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Abstract—For an arbitrary ordered set, one may consider the ag agp ago ao
model of all distributions P for which an element which precedes
another element is considered the more significant one in the
sense that the implicationa < b = P(a) > P(b) holds. It will a1 a1 as ay ai as
a1 a12 a21 a22

be shown that if the ordered set is a finite co-tree, then the
universal predictor for the indicated model or, equivalenty, the
corresponding universal code, can be determined exactly aian ai
algorithm of low complexity.

Index terms— Universal code, universal predictor, transitivity

identity. Case 1 Case 2 Case 3 Case 4

Figure 1. Some simple suspended co-trees
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m < n). The heightof A can be defined as the length ofwith reference to this decomposition, tispectrumof P is
the longest string in the séY which identifiesA. We shall defined by

later refer a few times to the representation described a&s th o(P) = {alw, > 0}. 3)
standard representatioof A.

Cases 1-3 from Figure 1 are co-trees withiform branch-
ing. In general, these co-trees are defined by a seque
(k1,- -, ky) of natural numbers. Thef[ky,- - - , k,] denotes
the suspended co-tree with immediate predecessors of eac —r(a)
node in levelr — 1 for 1 < v < n. The sequencé,--- , ky) Z € =1
is the branching patternof the co-tree. Thus the co-trees in ach
Cases 1-3 from Figure 1 arg[1, 1], A[2] andA[1, 2], whereas Note that we have chosen to work with theoretical (natural)
the last co-tree is not of this type. Co-trees with uniforminits, hence use exponentiation with respect to the natural
branching are identified with a product set of finite stringgase. The set of all codes ovéris denotedk(A).
under the standard representation. For P € M (A) andx € K(A) we denote by(x, P) the

Among the subsets of a co-trég the left sectionsplay a average code length
special role. Notation and definition is given by (5, P) = Z w(a)P(a).

at ={beApb<a}. a€A
The overall goal is to choose a code so as to minimize this

We use the general notatign | for “the number of elements qaniity. If P is fixed, the minimum is attained for the code
in ", and put N(a) = |a!|. We also need the non-negativeygapted toP, given by

real numbersV (a) defined fora € A by

One of the objects we shall search for is related¢ading
I]]r&ethis paper, acodeover thealphabetA is identified with
a code length functiors : A — [0, 00|, required to satisfy
Il]<ra1‘t’s equality

1
Ii(a)—lnm fOI‘aEA,

and the minimum value is thentropyof P,

H(P) = P(a)ln % .

acA

N(a) = N(a)InN(a). (1)

A subsetB C A is hereditaryif the implicationa € B =
a' C B holds or, equivalently, if3 is a union of left-sections.
By M (A) we denote the set of all distributions (always
understood to be probability distributions) over The order ] ] )
modelP = P(A), which is the object we will study, is definedWhen is adapted taP, we also express this by saying that
as the model of all distribution® for which P(a) > P(b) I IS the distribution whicimatches:.
whenever < b 1. We shall assign “representative” objects to L€t £ € Mi(A) and x* € K(A). The redundancy
this model, either in the form of theniversal predictoror in ~ @ssociated with? and x*, or, in more suggestive terms, the
the form of theuniversal codeobjects which will be defined "€dundancy of:* with P as the “true” distributionis denoted

carefully below. Before we do so, we comment on the basii(F’ll<") and defined as the difference between the actual
structure ofP(A). average code length and the minimal achievable value, i.e.

. Thg uniform distributions over the left se.ctions grelof $i.zplec D(P||x*) = (k*, P) — H(P). (4)
significance. Indeed, denoting iy, the uniform distribution
over o', we find that all these distribution and then also allhis quantity is nothing but the well knowkullback-Leibler
mixtures of them are members of the moglA). Conversely, divergencebetweenP and the distribution”* matchingx*,
any distributionP € P(A) can be written in a unique way asin standard notation:

a convex mixture of uniform distributions over left secon D(P|P*) = Z P(a)In ]I;(ZI)) .
P=> wl,. ) a€h
a€A The basic identity (4) is mostly written in the form
In other words, the following structural result holds: (k*, P) = D(P||x*) + H(P), (5)

Proposition 1.1: The order modefP(A) is a simplex with  and referred to as thinking identity We need another basic
the distributiong(U,).ca a@s extremal distributions. identity, thecompensation identitgf [9], which makes more

We take this result as background information. The intePY€Cise the fact that?, @) ~ D(P|Q) is convex inP:
ested reader will not find it hard to provide a proof. The & k
decomposition (2) is thbarycentric decomposition d? and, Zau D(P,|Q) = Zau D(P,||P*) +D(P*Q), (6)
v=1 v=1

1This model — and not the alternative choice of all order@mnasg . . . k
distributions — is considered to be the natural one, a maisare being that valid for any convex combinatiof™ = Zu=1 o, P, and any
if a precedes (a < b) this is taken as a sign that is more “significant” distribution Q. In terms of codes, the identity reads
thanb, hence, for sensible distributions, one should h&ye) > P(b) rather
than the other way round. In terms of coding (see below) ooicehappears k k
even more natural as it reflects the good sense of assoctagnghorter code Z a, D(P,||k) = Z o, D(P,||k*) +D(P*||k), (7)
words to the more significant events. =1 =1



with k just any code and withx* the code adapted to Case 1| Case 2[ Case 3| Case 4
P = Zl’f:_l al,}}. The compensation identity follows from o(A) A A | A\ far} A
the linking identity, cf. [9].

Returning to the order modéP = P(A), we define two Pao) |2l 2| 52| 5= 2
guantities ofredundancy firstly the guaranteed redundancy . - N T
of any codex* € K(A) which is defined by P*(a.) iz |2Xz| %7 |27z

R(K*) = sup D(P”Ii*) P*(a..) % 2 X % 2 X %
pPecP 151 55 17 256979
i , Rupin=InZ [ Ind8L | In35 [ Inil [ n2
and then theminimax redundancgefined by i Il " " sa375
Rmin = inf R(k¥). Table |

k*€K(A)
UNIVERSAL PREDICTORS FOR THE CEOTREES INFIGURE 1

Considering the constant code, we realize fRat,, is finite.
It may be seen directly, and also follows from results later

on, that there exists a unique codg, the universal code . .
such thatR(x*) = Ruin. The distribution which matches thedo remark though that by exploiting the sufficiency as well

universal code is theniversal predictor It is considered the @S the necessity of the conditions of Proposition 1.2 it &yea

most unbiased representation of the ma@elThe two univer- to reduce the search for the universal objects associatidd wi
sal objects identified, are those we shall aim at charadteriz® 9eneral finite co-tree to the similar search for suspended
by an algorithm of low complexity. In order to achieve thi0-trees _ _
goal we shall use a special instance of a result from generafPPiectsP* and x™ will from now on denote the universal
optimization theory, which is much used in information theo Predictor and the universal code of a co-treainder discus-
and there often ascribed to Kuhn and Tucker, cf. [1]. WRON- Thespectrunof A is the spectrum oP”: o(A) = o (P”).
formulate the result in a way adapted to our needs: Nodes ino(A) are referred to aactive nodef A. The co-
tree A hasfull spectrumif all nodes are active. Otherwise,
Proposition 1.2 (Kuhn-Tucker criterion)Consider the or- the spectrum isleficient An anchoris a distribution/, with
der modelP = P(A) associated with a finite co-trek. Let 4 € o(A).
P* € P and lets* be the code adapted #8*. Assume that, |t turns out that the difficulty in determining* andx* lies
for some constani, the following two conditions hold: in determining which nodes are active, i.e. in determinimg t

D(U,|[K*) = R for a € o(P*), ) spectrum. Offhand, there is little we can say:
D(U,|x*) < RforallacA. 9) Proposition 1.3: Every maximal node of a co-tree is active.

Proof: If a maximal node: is not active,P*(a) = 0 must

Then P* is the universal predictok* the universal code and hold by Proposition 1.1. Lef be a node different from (we

Ruuin = R. may assume that is not a singleton). TheB(U, || P*) = o,
Though essentially known, we provide a simple intrinsibenceR(x*) = co which is absurd. ]
proof: Regarding the structure of(A), a first guess may be that

Proof: By convexity of redundanc¥ in the first variable, & ¢ spectrum, but even for very simple co-trees this
—a _con_sequence_of (7) — and as tigs are *the extremal is not so. One example is provided by Case 3 of Figure 1.
distributions of 7, it follows from (9) tha.tR(“ )_ < R. On This fact is revealed by Table | which shows the nature of
the other hanq, for ev?ry € K(A), we_fmd, using (8) a*nd the universal predictor and the associated spectrum for all
applying (7) with thew,’s the barycentric coordinates t*, co-trees depicted in Figure 1. The correctness of the table
that is easily checked by appeal to Proposition 1.2. In all cases,
Z waR(k) > Z we D(U,||k) normalizing factor/Z, appears and th_g minima?< redundaqcy is

In Z, a fact that follows from Proposition 1.2 since all weights

R(x)

weo) iEU(P : y of minimal nodes when discarding the normalizing factot is

= Z wa D(Ua||&") + D(P*|[%) and since all minimal nodes are in the spectrum of the co-tree
ago(Pr) That this behaviour holds generally will be demonstratéerla

= R+D(P k). in Proposition 3.2.

