈ σ(Λ) \ T ∗

0 | [µ(t)]max > [t]max} . (29)

Proof: Denote byφ the function onΛ defined byφ(a) =
[pr(a)]max.

We shall verify the conditions of Proposition 3.1.
First, to prove monotonicity ofφ, consider any path from a

maximal node to a minimal node. Lett0 > t1 > · · · > tk be
the nodes inσ(Λ) on the path (thustk is a minimal node ofΛ).
Then, by monotonicity, cf. Proposition 5.2,φ(t0) ≥ φ(t1) ≥
· · · ≥ φ(tk) and, by the definition ofφ, φ(a) = φ(ti) for nodes
on the path withti−1 < a ≤ ti (here,0 ≤ i < k). This proves
monotonicity along any path connecting a maximal node with
a minimal node. Clearly then,φ is monotone on all ofΛ. The
argument above also shows that all nodesb with ti > b > ti+1

are inactive, thus

σ(Λ) ⊆ σ(Λ) . (30)

Next, we consider a nodea ∈ σ(Λ), saya ∈ T ∗
i , and show

that (15) holds. PutUj = T ∗
j ∩a↓ andVj = S∗

j ∩a↓ for j ≥ i.

Let k be the largest integer such thatUj 6= ∅. Then (15) for
the nodea follows from the string of equalities:

φσ(a↓) =

k
∑

j=i

∑

b∈Vj

φ(b) =

k
∑

j=i

∑

t∈Uj

|S∗(t)|φ(t)

=

k
∑

j=i

∑

t∈Uj

(

N(t) − N
σ
(T ∗(t))

)

=

k
∑

j=i

(

N
σ
(Uj) − N

σ
(Uj+1)

)

= N(a) .

By (30), the validity of (15) for alla ∈ σ(Λ) follows.
Finally, consider a nodeb ∈ Λ \ σ(Λ). To finish the proof,

we need only establish the inequality (16) forb. In fact, we
shall show that the sharp inequalityφσ(b↓) < N(b) holds.
To this end, puta = pr(b) and B = B∗(a) ∩ b↓ and use
results already established and the boundedness property of
Proposition 5.2, to find that

φσ(b↓) = |SB(b)|φ(b) +
∑

t∈TB(b)

φσ(t↓)

= |SB(b)|[a]max +
∑

t∈TB(b)

N(t)

< |SB(b)|[b, B] + N
σ
(TB(b)) = N(b) .

We have now seen thatφ = κ̃∗, hence (28) holds. As the
spectrum consists of the points of increase ofκ̃∗, (29) follows.

We do not know if the inclusion (30) can be sharpened
to an identity. Note that by the last part of the monotonicity
statement of Proposition 5.2 this will be the case ifB∗(a) =
B∗(a) holds generally.

VI. T HE CENTRAL SUBROUTINE

We continue the study of universal objects associated with
the modelP(Λ) over a co-treeΛ.

The construction in Theorem 5.1 builds on the setsB∗(a).
As noted in Section IV, the theorem cannot be used directly
to obtain an algorithm of low complexity. Instead, we speed
up the construction by working “from the bottom” based on
the decompositionΛ = M0 ∪ M1 ∪ · · · ∪ Mh in minimality
components.

We shall determine theB∗-sets for all nodes. For nodes
in M0 this is trivial, and we start by considering nodes in
M1, continue with nodes inM2, and so on until we get at
the nodes inMh. We will assume that the decomposition in
minimality components is given off-hand and not be concerned
with the time it takes to determine this decomposition. The
approach depends on the fact that given the co-tree, e.g. in
terms of the standard representation as explained in Section I,
the decomposition can be determined by an efficient algorithm.

The two propositions to follow are important technical tools
needed to develop an efficient algorithm.

Proposition 6.1: (Γ-structure) Leta ∈ Λ. Then, for every
b ∈ S∗(a), the inclusionS∗(b) ⊆ S∗(a) or, equivalently,
B∗(a) ∧ b ⊆ B∗(b) holds.
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The name attached to the result lies in the shape of the
letter “Γ” and will appear natural when we specialize to co-
trees with uniform branching in the next section.

Proof: We shall actually prove a formally stronger result,
viz. that, forb ∈ S∗(a) \ {a},

B∗(a) ∧ b ⊆ B∗(b) . (31)

Assume, for the purpose of an indirect proof, that this is not
the case. Then, for someb ∈ S∗(a) \ {a}, there existst ∈
(

T ∗(a) ∧ b
)

\ B∗(b). We find that

[a]max ≥ [t]max ≥ [t, B∗(b)] ≥ [b, B∗(b)]

= [b]max ≥ [b, B∗(a)] > [a]max .

Indeed, the first inequality follows by monotonicity ast ∈
T ∗(a), the second follows asB∗(b) is blocking fort, the third
follows by boundedness ast ∈ b↓\B∗(b), the equality is trivial,
the next inequality follows asB∗(a) is blocking forb and the
last one follows by boundedness asb ∈ S∗(a)\{a}. From the
resulting contradiction we conclude that (31) holds.

The stronger result actually proved above supports the view
that “normally” B∗(a) = B∗(a).

For our second auxiliary result, let us agree to say that a
blocking setB for a nodea has themonotonicity propertyif,
for any t ∈ TB(a), [a, B] ≥ [t]max.

Proposition 6.2: (Characterization): For anya ∈ Λ, B∗(a)
can be characterized as the largest blocking set fora with the
monotonicity property.

When applying this result we have a construction “from the
bottom” in mind. Then the characterization makes good sense
since, when searching for the setB∗(a), all setsB∗(b) with
b ∈ a↓\{a} will be known and thus the monotonicity property
can be checked for any candidate setB we may suggest for
B∗(a).

Proof: Let B be the largest blocking set fora with the
monotonicity property. AsB∗(a) is a blocking set fora and
has the monotonicity property,B∗(a) ⊆ B. To prove the
reverse inclusion, assume, for the purpose of an indirect proof,
that this is not the case. Then there existst ∈ TB(a) ∩ S∗(a)
and we find that

[a, B] ≥ [t]max ≥ [t, B∗(a)] > [a]max ≥ [a, B] .

This is a contradiction and we conclude thatB ⊆ B∗(a),
henceB = B∗(a) as claimed.

Before we turn to a development of the algorithm we aim
at, we emphasize that in estimating the complexity of the
algorithm, we shall neglect any contribution from efforts to
make basic information about a co-tree studied accessible to
us in a convenient form. We shall thus talk aboutessential
complexityof the algorithms.

It turns out that the basic information we shall need about
any specific co-tree can be listed as follows:

• the decomposition in minimality components,Λ = M0 ∪
· · · ∪ Mh,

• the mapa y a− which makes the immediate predeces-
sors of any node accessible to us,

• the mapa y a↓ which gives access to the left sections,
• the mapa y N(a) and, finally,
• the mapa y N(a).

Of course, there is some redundancy in this list (especially,
N is given in terms ofN ). However, the list is chosen for
convenience in view of the algorithm to follow. We shall not
worry much about how the basic information can be provided,
only remark that it is clear that if we specify a co-tree by
the standard representation, the desired information can be
provided via efficient algorithms operating on the underlying
set of finite sequences.

The algorithm we shall now describe is based on Theorem
5.1 which shows that if we know, for every nodea, the ceiling
T ∗(a) as well as the maximal bracket[a]max, then it is easy
to determine the relativized universal code, and hence the
universal code and the universal predictor. Our algorithm calls
several times thecentral subroutine, see Figure 2, which, for
a given inputa, calculates thekey objectsassociated witha,
taken to be the setsB∗(a) andT ∗(a) and the number[a]max.
Note that we find it convenient to work with bothB∗(a) and
T ∗(a), though the one may of course be determined from the
other.

For the minimal nodesa ∈ M0, we already know what the
key objects are and there is no reason to call any subroutine
for these nodes. To determine the key objects associated with
any node, we first call the central subroutine for nodes in the
minimality componentM1, then for nodes inM2 and so on
until we get to the nodes inMh (with h the height ofΛ).

Let us have a closer look at the central subroutine. Consider
a particular inputa ∈ Λ \ M0. When the subroutine is
called it is assumed, though not shown explicitly in the
flow diagram, that key objects about preceeding nodes have
already been determined. Actually, this will be the case by the
procedure chosen as nodes in(M0), M1, · · · , Mh are called
in succession.

We useB, T and α as place-holders for the sought key
objects associated witha. The largest blocking set fora
altogether isa↓ \ {a}. This is the first set we will test and
our initial assignment box putsB := a↓ \ {a}. We also right
away assign the appropriate set toT and the appropriate value
to α.

After the introductory assignments, we arrive at the central
box, the(b, β)-box. It is important that when we come to this
box, which may occur many times during the execution of the
subroutine,B, T , andα are known to have certain properties:
B must be a blocking set fora, T = TB(a) and α = [a, B]
must hold, and then we stress thatB∗(a) ⊆ B must be known
to hold. In order to carry out the calculations in the(b, β)-box,
it is understood that there is a natural way to list the nodes
in T , say ast1, · · · , tk (the standard representation ofΛ may
be used for this purpose). For the calculation, we go through
all brackets[t]max with t ∈ T , note the largest value and
then consider the first node amongt1, · · · , tk for which the
corresponding bracket attains this value. By definition, this is
theArg max-node. As place-holders for this node and for the
corresponding maximal bracket we useb, respectivelyβ and
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Input a

B := a↓\{a}

T := a−

α := [a, B]

b := Arg max
t∈T

[t]max

β := [b]max

α ≥ β

B := (B\b↓) ∪ B∗(b)

T := (T \{b})∪T ∗(b)

α := [a, B]

Output

B∗(a) = B

T ∗(a) = T

[a]max = α

RETURN

No

Yes

Figure 2. Flow diagram for the central subroutine

thus carry out the assignments

b := Arg max
t∈T

[t]max ; β := [b]max .