Thus, for everyx, the in itself interesting inequalitR (x) > _Tr_u_a natural interpretations rt-?-lated to codes as we_II as the
R+ D(P*||x) holds. AsD(P*||x) > 0 with equality if and significance of the problem outlined as onegeheral univer-

Only if k= ", the stated result follows. u 2Indeed, ifA is the direct sum of (suspended) co-treles, v = 1,--- ,m

L. . - . with associated minimax redundanciBs and universal predictor®* then
Through intrinsic reasoning, it is also possible to show P v
m R,

that one can indeed find®* and x* with properties as in Pr=Y e p*
Proposition 1.2, cf. [8]. It is comforting to know this, hoves, e 4o 4 eRm Y

W_e do n0t_ need_that result aS we shall fidet and K" is the universal predictor foA and In}",, eRv the associated minimax
directly which satisfy the conditions of the propositioneW redundancy.



sal prediction and codin¢general, because many other models [I. CO-TREES WITH FULL SPECTRUM

than models related to order structure may be considered) is . . . . . - : .
recognized in the information theoretical literature sitheng. . As |nd|ca}ted N the. mtrod_uchgn, the d'ff'c.“"y in determin
Early works in this area include Fitingof [3] and Davissof [Zlng the universal objects lies in determining the spectrum.

The reader may also consult the survey article [4] by Fedg‘} this feit'ohn Wteh stud_y co—ltrebe_s \tN'th fUIkI) Sge‘t:"“”_“ adntfj
and Merhav. Regarding the interesting connection whicktexi emonstrate how the universal objects may be determined for

between minimax redundancy and maximal transmission ra]r@ese trees. It is convenient first to introduce some coscept

capacity i.e. the redundancy-capacity theoremwf Gallager orda nodea fe A.’ thdemztefb)ﬁ;_ thi sethqflk:nmedla(';e
and Ryabko, see [6]. In our situation, the result involves gpreaecessorst a, 1.e. the set ot alb < a Tor which no node

discrete memoryless channel withas input- as well as outputlczs?ﬁSf'iSb < Ch< ‘S Thusa™ = q{ it a |SM;_mr|]?(|im?I ng?)e'
alphabet and with the distributiort&’, ).ca as the conditional urther, 1o each node we associate a cemarghtdetined by

output distributions, given an input letter (here a node\)n .. N(HN®

By the redundancy-capacity theorem, the optimal distidiout W(a) = bi{;—NW) ) (10)
on the input side is given by the barycentric coordinates of (a)

the universal predictoP* and the optimal distribution on the and by Z we denote tha@ormalizing factor

output side isP* itself. We shall not exploit this connection

in the sequel. Rather, the situation is that the results kvhic Z = Z W(a). (11)

we shall develop can be used to show how to determine the agA
optimal distributions and the capacity of the special diter

memoryless channels that can arise in the way described. .
y y Theorem 2.1:A co-tree A has full spectrum if and only

The motivation behind our very special study related onif; for every pair of nodegb, a) with b € o™, the inequality
to order models in co-trees is many sided. Firstly, to the bdd’ (b) > W (a) holds. And when this condition is satisfied,
of our knowledge, this class is the most comprehensive cldb¢ universal predictor is given by normalization 1df, i.e.
for which an exact determination of universal objects can B&*(a) = W (a)/Z for anya € A. FurthermoreRin = In Z.
provided either directly or via a reasonable algorithm. For ] .
the subclass of order models based on linearly ordered setsf dProm;. A_\ssunr*]n_e r:hatA Eafl ;cu" sptec'g]um. A dstralahtfor—th i
a complete result already exists. It is due to Ryabko w A aﬂayss,kw Ic (\;\{g sha feave o the rea2 er. s OVYS b a
developed a closed formula for the universal predictorf5if. fuﬁill}ég vr\1/|t-[1U(1:3 *er i(\:/(;: \l/tilgr%s/, ZS Zreos%?isl:;telgn Alsp* cear;D(o:)y €
For the larger subclass of co-trees with uniform branchamg, . gIve ) A
algorithm was announced in Topsge [10] but the details Wetnee stated mequalltles must hold. That, conve_rsé’ly,ls as
never published. stated when the mgqualmes hold amounts to simple chgckin

based on Proposition 1.2. The formRa,;, = In Z follows

Secondly, our main results, Theorems 5.1, 6.1 and 7.1, m@g. by noting thaD(U,[|P*) = In Z whena is a minimal
also be considered as useful reservoirs of examples whigh ni@de. u
serve as test cases for future research. However, we remarlf
that it appears very difficult, even theoretically impossitio o . .
develop exact results expressed in terms of standard €unscti malization of W may bg conS|derec_j for any cojtree. Oqe wil
for other desirable models than those here consideredareitﬁee that the sought universal predictBf, is theinformation

based on order structures other than co-trees (e.g. trees) oprOJecgllon of VIVt gntP(A). Tht's _fag_t _tO(; tthe codnnic]:tlon tg f
other constructs (such as Bernoulli models). Thus, the ideg? Prop'em related o capacily indicated towards the end o
ﬁctlon I — may be exploited to calculaf&* via standard

look into models based on sequences rather than individ|§ . .
observations from an order modgl is bound to fail. Severe agonthms, cf. Chapter 1.3 of [1]. H°W.e"ef’ we stress that th
gl only lead to approximate determinations &f*. As we

obstacles to such a program exists as will be revealed b)}N X . " :
reference to Galois theory (details will be provided in egsk are here concerned with precise determination®tf either

by Harremoés and Topsge, in preparation). via a_direct f(_)rmula (pos_sible only in special casgs_) or via a
algorithm which stops with the exact result after finitelynya

As a final motivation we note, as pointed out to us bgteps, we shall not pursue this possibility. Another maier
Boris Ryabko, cf. also [7], that for certain applications tghat standard algorithms may be useful anyhow in order to
biology, information about biological species is somesmeguess what the spectrum is, and then exact formulas are easy
available only in inconclusive form resulting — not in thdo derive, cf. the discussion related to (19) in Section IV.
direct determination of their relative numbers — but only in If we conceive Theorem 2.1 as an algorithm to check
an ordering among the species, from the more frequent to thbether the co-tree in question has full spectrum or not, we
less frequent ones. Modelling as done here based on a pote that the algorithm is very efficient as the number of
tree is one possibility, though modelling based on tredserat inequalities which need to be checked is at most the number
than co-trees appear just as interesting, or perhaps evem n nodes in the co-tree.
interesting. However, models with trees in place of cograe Let us have a closer look at Theorem 2.1 in the case of
without reach if you insist on expressing the universal cisie a co-treeA[ky, - -- , k] with uniform branching. For such a
in closed form. co-tree, we denote by, the common number oN(a) for

he probability distribution, call iih*, obtained by nor-



nodes in level (v = 0,--- ,n). The N,’s may be calculated Therefore, letA denote a fixed co-tree and denote as usual by
recursively as follows: Rumin the minimax redundancy for the order mo@l= P(A).
Motivated by the considerations above, we introduce the
Nn=1, Ny=1+kpNoprfory=n—1--.0.(12) aivized universal codas the function

From Theorem 2.1 we derive the following corollary:
Corollary 2.1: The co-treeA = Alky,---,k,] has full

~ %

E* = k" — Rmin -

spectrum if and only if, for every =0,1,--- ,n — 2, We first characterize this function among aibnotonefunc-
Lot 1 1o 1 tions¢ : A — R. Here, monotonicity means thatb) < ¢(a)

(—) " ( ) "< , (13) wheneverb < a. A nodea € A is ¢-activeif either a is a
Ny No2 Not1 maximal node or elsé(a) < ¢(a™) (recall thata* denotes

where the numbergg, - - - , p,—1 are given by the immediate successor aj. If a is not ¢-active, a is ¢-

inactive If ¢ = &* (or if ¢ = k*), we regain the notion of
active and inactive nodes introduced in Section |I.

For the convenient formulation of the result below, we
introduce theaccumulated functiop® as the function defined
Qn subsets of\ by

Pv = (1 +k1/+1)NI/+1 = Nz/ +N1/+1 -1.

The simple derivation is left to the reader.

Specializing further we obtain the following corollary wehi
extends Ryabko’s theorem [5] in a natural way (Ryabko
theorem corresponds to the case= --- = k, = 1 which T(A) = b 14
givesN,=n—-v+1;v=0,1,---,n): ¢7(4) Z¢(> (14)

Corollary 2.2: Every co-treeA = Alkq, - - , k,] with k1 >
ko > --- > k, has full spectrum and the universal predictog
P* is given by

P*(a) = Ny N (Ny fForiNovs /7

v

= Ny (V)Y 2

beA

Proposition 3.1: A real-valued functiony defined onA
oincides with the relativized universal co@é if and only
if it is monotone and satisfies the two requirements:

¢° (a') = N(a) for every ¢-active nodeu, (15)
¢° (a') < 'N(a) for every nodes € A. (16)
for all pointsa in level v (v = 0,1,---,n) with Z a

normalization constant. . L .
Proof: We start with some preliminary observations re-

Proof: Once we have proved that (13) holds when> |ated to any functionp on A. Put R = In Suea e—%@) and

- > ky, the formula for P* follows from Theorem 2.1 definex as the code obtained from by “de-relativization”,

and (10). Note that the left hand side of (13), calldt is ie.x = ¢ + R. Thenk is indeed a codex € K(A). Let
a geometric mean and that the corresponding arithmetic merjenote the matching distribution. We claim that, for every

is . 1 . oy — N, nodea, the equivalences
pv PuNuy2 D(U,||P) = R < ¢°(a') = N(a), 17)
which can be written as D(U,||P) < R & ¢°(a') < N(a) (18)
1+ ku+2
Nop1(1+kyy1)’ hold. These equivalences are proved in a similar manner and

) L we only give the details regarding (18). Add N (a) to the
thus, whenk; > --- > k,, A < —, hence alsd? < i=—  jnequality on the left hand side and appeal to the linking

holds, i.e. (13) does indeed hold. B jdentity (5), and you realize that this inequality is eqléva
Note that the cases 1,2, and 3 from Section | can @ the inequalityx?(a') < N(a) + N(a)R, hence also, as
discussed based on the results of this section. claimed, to the inequality? (a!) < N(a).
Now assume that the conditions stated in the lemma hold
1. RELATIVIZATION for a functiong on A. By monotonicity ofgy, P € P. Then,

. . S by the assumptions (15) and (16), we see from (17) and (18)
Experience tells us that for typical optimization problerm_hs that the conditions of the Kuhn-Tucker criterion, Proposit

the n_atu”re we are stu_dymg, norm;_allz_anon_ (via a "paiti 1.2, are fulfilled. Therefore” is the universal predictor and
function” or constant) is natural. This is for instance retiel henceg = i*

h ran in Table 1. A natural i hen i : - . o
by the appearance df able atural idea then is to Necessity of the conditions of the lemma follow in a similar

facilitate the search for universal objects by a prior ndrmawa from necessity of the Kuhn-Tucker conditions which was
ization. We find it advantageous to work with codes rather Y y

than with distributions. Then, rather than normalizing @a zftedﬁiffr:ghe perc:joof g;tp r?ngg(igelazét; view of the f:>cu
division, we should normalize by a suitable subtractionisTh sutficiency, w provi NS
then leeds to objects measured relative to optimal perfoc@a e note that by applying the procedure in the first part of the

in some sense, and we speak about a procesdativization  proof, one obtains the universal codée from the relativized

Relativization may be defined quite generally. Howeveginjversal codei* by a simple process of de-relativization:
we shall only have co-trees in mind for the present study.



Corollary 3.1: The minimum redundancy and the universadpecific to co-trees and does not hold if relativization is
code can be obtained from the relativized universal code bgnsidered more generally.
the formulas As a last application of the structure related to the notion
. of control, we establish the following result:
Ruin =In Z e " (@)

ach Proposition 3.3:For any node which is not active, the in-
k*(a) = 7 (a) + Ruin for a € A. equality of (16) is sharp, i.e. for such a no@éy (a) < N(a).

Proof: If a ¢ o(A) thena > a and&*?(a) = £*7(a) =
For each node € A, the left-sections! defines a co-tree N (@) > N(a) follows. ]
in its own right. As an immediate corollary to Lemma 3.1 we
find the following result: IV. IDEAS ON THE WAY TO AN ALGORITHM

Corollary 3.2: If a € o(A), then the relativized universal _Ad@in, we consider the order modglfor a co-treeA. We
code for the co-tree! is obtained by restricting the relativized®m &t developing an efficient algorithm for the determioi
universal code for\ to a'. In particular,o(a') = o(A) N a'. of the unlv_ersal_ objt_ects. In_steqd of going (_jlrectl)_/ intcsthie _

shall take time in this section first to explain the ideas behi

We stress the importance of the assumption thia¢ active  The algorithm builds strongly on properties of certain spe-
in this result. Without this assumption new active nodes'in cial sets and certain associated numbers, cdiledkets In
may appear, indeed will become active, cf. Proposition 1.3order to motivate the introduction of these objects, we first
or Case 3 from Figure 1. observe that if, somehow, the spectratfi\) is known,z* is

For the further study, consider, for amyc A, the control easy to calculate. A&*(a) = #*(a) holds generally, we need
of a, denotedz, defined as the closest active node greater thanly worry about the values of* for active nodes. So, let
or equal toa (i.e.@ € o(A), @ > a and noc € o(A) satisfies a € o(A). If a is minimal, #*(a) = 0. If a is not minimal,

a < ¢ < @). By Proposition 1.3z is well defined forala € A.  denote byT" the set of maximal nodes i@lﬂa(A))\{a}_ By
Clearly,a = a if and only if a € o(A). The significance of Proposition 3.27 is a “cross-section” ofi! in the sense that
the notion is summarized in the following simple facts: every path fronu to a minimal node meet in exactly one
point. We putB = (J,.,t! andS = al\ B. Theni* assumes
the same value;*(a), on all nodes inS and considering the
decomposition of:! in the two setsS and B, we find from
Proposition 3.1 that

Lemma 3.1:Let a € A. Then, for anyb with a < b < @,
P*(a) = P*(a) and, therefore, als&*(a) = £*(a) holds,
whereas, ifb > @, then P*(b) < P*(a) and hences*(b) >

%*(a) holds.
N _ (mx\o (.l A ~%x\O
Proof: We may assume that € A\ o(A). Let P* = N(a) = (&7)7(a®) = |S] - F"(a) + (#")° (B) o
> ccaweUe be the barycentric decomposition &f. Then, =S| -&"(a) + Z(Fg*)"(tl) =S| -&"(a) + ZN(t)
for everyc with a < ¢ < @, w. = 0, henceP*(a) = P*(a). teT teT
If b > @, P*(b) < P*(@) = P*(a) aswg > 0. The stated =S| -7#*(a) + N(T),

roperties follow.
brop and we conclude that

Together with other facts, the lemma is used for the proof N(a) - N°(T) N(a)— N°(T)
of the following useful result: R*(a) = 3] = Na) —N°(T)

Proposition 3.2:Every minimal node ofA is active. The Note that this formula holds for all active nodes, includthg
relativized universal code is non-negative and vanisheien minimal ones (for whichl' = B = () and S = {a}).

minimal nodes — and nowhere else. The universal predictorrhe special sets we shall work with will mimic the roles of
assumes its maximal value on every minimal node and afye set<T”, B and S above. We find it convenient to take3:
other node has a strictly smaller probability. type sets” as the basic type and deriZ@+and “S”-type sets
from them. Thus, we call a sét ablocking set forw € A if B
7*(a) = #&*(b). By monotonicity of &, *(b) is bounded 'S & heredl|tary subset af' \ {a} which contains aII.m|n|maI
below by the averag%(/%*)”(bi) thus, by (15),7*(b) > podes ofa' \ {a}. For s_gch a set we define tlegterior of B

In N(b). Now, in a, Sg(a), and theceiling of B in a, Tz(a), by

Sp(a) = a'\ B, (20)
Tp(a) = set of maximal nodes oB. (21)

(19)

Proof: Let ¢ be a minimal node and put = @. Then

0="N(a) > (&) (a}) = &"(a) = &*(b) > LN (b)

and N(b) = 1, henceb = « follows. We conclude that is des if the first nodes i i th
active. Thus minimal nodes are indeed active. We leave irge nodes il’s (a) are the first nodes il we meet on paths

proof of the remaining parts of the proposition to the read Flom a 10 a mmLmeEII_hnode. N(_)tet tha]E tht?] e;etgé’(rj,g}a) N
referring to the fact just established and to Propositidn & aways non-empty. the same s true for the ndT;(a)
unlessa is a minimal node of\, in which case only the empty

The proposition illuminates the definition of the relatiiz set is blocking for. Occasionally, we also refer to tlirgerior
universal codes*. Indeed, we realize that* measures code of B in a which is the seB\ Tz(a). Note thatz! is the disjoint
length relative to the shortest codeword. This property imion of the exterior, the ceiling and the interior Bfin a.