Concerning the calculation of brackets in the central box and
elsewhere in the subroutine, this is based on basic information
about the co-tree (N ’s and N ’s) and on output (T ∗’s) from
previous calls of the subroutine according to the formula

[t]max =
N(t) −

∑

s∈T∗(t) N(s)

N(t) −
∑

s∈T∗(t) N(s)
. (32)

After the central box comes the test-box “α ≥ β?” . We
realize that what is tested is really ifB has the monotonicity
property. If it does,B = B∗(a) by Proposition 6.2 and we go
to the output box and then return to the algorithm.

Assume now that the test is negative, i.e.[a, B] < [b]max.
It is a key point of the algorithm that thenb ∈ S∗(a) must
hold. Assume the contrary. Then, asB∗(a) ⊆ B, b ∈ T ∗(a)
and by monotonicity we then have[a]max ≥ [b]max. Consider
any t ∈ T and note that

[t]max ≤ [b]max ≤ [a]max .

By boundedness, we must conclude from this thatt ∈ B∗(a)
since, if t ∈ S∗(a), [a]max < [t, B∗(a)] ≤ [t]max would hold,
contradicting the inequalities above. ThusT ⊆ B∗(a). SinceT

is the ceiling ofB in a and sinceB∗(a) ⊆ B we conclude that
in fact B = B∗(a) must hold. ThenB does after all have the
monotonicity property of Proposition 6.2. This contradicts the
result of the test. All in all we conclude that indeedb ∈ S∗(a).

Knowing this, we can apply the gamma structure, Propo-
sition 6.1, and find thatB∗(a) is a subset of the set

(

B \
{b}

)

∪B∗(b). This set is a blocking set fora asb cannot be a
minimal node (thenβ = 0 would hold and the test would have
been positive). We take this set as our new set to be tested and
make the proper assignments ofB, T andα in the next box
of the flow diagram. These possible key objects are then fed
into the (b, β)-box and we continue until, eventually, the test
for the monotonicity property is positive.

Remarks. Naturally, if the test is negative and there are
several nodes inT with [b, B∗(b)] maximal, we may econo-
mize and restrict the candidate set further. In more detail,put
m = maxt∈T [t]max and assume that there are several nodes
in T , sayb1, · · · , bk with maximal bracketm. Then we may
as our new assigned key objects take

B :=
(

B \
k

⋃

ν=1

b↓ν

)

∪
k

⋃

ν=1

B∗(bν) , (33)

T :=
(

T \
k

⋃

ν=1

{bν}
)

∪
k

⋃

ν=1

T ∗(bν) , (34)

α := [a, B] . (35)

It follows from our analysis above that the new setB
still contains B∗(a). Further, theα’s increase through the
subroutine. One way to see this when multiple reductions
are performed as in (33) -(35) is to make the reductions step
by step. First, putB0 = B (the old setB) and then define
successive reductions by putting

Bν =
(

Bν−1 \ b↓ν
)

∪ B∗(bν)

for ν = 1, · · · , k. Then the setBk is equal to the set defined
in (33). This relies on successive applications of (25) and on
monotonicity. Details are left to the reader. This remark will
be important for the special co-trees to be discussed in the
next section.

Other modifications may speed up the execution of the
subroutine, e.g. one may note that nodes inM1 can also, just
as minimal nodes, be dealt with outside the subroutine and
that some of the information about calculated brackets[t]max

at one stage may be reused for the next stage. We shall not be
concerned here with such fine-tunings for general co-trees.

The full algorithm for the calculation of̃κ∗, and hence the
sought universal objects, consists of the following steps:

• initialization providing basic information about the co-
tree,

• trivial assignment of key objects to nodes inM0,
• call of the central subroutine for all nodes inM1,
• · · ·
• call of the central subroutine for all nodes inMh,
• top-down construction of the ceiling hierarchy and simul-

taneous listing of the values of̃κ∗, cf. Theorem 5.1.
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By the foregoing discussion, it is clear that the algorithm
does indeed calculate the desired objects. It is also pretty
clear that this is achieved in polynomial time in the size
of the problem. Let us discuss this in more detail but only
aim at a rough estimate of the efficiency of the algorithm.
Firstly, as remarked before, we shall neglect the time con-
sumed during initialization. Also, we shall not be concerned
with the memory requirements of the algorithm or with the
extra cost incurred by administrative operations involvedin
the memory management. Further, we shall not discriminate
between various basic operations such as additions, subtrac-
tions, multiplications, divisions and comparisons of numbers
as well as0, 1-tests (based on known entities). Theessential
complexityof the algorithm, denotedC(Λ), is then taken to
be the number of basic operations needed from start to end of
the algorithm with the reservations as indicated above.