Let B be a blocking set forn. Guided by (19), we define componentdy, M, --- , M. Here,h is the height ofA and

the bracket ofa in B, by the decompositioml\ = My U M; U --- U M}, is obtained by
Na) e (TB(a)) su_c_cessive removals of minimal nodes, i}; is the set of
[a, B] = minimal nodes of the co-tree
|SB(a)]
Note that the denominator above has a similar structure as A\ U M; .
the numerator. IndeedSg(a)| = N(a) — N°(Tg(a)). 0<j<i

The algorithm we aim at depends crucially on the relations
between blocking sets and their associated brackets. Théet us explain in more detail why a construction from
properties we need are derived from certain combinatortile bottom is to prefer. Fact is that when you work from
identities, thetransitivity identitiesof Lemma 5.1 in the next the top, and consider candidates for the-,5*- andT*-sets
section. Of special interest are blocking sets for a neder without knowing these sets for nodes further down the co-
which [a, B] is maximal. By [a]max We denote the largesttree, you risk that after some time an inconsistency occurs
value of [a, B] for all blocking setsB for a. It turns out and this will force you to discard previous work, and to start
that among the blocking set8 for a with maximal bracket afresh. Quite differently, when you work from the bottom,
([a, B] = [a]max), there exists a set-theoretically largest on#e sets concerned remain unchanged once constructed as
(Proposition 5.3). This uniquely defined set is denalisda) they are not influenced by the development further up in the
and the corresponding ceiling and exterior are denoted &g-tree. It should, however, be remarked that sets already
T*(a) and S*(a). constructed may later turn out to be superfluous as sets

With access to these sets, we define $is77,---, the associated with nodes higher up in the co-tree, say nodes
ceiling hierarchy by a construction “from the top”: We startb > a, may “overshadow” sets already constructed in the
with 7§, by definition the set of maximal nodes af(the set sense thatS*(b) © S*(a) may happen. Anyhow, the main
of “ancestors”). Then, a8}, we take the union of all sets of point is that during construction from the bottom, you pexte
the form7T*(¢) with t € T;. A node inT} is a “daughter” incrementally without discarding previous work. The irgig
of the firstgeneration We continue “down the co-tree”, thusneeded to see that the algorithm from the bottom works will
in the next step consider “daughters” of the 2.nd. genaratibe developed in Section VI. As an indication of the good sense

(i.e. nodes inr*(t) for somet € T;). Formally, fori > 1, in working from the bottom we may also point to the fact that
y . at least the start is unproblematic since then blocking &ets
= U (). (22) empty and brackets vanish.
teTyr |

The central part of the algorithm is a certain subroutine,
Clearly, the setg’;* are eventually empty. B¥(A) we denote referred to as theentral subroutinewhich is called several

the union times during the execution of the overall algorithm. The flow
g(A) = U Tr. (23) diagram for this subroutine is sketched in Figure 2. As input
i>0 to the subroutine one takes a node= A, and as output the

Two notions related to the ceiling hierarchy turns out to beubroutine provides you with* (a) and [a|max = [a, B*(a)],
useful. Firstly, for any node, the projection of a on (A) it being understood that the corresponding objects adsakcia
is the unique nodeé € &(A) for which a € S*(t). We do With nodes ina' \ {a} are already known. Together with
not know if this notion coincides with the previously definedB”(a), alsoT*(a) is recorded. Therefore, when the central
notion of control (thea's from Section Il). Anyhow, it is subroutine has been called for all nodes in the co-tree ag,inp
sufficiently close that we can argue with it in much the sanfdl ceilings 7*(a) and all maximal bracketgu]max Will be
way as in the discussion in the beginning of this sectiokNown. Then, as the last step in the construction:of we
thereby deriving a formula foi*. The second notion we @gain work “from the top” by appealing to Theorem 5.1. This
need associates to any node 7(A) \ 7§, the unique node Provides you directly with the relativized universal coderh

t € 3(A) such thats € T*(t). We call this node thenother which the universal code (hence also the universal pregicto
of s. Using this notion we can characterize the spectrum B¥Y be constructed quite easily as explained in Section lIl.
a certain subset of(A). The facts indicated constitute the
content of our first main result, Theorem 5.1. We point out
that perhapss(A) = o(A) holds generally, but we do not
know this. In spite of this unclear point, the characterora

of #* ando(A) in Theorem 5.1 will be completely satisfactory,or
considering our aims. If you wishg(A) is the extended

spectrumof A. Proposition 5.1:Let B be a blocking set for.. Then the

The construction behind Theorem 5.1 depends on the blogiacket|a, B] vanishes ifa is a minimal node and is positive
ing sets B*(a). A naive search for these sets will requirgytherwise.

exponential time in the size of the problem (e.g. measured by

the number of nodes iA). To develop an efficient algorithm, Proof: If a is minimal, B = () and the definition gives
new ideas are needed. What we will do is to revert the cofe, 0] = 0. If a is not minimal, putd = 37, ;) N(t)
struction and work “from the bottom” through tmeinimality and note thatV(a) > M > 1, hence the positivity ofa, B]

V. CONSTRUCTION FROM THE TOP

We start by developing some properties of blocking sets and
ackets.



follows from the manipulations In order to ease the notation a bit, we agree that if a set
of the form B A b is blocking forb, we may simply say that

1S5(a)l[a, B] B is blocking forb and write Sp(b) in place of Spa,(b) and
— N(@)InN(a Z N(t t) Mo M [b, B] in place of[b, B Ab]. In the formulation of Lemma 5.1
teTs (a) we may thus writeSg (b) rather thanSg- (b) and[b, B] rather
° than [b, B7].

> N(a)In N(a) = MIn M > 0. As all terms of the formjS.(-)| are positive, it is clear that

m We can use (24)-(26) for comparisons of brackets. We shall

We shall show that based on the brackets alone (thus §6€n see instances of this. For now we note that the lemma
assuming any special knowledge about the speciry)), implies that the numbers:, B, [a, B] and [b, B] are either
the universal code can be constructed. Proposition 3.1 is iantical or elséa, B lies strictly betweerﬁa B*] and[b, B,
important step in this direction but there are obstacles/a-o i-€. either[a, B*] < [a, B] < [b,B] or [b, B] < [a,B] <
come in connection with the necessary checking of ineqeslit [a, B*] holds.
related both to (16) and to the requirement of monotonitity. The transitive nature of the lemma is best revealed by
turns out that these problems can be handled efficientlgageneralizing the result. This we shall do in Section VIII.
on certain identities which allows one to compare bracketsWe continue with some important observations based on
among each other. These comparisons involve two simple tylggmma 5.1 which involve special blocking sets. The blocking
of constructionsfilling andrestriction Specifically, if B is a set B for a has maximal bracketf [a, B] = [a]max. Such
subset ofA, andb any node, thdilling of B at b, denoted a set isset-theoretically maximal (minimalf it is not a
BV b, is the setB U b'. Typically, this construction is used proper subset (superset) of some other blocking sei feith
if B is a blocking set for some node> b. Then, ifb ¢ B, Mmaximal bracket.
the process of filling leads to a new blocking set forWe
also consider theestriction of B to b!, denoted byB A b, and
defined byB Ab = BN bl If B is a blocking set for some
nodea > b andb ¢ B, the restrictionB A b will be a blocking B
set forb.

Proposition 5.2:Let « € A and let B* be a blocking set
for a with maximal bracket.
(i) (monotonicity): If b € T+ (a), then[a]max > [B]max- If
* is set-theoretically minimal, the sharp inequali}, .. >
[b]lmax holds;

Lemma 5.1 (transitivity identities, basic casd)et a > b, (i) (boundedness): Ib € Sp-(a) \ {a}, then [a]max <
let B be a blocking set for and assume thdt ¢ B. Put [b, B*] and this inequality is sharp iB* is set-theoretically
Bt = BVvbandB~ = B Ab. Then the following identities maximal.

hold: Proof: (i): If b is minimal,a cannot be minimal and the

|SB+(a)|([b,B_] _ [a,B+]> — |53(a)|([b73—] — [a’BD , re;glt follows from Proposition 51 Assume th_en tha'a$_ not

(24) minimal and denote by3 any blocking set fob with maximal
bracket. The seB, = (B*\ {b}) U B is a proper subset of

|Sp(a)l ([a, B] — [a, B* ]) = [Sp-(b) ([b, B~]—a,B*]), B* which is blocking fora. Then[a]max > [a, Bo] with sharp
(25) inequality if B* is set-theoretically minimal. By (25) applied

to the setB, it then follows thafa, B*] > [b, B], i.e. [a]max >

- _ + ? )

S5-I (10571 = [0, B]) = 185-(@)| (o, B = [0:B*]) g, with sharp inequality it3* is set theoreically mimmal,

(26)  (ii): This follows by applying (26) withB = B*. [ |
Proof: In view of the equality Exploiting these results we obtain a useful uniqueness
property:

1SB(a)] = |Sp+(a)l +|Sp-(b)], iy o .
Proposition 5.3: (uniqueness) For every nodgthere exist
each of the three identities can be derived from any of therothwo uniquely defined blocking sets fawith maximal bracket,
two. It therefore suffices to verify (24). For this, we exploiB*(a) and B.(a), characterized as, respectively the set-
the equality above and the fact th@+(a) is the disjoint theoretically largest such set and the set-theoreticallgliest
union of {b} and the proper set-differen@z(a) \ Ts-(b). such set. In particular, for every blocking sBt for a with
Appealing also to the definition of brackets, we find that maximal bracket, the inclusionB, (a) C B C B*(a) hold.

|Sg(a)l ([b, BT —| B]) Proof: Let B* be a set-theoretically maximal blocking set
_ - for a with maximal bracket. LeB* be any blocking set fot
=|Ss(a)|[b, B™] = N(a) + N (T(a)) with maximal bracket. We shall prove th&t C B*. Assume
— (|53+( )+ S5 (b )|)[ -] the contrary. Then there exisis= B*\ B*, hence there also
_ existsb € T* \ B* whereT™* denotes the ceiling oB* in

—N(a) + N(Tg+(a)) = N(b) + N" (T~ (b)) a. By monotonicity,[a, B*] > [b', B*]. And, by boundedness,

_ |SB+(a)|([b,B*] _ [a73+]) 7 [b',B*] > [a, B*]. The two inequalities show thd, B*] >
[a, B*] which is a contradiction &g, B*] = [a, B*] = [a]max-

thus (24) holds. B We conclude, as desired, th&t C B*. The reverse inclusion



is proved in a similar way when alsB* is set-theoretically Let k be the largest integer such thef # (0. Then (15) for
maximal. As any two set-theoretically maximal blockingssethe nodea follows from the string of equalities:
for a with maximal brackets are equal, the largest such set,

k k
denotedB*(a), is well defined. ¢ (at) = B(b) = 1S*(8) (1)
The facts needed to establish the results pertaining to ; b;vJ ;;U]
minimal blocking sets are proved in a similar way. Details &
are left to the reader. ] _ Z (N(t) _ NU(T*(t)))
We do not know if there is a unique blocking set fowith J:i tel;
maximal bracket, i.e. ifB.(a) = B*(a) holds generally. o —0 —
For the constructions to follow, we have chosen to focus on - Z (N ;) =N (Uj“)) = N(a).
the largest sets, thB*(a)’s. We denote byl™*(a) the ceiling =

in @ associated withB*(a) and by S*(a) the exterior ina By (30), the validity of (15) for alla € o(A) follows.

associated witiB* (a). These are the sets we shall use for the Finally, consider a nodé € A \ @(A). To finish the proof,
construction ofz*. Recall the introduction in Section IV of thewe need only establish the inequality (16) forln fact, we
ceiling hierarchy(T;");>0, cf. in particular (22) and (23). The shall show that the sharp inequality (b') < N(b) holds.
largest indexi with T # () is the ceiling index The ceiling To this end, puta = pr(b) and B = B*(a) N bt and use
index is at most the height af, but is often smaller, e.g. for results already established and the boundedness proderty o
Case 3 of Figure 1 = 1 whereash = 2. In the extreme case Proposition 5.2, to find that

when every maximal node is also a minimal nodg, is the o -

only non-empty set in the hierarchy and the ceﬁﬁg index is 67(b") = [Sp(B)|6(b) + Z 67 (t)

0. teTs (b)
Based on the ceiling hierarchy we define a decomposition = |Sp(b)|[a]max + Z N(t)
(SF)o<i<s Of A, with § the ceiling index: teTs (b)

s= | S@=locAm@cm).  @n < 1S5 ()|, Bl + N (T5(0)) = N(v).

a€ETy We have now seen that = £*, hence (28) holds. As the
o ) ~spectrum consists of the points of increas&gf(29) follows.
The second characterization refers to the notion of prigject m
introduced in Section IV. For the motherof a nodes ¢ ) ) .
&(A) \ T we use the notation = yu(s). We do not know if the inclusion (30) can be sharpened
We can now state the main result of this section. to an identity. Note that by the last part of the monotonicity

statement of Proposition 5.2 this will be the caseif(a) =
Theorem 5.1:With reference to the ceiling hierarchy andB, (a) holds generally.
associated notions, the relativized universal code isngbse
VI. THE CENTRAL SUBROUTINE

We continue the study of universal objects associated with
and the spectrum of is the following subset o (A): the modelP(A) over a co-tree\.
The construction in Theorem 5.1 builds on the sBtga).
o(A) =Ty U{t € 7(A) \ Tg] [1(t)]max > [Hlmax} - (29) As noted in Section IV, the theorem cannot be used directly
to obtain an algorithm of low complexity. Instead, we speed

/¥ (a) = [pr(a)]max for all a € A7 (28)

Proof: Denote byg the function onA defined byp(a) = UP the construction by working “from the bottom” based on
[pr(a)]max- the decomposition\ = My U M; U --- U M}, in minimality
sha components.

We shall verify the conditions of Proposition 3.1. We shall determine thés*-sets for all nodes. E d
First, to prove monotonicity o, consider any path from a . € shall determine ~S€ts for all hodes. For nodes
maximal node to a minimal node. Le&§ > t; > -+ - > ¢, be in My this is trivial, and we start by considering nodes in

the nodes iz (A) on the path (thug;, is a minimal node of\). f\h41' C%ntmgn?ww'tc\/md_(ﬁs I, arlﬁ ?c;honduntll we gtt_at at
Then, by monotonicity, cf. Proposition 5.2(ty) > ¢(t1) > € nodes inil,. Vve will assume that the decomposition in

- minimality components is given off-hand and not be concgrne
s> — )
on %jgg'[)havr\]/gﬁpylthf seil?tl(%g?g)'oﬂa; < zf)(tighfizr;%%iz with the time it takes to determine this decomposition. The

monotonicity along any path connecting a maximal node Wiﬁpproach depends on the fact th_at given the_ co-t_ree, €.g.1n
a minimal node. Clearly them is monotone on all of.. The erms of the standard representation as explained in ®€Gtio

argument above also shows that all notlesth ; > b > £, the decomposﬂmq can be determlneq by an efficient glgnnth
are inactive. thus The two propositions to follow are important technical ®ol

needed to develop an efficient algorithm.
a(A) Ca(A). (30)
Proposition 6.1: (I"-structure) Leta € A. Then, for every
Next, we consider a nodec 7(A), saya € T, and show b € S*(a), the inclusionS*(b) C S*(a) or, equivalently,
that (15) holds. Put; = T nat andV; = SyNa' forj >i. B*(a) AbC B*(b) holds.
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The name attached to the result lies in the shape of thes the mapa ~ a! which gives access to the left sections,
letter “T"” and will appear natural when we specialize to co- « the mapa ~ N(a) and, finally,

trees with uniform branching in the next section. « the mapa ~ N(a).
~ Proof: we Shill actually prove a formally stronger result, of course, there is some redundancy in this list (espegially
viz. that, forb € 5*(a) \ {a}, N is given in terms ofN). However, the list is chosen for
B*(a) ANbC B, (b). (31) convenience in view of the algorithm to follow. We shall not

worry much about how the basic information can be provided,
Assume, for the purpose of an indirect proof, that this is ngfyy remark that it is clear that if we specify a co-tree by
the case. Then, for somec 5*(a) \ {a}, there exists € the standard representation, the desired information @n b
(T*(a) AD) \ Bi(b). We find that provided via efficient algorithms operating on the undewyi
[]max > [max = [t, B.(b)] > [b, B+(b)] set of finite sequences.
= [Blmax = [b, B*(a)] > [a]max - The algorithm we shall now describe is based on Theorem
5.1 which shows that if we know, for every nodgthe ceiling
Indeed, the first inequality follows by monotonicity 8% 7+ (4) as well as the maximal brackgt] .., then it is easy
T*(a), the second follows a8. (b) is blocking fort, the third 15 getermine the relativized universal code, and hence the
follows by boundedness as= b'\ B..(b), the equality is trivial, ynjversal code and the universal predictor. Our algoritaitsc
the next inequality follows a#"(a) is blocking forb and the  seyeral times theentral subroutinesee Figure 2, which, for
last one follows by boundednessias S*(a)\{a}. Fromthe g given inputa, calculates théey objectsassociated with,
resulting contradiction we conclude that (31) holds. B {aken to be the setB*(a) andT*(a) and the nuUMbeja]umax.

The stronger result actually proved above supports the vid¥pte that we find it convenient to work with bof*(a) and

that “normally” B, (a) = B*(a). T*(a), though the one may of course be determined from the
For our second auxiliary result, let us agree to say thatogher.

blocking setB for a nodea has themonotonicity propertyf, For the minimal nodea € M,, we already know what the

for anyt € Ts(a), [a, B] > [t|max- key objects are and there is no reason to call any subroutine

Proposition 6.2: (Characterization): For any € A, B*(a) for these nodes. To determine the key obj_ects associat@d wit
can be characterized as the largest blocking set fwith the any_nod_e, we first call the central subroutl_ne for nodes in the
monotonicity property. minimality component\/;, then for nodes inV/; and so on

until we get to the nodes i/, (with h the height ofA).