We shall estimateC(Λ) in terms of the numbern of nodes
in Λ. Clearly,C(Λ) ≤ n · maxa∈Λ C(a) whereC(a) denotes
the essential complexity of the central subroutine when it is
called with the nodea as input.

For a fixed, we can estimateC(a). Regarding the initial
assignments, only the calculation of[a, B] needs to be taken
into account. As[a, B] = N(a) −

∑

t∈a− N(t), at most|a−|
basic operations are needed, hence at mostn such operations.

For the cycle “(b, β)-box to test-box to new assignments” ,
this will be visited at most|a↓| many times, hence at most
n times. And for one run through the cycle we need at most
|T | ≤ n basic operations for the determination of(b, β) (as
the numbers[t]max with t ∈ T are already known). We permit
ourselves to ignore the minimal requirement needed to carry
out theα ≥ β test. But we have to consider the requirement
related to the new assignments ofB, T andα. RegardingB,
we need to know, for each node, whether the node is in the set
or not. This can be decided by checking membership for each
of the three setsB, b↓ andB∗(b). As the setsb↓ andB∗(b)
are known, we only need to test membership forB, and this
requires at mostn tests. Similarly forT . And regardingα, we
realize from (19) that at most2 · |T | ≤ 2n basic operations are
needed. The new assignments thus require at most4n basic
operations.

The rough estimates above show thatC(a) ≤ n + n(n +
4n) ≤ 6n2.

We have now completed all elements in the proof of our
second main theorem:

Theorem 6.1:The algorithm described above calculates the
ceiling hierarchy and thereby the universal objects associated
with a co-treeΛ in polynomial time. The essential complexity
as defined above is at most6 · n3 wheren is the number of
nodes inΛ.

Remarks. By studying “worst possible scenarios” regard-
ing the possibilities for the geometric locations of the ceilings
calculated by the central subroutine it should be possible to
bring down the estimate6n3 quite significantly. We shall look
into this in Section VII, but only for co-trees with uniform
branching.

As another remark, recall that a main point of our endeav-
ours have been to demonstrate that the universal objects can

be determined in closed form. Thus, though the algorithm
developed functions well as a numeric algorithm, the end result
can easily be expressed in closed form since the basic numbers,
the values ofκ̃∗, are expressed by the bracketsα = [a, B]
resulting from the central subroutine (perhaps after neglecting
certain values which are “overshadowed” during the very last
part of the algorithm), and these brackets are given explicitly
through (19).

We shall now demonstrate how the algorithm works in
practice by investigating a particular, not too complicated and
still reasonably “general” example, the co-treeΛ of Figure
3. The work carried out when following the algorithm is
conveniently summarized in Figure 4. We have marked in
black the top-node (known to be active) as well as all nodes
which occur as nodes in a ceiling constructed during the
algorithm. In particular, all minimal nodes are marked in black
as

⋃

a∈M1
T ∗(a) = M0. Furthermore, we have listed the exact

as well as the approximate values of all brackets which are
constructed during the algorithm and marked with a “dagger”
the one and only value (calculated for the nodea23) for which
the (α ≥ β)-test of the central subroutine is not passed (in the
actual case because5 − 4 ≥ 4 doesnot hold).

a0

a1

a11 a12

a121

a2

a21

a211 a212

a22

a23

a231

a2311

a2312

a2313

Figure 3. A “general” co-treeΛ.

15 − 4 − 10 ≈ 12.05

4 − 2 ≈ 4.16

0 2 ≈ 1.39

0

10 − 3 − 5 ≈ 11.68

3 ≈ 3.30

0 0

0



5−4≈2.50 †

5/2≈4.02

4 ≈ 5.55

0

0

0

Figure 4. The algorithm forΛ.

The result is that all nodes excepta231 are active. For
this you have to consider the very last part of the algo-
rithm (the “top-down” part). This can easily be done based
on information listed. For example,T ∗(a0) = {a1, a2}
(since theα-value [a0, B] = 15 − 4 − 10 when testing
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14−3−10≈10.63 †

(14−3−3−5)/2≈11.15

3 − 2 ≈ 1.91

2 ≈ 1.39

0

10 − 3 − 5 ≈ 11.68

3 ≈ 3.30

0 0

0



5−4≈2.50 †

5/2≈4.02

4 ≈ 5.55

0

0

0

Figure 5. The algorithm forΛ \ {a11}.

the set B = (a0)
↓ \ {a0} is indeed greater than theβ-

value maxt∈TB(a0)[t]max = 10 − 3 − 5). The final part of
the algorithm, the “top-down” part is in fact necessary as
examples show that not all “black” nodes need be active –
some of these nodes may have been “overshadowed” , as we
shall illustrate at the end of the section.