Whe:] _appl_ylng this result we have_ a construction from the Let us have a closer look at the central subroutine. Consider
bottom” in mind. Then the characterization makes good sense

since, when searching for the sBt (), all setsB*(b) with a"particular inputa € A\ Mo. When the subroutine is

b€ al\ {a} will be known and thus the monotonicity propertycalled it is assumed, though not shown explicitly in the
can be checked for any candidate we may suggest for flow diagram, that key objects about preceeding nodes have

B*(a) already been determined. Actually, this will be the casehlay t

' procedure chosen as nodes(if), My, --- , M}, are called
Proof: Let B be the largest blocking set far with the in succession.

monotonicity prop_erty. AsB*(a) is a blocking set forn and We useB, T and o as place-holders for the sought key

has the monotonicity property3*(a) C B. To prove the qpiacts associated with. The largest blocking set fou

reverse inclusion, assume, for the purpose of an indirexifpr altogether isa! \ {a}. This is the first set we will test and

that this is not the case. Then there existsTs(a) N 5™(a)  oyr initial assignment box putB := a! \ {a}. We also right

and we find that away assign the appropriate setftand the appropriate value
[a, B] > [tlmax > [t, B*(a)] > [a]max > [a, B]. o a.

After the introductory assignments, we arrive at the céntra
box, the(b, 3)-box It is important that when we come to this
box, which may occur many times during the execution of the

Before we turn to a development of the algorithm we aisubroutine,B, 7', and« are known to have certain properties:
at, we emphasize that in estimating the complexity of the must be a blocking set fat, T = T(a) anda = [a, B]
algorithm, we shall neglect any contribution from efforts tmust hold, and then we stress thizit(a) C B must be known
make basic information about a co-tree studied accessbletd hold. In order to carry out the calculations in tfbe3)-box,
us in a convenient form. We shall thus talk abassential it is understood that there is a natural way to list the nodes

This is a contradiction and we conclude that C B*(a),
henceB = B*(a) as claimed.

complexityof the algorithms. in T, say asty,--- , ¢ (the standard representation dfmay
It turns out that the basic information we shall need aboge used for this purpose). For the calculation, we go through
any specific co-tree can be listed as follows: all brackets[t],., with ¢ € T, note the largest value and
« the decomposition in minimality components= My U then consider the first node among - - - , ¢, for which the
- U My, corresponding bracket attains this value. By definitiors th

« the mapa ~ a~ which makes the immediate predeceghe Arg max-node. As place-holders for this node and for the
sors of any node accessible to us, corresponding maximal bracket we userespectivelys and



11

[ | nput a] is the ceiling ofB in a and sinceB*(a) C B we conclude that
in fact B = B*(a) must hold. ThenB does after all have the

monotonicity property of Proposition 6.2. This contradittie
result of the test. All in all we conclude that indeled S*(a).

L Knowing this, we can apply the gamma structure, Propo-
B :=a*\{a} b = Arg max[t]max sition 6.1, and find tha3*(a) is a subset of the setB \
T —a teT {b}) UB*(b). This set is a blocking set far asb cannot be a
B = [Blmax minimal node (ther = 0 would hold and the test would have
a:= [a, B] been positive). We take this set as our new set to be tested and
make the proper assignments Bf 7" and « in the next box

of the flow diagram. These possible key objects are then fed
into the (b, 3)-box and we continue until, eventually, the test

Yes - 2> for the monotonicity property is positive.
No

Remarks. Naturally, if the test is negative and there are
several nodes i with [b, B*(b)] maximal, we may econo-
mize and restrict the candidate set further. In more degat,

m = maxeer|[t)max @and assume that there are several nodes
B := (B\bY) U B*(b) in T, sayby,--- , b, with maximal bracketn. Then we may
as our new assigned key objects take

T := (T\{b}) UT*(b) . .

o = [a, B] B:=(B\Jb)ul B, (33)
k k

T=(T\JbHulJTm), (34)

a:=[a,B]. (35)
RETURN
It follows from our analysis above that the new sBt

still contains B*(a). Further, thea’s increase through the
subroutine. One way to see this when multiple reductions

Figure 2. Flow diagram for the central subroutine are performed as in (33) -(35) is to make the reductions step
by step. First, putBy = B (the old setB) and then define
successive reductions by putting

B, = (By_1\b}) UB*(b)

thus carry out the assignments

b := Arg max[t|max; 0 = [b]max -
tet forv =1,--- k. Then the setB; is equal to the set defined
Concerning the calculation of brackets in the central bak af (33). This relies on successive applications of (25) and o
elsewhere in the subroutine, this is based on basic infe@ematmonotonicity. Details are left to the reader. This remark wi
about the co-treeN’s and N's) and on output{*'s) from e important for the special co-trees to be discussed in the

previous calls of the subroutine according to the formula next section.

Nt) =gy N(s) Other modifications may speed up the execution of the
[t]max N s€T" (1) N (32) subroutine, e.g. one may note that noded4i can also, just
(t) — ZseT*(t) (s) as minimal nodes, be dealt with outside the subroutine and

After the central box comes the test-box “> 3?”. We that some of the information about calculated brackgts.x
realize that what is tested is really # has the monotonicity at one stage may be reused for the next stage. We shall not be
property. If it does,B = B*(a) by Proposition 6.2 and we go concerned here with such fine-tunings for general co-trees.
to the output box and then return to the algorithm.

Assume now that the test is negative, i®.B] < [b]max-
It is a key point of the algorithm that theme S*(a) must

The full algorithm for the calculation of*, and hence the
sought universal objects, consists of the following steps:

hold. Assume the contrary. Then, & (a) C B, b € T*(a) « initialization providing basic information about the co-
and by monotonicity we then haye]ax > [b]max- COnsider tree,
anyt € T and note that « trivial assignment of key objects to nodes i,

« call of the central subroutine for all nodes id,
[t]max § [b]max S [a]max . . !

By boundedness, we must conclude from this thatB*(a) « call of the central subroutine for all nodes id,,

since, ift € S*(a), [almax < [t, B*(a)] < [tJmax Would hold, « top-down construction of the ceiling hierarchy and simul-

contradicting the inequalities above. THUSC B*(a). SinceT taneous listing of the values @&f*, cf. Theorem 5.1.
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By the foregoing discussion, it is clear that the algorithrbe determined in closed form. Thus, though the algorithm
does indeed calculate the desired objects. It is also pretigveloped functions well as a numeric algorithm, the endlres
clear that this is achieved in polynomial time in the sizean easily be expressed in closed form since the basic nsmber
of the problem. Let us discuss this in more detail but onlthe values ofi*, are expressed by the brackeis= [a, B]
aim at a rough estimate of the efficiency of the algorithmesulting from the central subroutine (perhaps after retigig
Firstly, as remarked before, we shall neglect the time cocertain values which are “overshadowed” during the very las
sumed during initialization. Also, we shall not be concernepart of the algorithm), and these brackets are given exlylici
with the memory requirements of the algorithm or with théhrough (19).

extra cost incurred by administrative operations involwed . .
N We shall now demonstrate how the algorithm works in
the memory management. Further, we shall not discriminate

. . . . ractice by investigating a particular, not too complicaaad
between various basic operations such as additions, subtrg. B N :
. o ey . still reasonably “general” example, the co-traeof Figure
tions, multiplications, divisions and comparisons of nmsh

as well as0, 1-tests (based on known entities). Tagsential 3. The work carried out when following the algorithm is

complexityof the algorithm, denoted'(A), is then taken to conveniently summarized in Figure 4. We have marked in

. . lack the top-node (known to be active) as well as all nodes
be the number of basic operations needed from start to end Qf. . . .

. : . - which occur as nodes in a ceiling constructed during the
the algorithm with the reservations as indicated above.

We shall estimat€'(A) in terms of the numben of nodes legﬁnthm.jm (z?rﬂcjlc/llar,Iflilrtrﬂglrlnr?grlen?seez:\r/z H;?;I((je%;agact
in A. Clearly, C(A) < n - max,cp C(a) whereC(a) denotes ac My _ o ’

the essential complexity of the central subroutine whers it f1s well as the approximate values of all brackets which are
. piextty. constructed during the algorithm and marked with a “dagger”
called with the node: as input.

For a fixed, we can estimat€’'(a). Regarding the initial EEE (Oo?e;%?tggtl)g:azec(ecr?tlgIzbi?;lcj[i;heei;g%? fgésvégliir:] the
assignments, only the calculation faf, B] needs to be taken - P

into account., Ada, B] = N(a) - 3, N(t), at mostja—| actual case because- 4 > 4 doesnot hold).
basic operations are needed, hence at magich operations.

For the cycle {b, 5)-box to test-box to new assignments”,
this will be visited at mosta!| many times, hence at most
n times. And for one run through the cycle we need at most
|T| < n basic operations for the determination @f 3) (as
the numberst],.x with ¢t € T are already known). We permit
ourselves to ignore the minimal requirement needed to carry'!
out thea > 3 test. But we have to consider the requirement
related to the new assignments Bf ' and o. RegardingB,
we need to know, for each node, whether the node is in the set
or not. This can be decided by checking membership for each
of the three setd3, b! and B*(b). As the sets! and B*(b) 42311
are known, we only need to test membership Byrand this
requires at most tests. Similarly forl". And regardingy, we
realize from (19) that at mo&t- |T'| < 2n basic operations are
needed. The new assignments thus require at mhodtasic _ _

operations.
The rough estimates above show tid&ta) < n + n(n + /
4n) < 6n2. 41— 5~

We have now completed all elements in the proof of our /\
I
[

az3

a121

2313

2312

Figure 3. A “general” co-treé\.

second main theorem:

Theorem 6.1:The algorithm described above calculates the
ceiling hierarchy and thereby the universal objects assedi
with a co-treeA in polynomial time. The essential complexity
as defined above is at mo&t n® wheren is the number of
nodes inA.

Remarks. By studying “worst possible scenarios” regard- _
ing the possibilities for the geometric locations of thelings " '9ur 4. The algorithm for.
calculated by the central subroutine it should be possible t
bring down the estimatén?® quite significantly. We shall look  The result is that all nodes excepts; are active. For
into this in Section VII, but only for co-trees with uniformthis you have to consider the very last part of the algo-
branching. rithm (the “top-down” part). This can easily be done based
As another remark, recall that a main point of our endeawn information listed. For examplel™(ap) = {ai,a2}
ours have been to demonstrate that the universal objects ¢since the a-value [ag, B] = 15 — 4 — 10 when testing
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Figure 6. A co-tree with “overshadowing”.

Figure 5. The algorithm fon \ {a11}.
VIl. THE CASE OF COTREES WITH UNIFORM BRANCHING

. Consider a co-tred of heightn with uniform branching.
— ! 3
:/Z(Iaujii(tg ((ao))[t]\ {ai} % T%efdg)gr_le_ﬁ';erﬁrt]r;?r;at?téof Let (ki,--- , k,) be the branching pattern. Denote y the
'B(ao max . . _
the algorithm, the “top-down” part is in fact necessary assetE O/{ all E(t)(?\?s'_n ]I\(?E/e;/ 'aﬁgtNK":%A(”g ag?éafﬁr ?(no_de
examples show that not all “black” nodes need be activeZ— k” Ft)h Vr N ; ival v = ) Yo v =
some of these nodes may have been “overshadowed”, as'we " "v "US: FECUISIVELY,

shall illustrate at the end of the section.

The final result is that all values listed in Figure 4, except

the one which has been “daggered away” by a node higher . . . ,
in the co-tree are the correct values of the relativized ensizl Igggardmg the convenient calculation of thg’s, see (12).

code. For the exceptional node we find thet(ass;) = For the determination of*, we shall specialize the algo-
#*(a23) = 5/2. The universal objects sought may then pEthm of the previous section to the present situation of a

obtained from Corollary 3.1. For this we need to calculafP-trée with uniform branching. For reasons of symmetry —
R,uin. One finds that see also the discussion related to (33)-(35) — we need only

work with certain special blocking sets. By, u] we denote
- o a3 Z5/2 | 4-3 the bracket]a, B] for a nodea € A, with the blocking set
Riin = In (8 +277 43774257 4 B = a* N5, A; for which thenTg(a) = a! N A,. These
| 3391055 | 2183—155—5) brackets are well-defined for points, 1) \.Ni.ﬂ.’] 0<v<n-1
andv + 1 < pu < n. We extend the definition by adding the
~ 212, point (n,n+1). This point represents a minimal node and the
empty blocking set. Therefore, we put,n + 1] = 0. For all
measured in natural units, corresponding to 3.06 bits. THagher brackets we find that
may be compared with the 3 bits necessary to encode the 8

K():]., K, =kK, 1 forl/::l,"' , M. (36)

N, —kpy1-- kN,

minimal nodes which are equally probable under the universa v, p] = ) (37)
predictor. In the expression above we have listed the contri Ny = kyqr---kuNy

butions toR i, (or rather toe®=i») in descending order: First K,N, - K,N, 38
the contribution from the minimal nodes, then the nede, " K,N, — K,N, (38)

then the nodes;, then the two nodes,s, a»31, then the node
a1, then the node; and finally, the contribution from the top- The bracket diagramconsists of all brackets. A numerical
nodeay. example is shown in Table 2.
In order to illustrate the sensitivity of the algorithm, sifer Givenv, define[v]max andr, by
also the co-tred~ = A\ {a11}. For this co-tree the algorithm

gives a result which can conveniently be summarized in Eeigur [V]max = max[v, ] , (39)
5. Again, no “overshadowing” takes place, but we note that n>v
a new inactive node pops up, the nagde Thus one cannot 7, = Arg max[v, p] . (40)

decide “locally” if a node is active or not. For this co-tremeo v

ﬂnder_nin ~ 2.01 natgral unitsx 2.90 bits — compar_e(_:i to the Then, for a node: € A,, T*(a) = a' N A. 3 The numbers
approximately 2.81 bits needed to encode the 7 minimal node . u -

: i . . uf’mx are themaximal bracketand ther,’s are theceiling
which have equal probabilities under the universal predict numbers

Finally, concerning the phenomenon of overshadowing, Fig-

r hows the simpl xample w n think of to illustr

uh.e 6s oh S the simp eslt eha pe e} Cad th 0 JFO IUStC?te3to be sure, theArgmax in (40) has to be understood as the first index
this. For that co-tree, only the minimal and the maximal 180d, which the maximum is reached, since we have not been abixdiude
are active and the 2 nodes in level 2 are “overshadowed”. the possibility that the maximum is reached for several aglaf ;.
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8 [12.62] 12.69 12.76) 12.84] 9.55/5.76/6.59/5.55 0'%()' the key property, see below. _ , ,
7 [18.51] 18.77] 19.04] 19.32[13.19/5.97|8.68] 7 A site (v, po) € G = Glto, -+ ,1n) is atest sitefor G, if
6 [25.53] 26.24] 27.00] 27.83/16.94/3.25] 6 v <nandG(sg,- - ,s,) is also al',-diagram where all the
5 |81.21] 91.91/106.17//126.1485.39] 5 s; are equal ta; excepts, which is set tou. For example,
4 177.03100.59147.73289.1 4 all sites (v,7,) and (v, 4+ 1) with v < n are test sites.
g g:gg g:gg 2'33 3 For theI'gs-diagram displayed in Figure 9, we have 17 test
1 634 1 sites, corresponding to the marked positions. For a general
I, 0 I'-diagramG, we denote by G) the number of test sites.
Table 2. Bracket diagram fok[1,1,1,4,5, 1,2, 3] Two o_pe_rations onl-diagrams are Worth_ pointing out:
The restriction of G(tg,- - ,t,) to {v,--- ,n} is theD,,_,-
The ceiling numbers can be determined directly from théiagramG(t, — v, - - ,t, — v) and thedirect sumof the two
bracket diagram. For instance, fai1,1,1,4,5,1,2,3], we T-diagramsG(to,--- ,t,) and G(so, - ,5m) iS the [y p-

find from the column in Table 2 witlv = 2 that» = 4 and diagramG(tg,-- - ,tn—1,50 + n, -, sm + n). Figure 8 pro-
that [2]max ~ 147.73. Then, by Theorem 5.1, the nodes irvides an example of a direct sum.

levels O, 5, 7 and 8 are the active nodes. Further, the valuesor a T',,-structure G = G(to,--- ,t,) we define the
of & for nodes in levels 0,1,2,3 and 4 is 81.21 and the valuggectral levelsr, - - - , o, by oo = 0, 0; = t,, , for all values

of #* for nodes in levels 5,6,7 and 8 are, respectively 5.9¢f ; > 1 until you reach the index with o, = n. We call

5.97, 5.55 and 0. v = v(G) the spectral indexof G. The spectral index of

Using the strategy as exemplified above for the calculati@ie trivial I-structure is0, all otherI-structures have positive
of £*, the full bracket diagram must be calculated and thigpectral indices.
amounts to about?/2 basic computations. This can be Note that the spectral levels), - - - , 0., can be constructed
improved considerably by appeal to the algorithm developgéometrically as indicated in Figure 10 by “letting the sun
in Section VI. ForA(1,1,1,4,5,1,2,3) one may for instance shine from the left’ and noting the column numbers of the
reduce the number of calculations of brackets from 36 (eorreunlit columns. The spectral indexG) is the number of sunlit
sponding to Table 2) to 13 (will follow from results below).columns minusl. Using the “sunshine terminology” we can
The basic facts we need are Propositions 6.1 and 6.2. Tdl1€o express the essentilstructure, formally given by the
algorithm dictates that the bracket diagram is calculated frequirement (43), by saying that when the sun illuminates pa
descending values ofand ascending values pf To initialize,  of a column, it illuminates the entire column. And this prdye
one setgn|max = 0 and7, = n + 1. Then one calculates in must also hold for restrictions of tHe-diagram.
successionn — 1]max and 7,,—1, then [n — 2] and 7,2
and so on until0],,.x andr, are calculated. On the way, the
only tests that are performed are of the type f1] > [, 7,,]?” I nput v
and, in fact, not all these tests have to be performed as the
result is bound to be negative (and henge> u) in case,
for a value of¢ with v < ¢ < u, one has already found that
T¢ > p. This follows by Proposition 6.1.