The final result is that all values listed in Figure 4, except
the one which has been “daggered away” by a node higher up
in the co-tree are the correct values of the relativized universal
code. For the exceptional node we find thatκ∗(a231) =
κ∗(a23) = 5/2. The universal objects sought may then be
obtained from Corollary 3.1. For this we need to calculate
Rmin. One finds that

Rmin = ln
(

8 + 2−2 + 3−3 + 2 · 5−5/2 + 4−3+

+ 332−105−5 + 2183−155−5
)

≈ 2.12 ,

measured in natural units, corresponding to 3.06 bits. This
may be compared with the 3 bits necessary to encode the 8
minimal nodes which are equally probable under the universal
predictor. In the expression above we have listed the contri-
butions toRmin (or rather toeRmin) in descending order: First
the contribution from the minimal nodes, then the nodea12,
then the nodea21, then the two nodesa23, a231, then the node
a1, then the nodea2 and finally, the contribution from the top-
nodea0.

In order to illustrate the sensitivity of the algorithm, consider
also the co-treeΛ− = Λ\{a11}. For this co-tree the algorithm
gives a result which can conveniently be summarized in Figure
5. Again, no “overshadowing” takes place, but we note that
a new inactive node pops up, the nodea2. Thus one cannot
decide “locally” if a node is active or not. For this co-tree one
findsRmin ≈ 2.01 natural units≈ 2.90 bits – compared to the
approximately 2.81 bits needed to encode the 7 minimal nodes
which have equal probabilities under the universal predictor.

Finally, concerning the phenomenon of overshadowing, Fig-
ure 6 shows the simplest example we can think of to illustrate
this. For that co-tree, only the minimal and the maximal nodes
are active and the 2 nodes in level 2 are “overshadowed” .

8

<

:

12−11≈3.44 †

(12−2·5)/2≈6.86 †

12/4≈7.45

11 − 2 · 5 ≈ 10.28

5 ≈ 8.05

0

Figure 6. A co-tree with “overshadowing”.

VII. T HE CASE OF CO-TREES WITH UNIFORM BRANCHING

Consider a co-treeΛ of heightn with uniform branching.
Let (k1, · · · , kn) be the branching pattern. Denote byΛν the
set of all nodes in levelν. Put Kν = |Λν | and, for a node
a ∈ Λν , put Nν = N(a) and Nν = N(a). Clearly, Kν =
k1 · · · kν , thus, recursively,

K0 = 1, Kν = kνKν−1 for ν = 1, · · · , n. (36)

Regarding the convenient calculation of theNν ’s, see (12).
For the determination of̃κ∗, we shall specialize the algo-

rithm of the previous section to the present situation of a
co-tree with uniform branching. For reasons of symmetry –
see also the discussion related to (33)-(35) – we need only
work with certain special blocking sets. By[ν, µ] we denote
the bracket[a, B] for a nodea ∈ Λν with the blocking set
B = a↓ ∩

⋃

i≥µ Λi for which thenTB(a) = a↓ ∩ Λµ. These
brackets are well-defined for points(ν, µ) with 0 ≤ ν ≤ n−1
and ν + 1 ≤ µ ≤ n. We extend the definition by adding the
point (n, n+1). This point represents a minimal node and the
empty blocking set. Therefore, we put[n, n + 1] = 0. For all
other brackets we find that

[ν, µ] =
Nν − kν+1 · · · kµNµ

Nν − kν+1 · · · kµNµ
. (37)

=
KνNν − KµNµ

KνNν − KµNµ
. (38)

The bracket diagramconsists of all brackets. A numerical
example is shown in Table 2.

Given ν, define[ν]max andτν by

[ν]max = max
µ>ν

[ν, µ] , (39)

τν = Arg max
µ>ν

[ν, µ] . (40)

Then, for a nodea ∈ Λν , T ∗(a) = a↓ ∩ Λτµ
3. The numbers

[ν]max are themaximal bracketsand theτν ’s are theceiling
numbers.

3to be sure, theArgmax in (40) has to be understood as the first index
for which the maximum is reached, since we have not been able to exclude
the possibility that the maximum is reached for several values ofµ.
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0.00
8 12.62 12.69 12.76 12.84 9.55 5.76 6.59 5.55 8
7 18.51 18.77 19.04 19.32 13.19 5.97 8.68 7
6 25.53 26.24 27.00 27.83 16.94 3.25 6
5 81.21 91.91 106.17 126.14 85.39 5
4 77.03 100.59 147.73 289.12 4
3 6.33 6.33 6.33 3
2 6.33 6.33 2
1 6.34 1

µ/ν 0

Table 2. Bracket diagram forΛ[1, 1, 1, 4, 5, 1, 2, 3]

The ceiling numbers can be determined directly from the
bracket diagram. For instance, forΛ[1, 1, 1, 4, 5, 1, 2, 3], we
find from the column in Table 2 withν = 2 that τ2 = 4 and
that [2]max ≈ 147.73. Then, by Theorem 5.1, the nodes in
levels 0, 5, 7 and 8 are the active nodes. Further, the values
of κ̃∗ for nodes in levels 0,1,2,3 and 4 is 81.21 and the values
of κ̃∗ for nodes in levels 5,6,7 and 8 are, respectively 5.97,
5.97, 5.55 and 0.

Using the strategy as exemplified above for the calculation
of κ̃∗, the full bracket diagram must be calculated and this
amounts to aboutn2/2 basic computations. This can be
improved considerably by appeal to the algorithm developed
in Section VI. ForΛ(1, 1, 1, 4, 5, 1, 2, 3) one may for instance
reduce the number of calculations of brackets from 36 (corre-
sponding to Table 2) to 13 (will follow from results below).
The basic facts we need are Propositions 6.1 and 6.2. The
algorithm dictates that the bracket diagram is calculated for
descending values ofν and ascending values ofµ. To initialize,
one sets[n]max = 0 and τn = n + 1. Then one calculates in
succession[n − 1]max and τn−1, then [n − 2]max and τn−2

and so on until[0]max andτ0 are calculated. On the way, the
only tests that are performed are of the type “[ν, µ] ≥ [µ, τµ]?”
and, in fact, not all these tests have to be performed as the
result is bound to be negative (and henceτν > µ) in case,
for a value ofξ with ν < ξ < µ, one has already found that
τξ > µ. This follows by Proposition 6.1.

In order to study more closely which tests can be neglected
and which not, we introduce the abstract notion of aΓ-
diagram. These diagrams are first discussed in their own right.
After having developed a main property, Lemma 7.1 below,
we return to the actual problem concerning co-trees.

Given are natural numberst0, · · · , tn with n ≥ 1 such that:

tn = n + 1 , (41)

ν + 1 ≤ tν ≤ n for all 0 ≤ ν ≤ n − 1 , (42)

if ν ≤ µ < tν , then tµ ≤ tν . (43)

Then theΓ-diagramG = G(t0, · · · , tn) consists of all points
(ν, µ) with 0 ≤ ν ≤ n for which ν + 1 ≤ µ ≤ tν . More
precisely,G is a Γn-diagramsand n is the height of G. As
a singular case we allow thatn = 0. There is only oneΓ0-
diagram, thetrivial diagramconsisting only of the point(0, 1).

By (43), if you consider the column from(ν, ν + 1) to
(ν, tν) and place a horizontal bar on top of and to the right
of (ν, tν) then you meet no points inG until you reach the
diagonal element(tν , tν + 1). Having the shape of the letter
“Γ” in mind, this property accounts for the terminology “Γ-
diagram” . For a possibly more illuminating way of expressing

the key property, see below.
A site (ν0, µ0) ∈ G = G(t0, · · · , tn) is a test sitefor G, if

ν < n andG(s0, · · · , sn) is also aΓn-diagram where all the
si are equal toti exceptsν which is set toµ. For example,
all sites (ν, τν) and (ν, ν + 1) with ν < n are test sites.
For the Γ8-diagram displayed in Figure 9, we have 17 test
sites, corresponding to the marked positions. For a general
Γ-diagramG, we denote by〈G〉 the number of test sites.

Two operations onΓ-diagrams are worth pointing out:
The restriction of G(t0, · · · , tn) to {ν, · · · , n} is the Γn−ν-
diagramG(tν − ν, · · · , tn − ν) and thedirect sumof the two
Γ-diagramsG(t0, · · · , tn) and G(s0, · · · , sm) is the Γn+m-
diagramG(t0, · · · , tn−1, s0 + n, · · · , sm + n). Figure 8 pro-
vides an example of a direct sum.

For a Γn-structure G = G(t0, · · · , tn) we define the
spectral levelsσ0, · · · , σγ by σ0 = 0, σi = tσi−1 for all values
of i ≥ 1 until you reach the indexγ with σγ = n. We call
γ = γ(G) the spectral indexof G. The spectral index of
the trivial Γ-structure is0, all otherΓ-structures have positive
spectral indices.