In order to study more closely which tests can be neglectef
and which not, we introduce the abstract notion ofl'a
diagram These diagrams are first discussed in their own right.
After having developed a main property, Lemma 7.1 below, Yes @ 2}

No

pi=v+1

ﬁ = [M] max

o= [v.4]

we return to the actual problem concerning co-trees.
Given are natural numbets, - - - , t,, with n > 1 such that:

th,=n+1, (41)
v+1<t, <nforall0<v<n-1, (42)
if v<p<t,, thent, <t,. (43)

W= Ty

o= [

Then thel'-diagramG = G(to, - - - , t») consists of all points
(v,p) with 0 < v < n for whichv+1 < p < t,. More
precisely,G is aTl',,-diagramsandn is the heightof G. As
a singular case we allow that = 0. There is only ond’-
diagram, therivial diagram consisting only of the poinf0, 1).

By (43), if you cons_lder the column fronw, v + 1) to_ Figure 7. The central subroutine for co-trees with uniforrarizhing
(v,t,) and place a horizontal bar on top of and to the right
of (v,t,) then you meet no points it until you reach the
diagonal elementt,,t, + 1). Having the shape of the letter
“I"™ in mind, this property accounts for the terminology/-* Lemma 7.11(-structure): For anyT',-structureG, (G) =
diagram”. For a possibly more illuminating way of expressin2n — v(G), in particular,(G) < 2n.

The combinatorial result we need is the following:
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] Figure 9. AT'jo-diagram with test sites
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Figure 8. lllustration of last part of the proof of Lemma 7.1 Q\ ] T
AN
Proof: The proof is by induction on the spectral index. To

start the induction we have to prove the implicatiGre T',,, [ ]
v(G) = 1= (G) = 2n—1. This is proved by induction on.
The induction start is easy. Then assume that the implicatio D

holds for indices smaller tham LetG € T, satisfyy(G) = 1,
i.e. (0,n) € G. Consider

G* =G\ {(mn+ DY\ {(nn) |0 < v <n—2}.

ThenG™ € I',—y andy(G*) = 1. Thus(G") = 2n—3 by the  \mpersy ... 7. TheT-diagram associated with is the

induction hypothesis. _ diagramG = G(7o, - , 7). That this is indeed &-diagram
In order to computgG) and (G*), first remark that for a ¢ 15ws from Proposition 6.7.

point (v, u) with u < n — 2, the equivalencér, ) € G <
(v, v) € G* holds and the point is a test site 6rif and only if
it is a test site foiG*. It remains to consider point®, 1) with ) _
p=norp=n—1Let{v <n—1lt, =n} = {r,--- ,r} « construction of thd'-diagram, _

With 7 < --- < .. Thenk > 1 andry = 0. Likewise, let  * determination of the spectral levels, final output.
{v<n-—2t,=n—1}= {5_17 s With s < e < sy The initialization consists of the calculation of the numge

Here,! = 0 may happen corresponding to the case with i»» Kv, KN, and K,N, for v = 0,--- ,n. For this, the
sites of the form requested. Note that by thetructure of, formulas (12), (36) and (38) are used. In totah basic
s1 > ri. All k41 sites(v, ) € G with 1 = n are test sites operations are needed for the calculations. You may also
for G, whereas* only has one site withi = n and this site consider as part of the initialization the assigment oftstar
((n—1,n)) is not a test site. Among thie+ [+ 1 sites(, ) Values7, = n+1 and [n]max = 0 for the next step in the
with 1 = n—1in G as well as inG*, there arel + 1+ 1 test &lgorithm. - _
sites inG (the sites(ry, n—1), (s1,n—1),-- -, (s;,n—1) and The key part of the algorithm is the calculation of the
(n—2,n—1)), whereas all these sites are test sites@or It diagra_m, i.e. the_ numbers, as well as the_cglculation of the
follows that there aré(k+1)+ (1+2)) — (0+ (k+1+1)) = 2 associated maximal brackets, thé,..'s. This is achieved by
more test sites i than inG*, hence(G) = 2n—1 as desired. successive calls of theentral subroutineThough basically the
We now go back to the main induction proof and assunf@me as for general co-trees, there are essential simptifisa
that the claimed result holds for dlkstructures with a spectral @ @lso indicated earlier. This is partly achieved by symynet

diagramG = G(to,- - ,t,) with v(G) — ~. Note thatG is L-diagram where we really have to make a test. The flow

the direct sum o6’ = G(to, - - , ts,, to+1) and the restriction diagram is sketched in Figure 7. The subroutine is called for
G" of G to {to,--- ,n} as indicated in Figure 8. As(G’) = all v, starting with the highest value, — 1, and ending with

1, (@'Y = 2ty — 1 by the first part of the proof and by thethe valuer = 0. When all these calls have been made you
induction hypothesis(G”) = 2(n — to) — (v — 1). Clearly, realize that you only have to calculate a bracket (following

= (G’ ). Therefore, we find th =2n— .
<G.> . <G >+ <G > . a<tG> . " W(G) 4In passing, we conjecture that evefydiagram can arise in this way. To
This is the desired result and the induction is completel  jjystrate the conjecture, observe that there afe;&diagrams and these may

Af . . bi . h be realized a¥-diagrams associated with the co-trees with branchin@ et
ter our excursion into combinatorics we return 10 thespectively (1, 1, 1), (1,1,2), (1,2,3), (2,1,2) and (1,2,4) (regarding

study of a given co-tree\ = A(ky,---,ky,) with ceiling the last pattern, see also Figure 6).

Figure 10. Sunlit culumns for diagram in Figure 9

The algorithm we shall discuss consists of three parts:
« initialization,
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(38)) and to perform a test corresponding to test sites of theV a; for i =2,--- |k and Bx11 = B. Then
I'-diagram. Therefore, referring to Lemma 7.1, no more than &
4n basic operations are involved in the calls of the subroutine Z 1S5, (a1)| ([ai—h Bi] — [ai, Bi+1])
(for this, a test & > 3?” as well as a calculation := [v, y] =
is counted as a basic operation).

The final part of the algorithm is a “top-down” de-

termination of the output of the algorithm, understood to _ . ) .
be the spectral levelsy = 0,01 = 7oo,---,00 = n This result displays the transitive structure more cletirhn
] ago 9

vy . . . .
and the associated maximal brackets. We suggest that tHE&dentities (24)-(26). As to the proof, it can be accostpd
data are listed in the form{oo, [0o]max) (= (0, [0]max) by a natural induction argument. We leave the details to the

(01, 04 Jmax)s++ » (@, [0 )max) (= (n,0)). Each such pair is €ader. . .
considered to involve only one basic operation, thus adding AS t© Lemma 7.1 there may well be simpler, more direct
mostn such operations. If you also want to calcul&tg;, as proofs based on links to other combinatorial structuresais
part of the final output, another basic operations are neededndication of this we note that the number b-structures is

1 2n H H
Considering the above discussion, we have proved our 143§ Catalan number.+= ('), which appears in many other

main result which may be summarized as follows: contexts of combinatorial analySis _ _
It is a curious feature of the technical analysis that the log

Theorem 7.1:Consider a co-treé = A(kq,--- ,k,). Ap- arithmic function only appears rather sporadicly. Accogty,
ply the modification of the algorithm from Section VI asother functions may be considered. Without going into d&tai
described above. Then the number of tests performed durihgs may result in computations of universal objects tied to
execution of the algorithm is at mogin and the essential other notions of entropy and divergence than the standard
complexity of the entire algorithm, understood as the numbeotions of pure Shannon theory.
of basic operations needed to carry out initializationed®ei-
nation of thel'-diagram and the listing of all pairs of spectral ACKNOWLEDGMENTS
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Regarding Lemma 5.1, we state a natural generalization:

Lemma 8.1 (transitivity identity, general casd)et &k > 2

and co_nsider noqe‘sla e, ap With ap > - > aj. ASSUME  sie formula may be proved by noting that the sought numbisfsahe
that B is a blocking set for; and thata, ¢ B. Put B, = recursion relationv, = >"_ | ap—1an_p.