Note that the spectral levelsσ0, · · · , σγ can be constructed
geometrically as indicated in Figure 10 by “letting the sun
shine from the left” and noting the column numbers of the
sunlit columns. The spectral indexγ(G) is the number of sunlit
columns minus1. Using the “sunshine terminology” we can
also express the essentialΓ-structure, formally given by the
requirement (43), by saying that when the sun illuminates part
of a column, it illuminates the entire column. And this property
must also hold for restrictions of theΓ-diagram.

Input ν

µ := ν + 1

α := [ν, µ]
β := [µ]max

α ≥ β

µ := τµ

α := [ν, µ]

Output

τν = µ

[ν]max = α

RETURN

No

Yes

Figure 7. The central subroutine for co-trees with uniform branching

The combinatorial result we need is the following:

Lemma 7.1 (Γ-structure): For anyΓn-structureG, 〈G〉 =
2n − γ(G), in particular,〈G〉 ≤ 2n.



15

G′

G′′

Figure 8. Illustration of last part of the proof of Lemma 7.1

Proof: The proof is by induction on the spectral index. To
start the induction we have to prove the implicationG ∈ Γn,
γ(G) = 1 ⇒ 〈G〉 = 2n−1. This is proved by induction onn.
The induction start is easy. Then assume that the implication
holds for indices smaller thann. Let G ∈ Γn satisfyγ(G) = 1,
i.e. (0, n) ∈ G. Consider

G∗ = G \ {(n, n + 1)} \ {(ν, n) | 0 ≤ ν ≤ n − 2}.

ThenG∗ ∈ Γn−1 andγ(G∗) = 1. Thus〈G∗〉 = 2n−3 by the
induction hypothesis.

In order to compute〈G〉 and 〈G∗〉, first remark that for a
point (ν, µ) with µ ≤ n − 2, the equivalence(ν, µ) ∈ G ⇔
(ν, µ) ∈ G∗ holds and the point is a test site forG if and only if
it is a test site forG∗. It remains to consider points(ν, µ) with
µ = n or µ = n− 1. Let {ν < n− 1|tν = n} = {r1, · · · , rk}
with r1 < · · · < rk. Thenk ≥ 1 and r1 = 0. Likewise, let
{ν < n − 2|tν = n − 1} = {s1, · · · , sl} with s1 < · · · < sl.
Here, l = 0 may happen corresponding to the case with no
sites of the form requested. Note that by theΓ-structure ofG,
s1 > rk. All k + 1 sites(ν, µ) ∈ G with µ = n are test sites
for G, whereasG∗ only has one site withµ = n and this site
((n− 1, n)) is not a test site. Among thek + l + 1 sites(ν, µ)
with µ = n− 1 in G as well as inG∗, there are1+ l + 1 test
sites inG (the sites(rk, n−1), (s1, n−1), · · · , (sl, n−1) and
(n− 2, n− 1)), whereas all these sites are test sites forG∗. It
follows that there are

(

(k+1)+(l+2)
)

−
(

0+(k+l+1)
)

= 2
more test sites inG than inG∗, hence〈G〉 = 2n−1 as desired.

We now go back to the main induction proof and assume
that the claimed result holds for allΓ-structures with a spectral
index less than some fixed numberγ ≥ 2. Consider aΓ-
diagramG = G(t0, · · · , tn) with γ(G) = γ. Note thatG is
the direct sum ofG′ = G(t0, · · · , tt0 , t0+1) and the restriction
G′′ of G to {t0, · · · , n} as indicated in Figure 8. Asγ(G′) =
1, 〈G′〉 = 2t0 − 1 by the first part of the proof and by the
induction hypothesis,〈G′′〉 = 2(n − t0) − (γ − 1). Clearly,
〈G〉 = 〈G′〉+〈G′′〉. Therefore, we find that〈G〉 = 2n−γ(G).
This is the desired result and the induction is complete.

After our excursion into combinatorics we return to the
study of a given co-treeΛ = Λ(k1, · · · , kn) with ceiling

∨
∨∨

∨
∨∨

∨

∨

∨
∨

∨
∨∨

∨
∨
∨∨

Figure 9. AΓ10-diagram with test sites

Figure 10. Sunlit culumns for diagram in Figure 9

numbersτo, · · · , τn. TheΓ-diagram associated withΛ is the
diagramG = G(τ0, · · · , τn). That this is indeed aΓ-diagram
follows from Proposition 6.1.4

The algorithm we shall discuss consists of three parts:

• initialization,
• construction of theΓ-diagram,
• determination of the spectral levels, final output.

The initialization consists of the calculation of the numbers
Nν , Kν , KνNν and KνNν for ν = 0, · · · , n. For this, the
formulas (12), (36) and (38) are used. In total,4n basic
operations are needed for the calculations. You may also
consider as part of the initialization the assigment of start
valuesτn = n + 1 and [n]max = 0 for the next step in the
algorithm.

The key part of the algorithm is the calculation of theΓ-
diagram, i.e. the numbersτν , as well as the calculation of the
associated maximal brackets, the[ν]max’s. This is achieved by
successive calls of thecentral subroutine. Though basically the
same as for general co-trees, there are essential simplifications
as also indicated earlier. This is partly achieved by symmetry
considerations, partly by our focus only on those sites in the
Γ-diagram where we really have to make a test. The flow
diagram is sketched in Figure 7. The subroutine is called for
all ν, starting with the highest value,n − 1, and ending with
the valueν = 0. When all these calls have been made you
realize that you only have to calculate a bracket (following

4In passing, we conjecture that everyΓ-diagram can arise in this way. To
illustrate the conjecture, observe that there are 5Γ3-diagrams and these may
be realized asΓ-diagrams associated with the co-trees with branching patterns,
respectively (1, 1, 1), (1, 1, 2), (1, 2, 3), (2, 1, 2) and (1, 2, 4) (regarding
the last pattern, see also Figure 6).
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(38)) and to perform a test corresponding to test sites of the
Γ-diagram. Therefore, referring to Lemma 7.1, no more than
4n basic operations are involved in the calls of the subroutine
(for this, a test “α ≥ β?” as well as a calculationα := [ν, µ]
is counted as a basic operation).

The final part of the algorithm is a “top-down” de-
termination of the output of the algorithm, understood to
be the spectral levelsσ0 = 0, σ1 = τσ0 , · · · , σγ = n
and the associated maximal brackets. We suggest that these
data are listed in the form(σ0, [σ0]max) (= (0, [0]max),
(σ1, [σ1]max), · · · , (σγ , [σγ ]max) (= (n, 0)). Each such pair is
considered to involve only one basic operation, thus addingat
mostn such operations. If you also want to calculateRmin as
part of the final output, anothern basic operations are needed.

Considering the above discussion, we have proved our last
main result which may be summarized as follows:

Theorem 7.1:Consider a co-treeΛ = Λ(k1, · · · , kn). Ap-
ply the modification of the algorithm from Section VI as
described above. Then the number of tests performed during
execution of the algorithm is at most2n and the essential
complexity of the entire algorithm, understood as the number
of basic operations needed to carry out initialization, determi-
nation of theΓ-diagram and the listing of all pairs of spectral
levels and associated maximal brackets is at most9n.

VIII. C ONCLUSIONS AND FINAL COMMENTS

The paper offers a reasonably complete study of algorithms
for the precise determination of universal objects associated
with the model of all distributions over a co-tree for which
the implicationa < b ⇒ P (a) ≥ P (b) holds. A relatively
simple situation corresponds to the case when the universal
predictor satisfies the implication above with strict inequality.
The key result here is Theorem 2.1 with Corollary 2.2 as a
natural extension of Ryabko’s result from 1979.

However, the main results concern general co-trees. It ap-
pears convenient to introduce a notion ofrelativizationapplied
to codes. This concept is believed to be of interest also outside
the scope of the present paper.

Theorem 5.1 provides basic insight into the structure of the
universal objects, but quite some extra work is involved before
a reasonable algorithm, presented in Theorem 6.1 is in house.
Only a crude estimate of the complexity of that algorithm
is discussed. For the special case of co-trees with uniform
branching this is much refined. The main result is Theorem
7.1. One may comment that the resulting algorithm is easy to
implement, also on simple programmable pocket calculators.

It will be observed that the key to the results are purely
combinatorial facts, isolated in the transitivity identities in
Lemma 5.1 for the general algorithm and supplied with a count
of test sites in Lemma 7.1 for the special case of co-trees with
uniform branching.

Regarding Lemma 5.1, we state a natural generalization:

Lemma 8.1 (transitivity identity, general case):Let k ≥ 2
and consider nodesa1, · · · , ak with a1 > · · · > ak. Assume
that B is a blocking set fora1 and thatak /∈ B. Put Bi =

B ∨ ai for i = 2, · · · , k andBk+1 = B. Then

k
∑

i=2

|SBi(a1)|
(

[ai−1, Bi] − [ai, Bi+1]
)

= |SB(a1)|
(

[a1, B] − [ak, B]
)

.

This result displays the transitive structure more clearlythan
the identities (24)-(26). As to the proof, it can be accomplished
by a natural induction argument. We leave the details to the
reader.

As to Lemma 7.1 there may well be simpler, more direct
proofs based on links to other combinatorial structures. Asan
indication of this we note that the number ofΓn-structures is
the Catalan number 1

n+1

(

2n
n

)

, which appears in many other
contexts of combinatorial analysis5.

It is a curious feature of the technical analysis that the log-
arithmic function only appears rather sporadicly. Accordingly,
other functions may be considered. Without going into details,
this may result in computations of universal objects tied to
other notions of entropy and divergence than the standard
notions of pure Shannon theory.
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