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Overview

Natures side Observers side (you!)

the game : basic ideas, philosophy
a reminder : Codes
Thm 0 : Getting started: entropy, divergence
Thm A : MaxEnt principle derived from a game
Thm B : Observer “always” has an optimal strategy
Thm C : There is “almost always” equilibrium
Thm D : “Pythagorean” inequalities under equilibrium
Thm E : Possible Identification of optimal strategies
Thm F : Entropy loss and heavy tails
Zipf’s law : Stability and flexibility under entropy loss



Modelling the two sides: Nature and Observer

Viewed as a game of conflict with Strategies:
Nature chooses a world P among the set of
possible worlds. Observer chooses a code κ.
(Code reflects observers efforts or energy).

The cost function c: (P, κ) y c(P, κ) is a measure
of observation time, difficulty or complexity seen from
the point of view of Observer.

Two assumptions, a general and a special:
• Observer is a minimizer, Nature a maximizer.
Leads to 2-person zero-sum game.
• A Duality P ↔ κ provides a connection:
Code adapted to P and world matching κ (actually
matching Observers expectations).
Technically: ∀P ∗∃κ∗ : c(P ∗, κ∗) = minκ c(P ∗, κ)

and κ∗ is unique (if cost is finite).

Key example involves probability distributions as worlds
and idealized codes (tools of description, representa-
tion or observation strategies) as codes.



Philosophy

Modelling asymmetric 2-person zero sum games, one
player having a mind, the other not. Observer has an
optimal strategy, not necessarily so for Nature.

Why opposing goals?
Goal of Observer is clear, what about Nature? Will
Nature react to choices of Observer, a mere human?

One view: No, Nature has no mind and has once and
for all fixed the laws of nature. Nature is an absolute
and we seek the absolute truth.

... But it is you, Observer, who model the world.
Therefore, modelling of Nature and what appears as
actions of Nature is not modelling the absolute but
rather something which reflects
your knowledge about the world.

Nature then is another side of yourself. So you,
Observer, are in conflict with another side of yourself,
the side expressing knowledge – or absence of knowl-
edge – about the world.



A reminder: Codes

alphabet code-word code-word
A length ( κ)
a 11 2
e 00 2
i 01 2
o 100 3
u 1010 4
y 1011 4

To ensure unambiguous identification, code must be
prefix-free: no code-word in the code-book must be

the beginning of another. Denoting code-word lengths
by κi ; i ∈ A, with A denoting the alphabet, we realize
that Kraft’s inequality

∑
i∈A 2−κi ≤ 1

must hold – indeed, the binary subintervals of [0,1]

which correspond, via successive bisections, to the
various code-words must be pairwise disjoint, hence
have total length at most 1. A converse is also true.



Coding letters in “A tale of two cities”

Letter frequency fixed length Huffman code ideal
word length word length length

a 47064 8.07 % 00000 5 1110 4 3.63
b 8140 1.40 % 00001 5 101111 6 6.16
c 13224 2.27 % 00010 5 01111 5 5.46
d 27485 4.71 % 00011 5 0110 4 4.41
e 72883 12.49 % 00100 5 000 3 3.00
f 13155 2.25 % 00101 5 111100 6 5.47
g 12120 2.08 % 00110 5 111101 6 5.59
h 38360 6.57 % 00111 5 1000 4 3.93
i 39786 6.82 % 01000 5 1010 4 3.87
j 622 0.11 % 01001 5 1111111110 10 9.87
k 4635 0.79 % 01010 5 11111110 8 6.98
l 21523 3.69 % 01011 5 10110 5 4.76

m 14923 2.56 % 01100 5 00111 5 5.29
n 41310 7.08 % 01101 5 1101 4 3.82
o 45118 7.73 % 01110 5 1100 4 3.69
p 9453 1.62 % 01111 5 101110 6 5.95
q 655 0.11 % 10000 5 1111111100 10 9.80
r 35956 6.16 % 10001 5 0010 4 4.02
s 36772 6.30 % 10010 5 1001 4 3.99
t 52396 8.98 % 10011 5 010 3 3.48
u 16218 2.78 % 10100 5 00110 5 5.17
v 5065 0.87 % 10101 5 1111110 7 6.85
w 13835 2.37 % 10110 5 01110 5 5.40
x 666 0.11 % 10111 5 1111111101 10 9.77
y 11849 2.03 % 11000 5 111110 6 5.62
z 213 0.04 % 11001 5 1111111111 10 11.42

total = 583.426 100 % mean = 5.00 mean = 4.19 H = 4.16

Huffman ≈ combinatorial entropy (4.19 bits). Ideal-
izing ≈ entropy. (4.16 bits). Theoretical units (nits
rather than bits) corresponds to a change from base
2 to base e. Example also illustrates redundancy.



Prob., codes, entropy, redundancy and divergence

(A, M1
+(A)): alphabet, with set of prob. distributions.

(A, K(A)): the set of (idealized) codes κ over A, i.e.
κ : A → [0,∞] satisfies

∑
i∈A exp(−κi) = 1

P ↔ κ given by κi = − ln pi or pi = exp(−κi).

〈κ, P 〉 =
∑

i∈A κipi: average code length

Definitions: H(P) = minκ〈κ, P 〉, the entropy of P ,
D(P‖κ) = 〈κ, P 〉 − H(P): Red. (div) btw. P and κ,
D(P‖Q) = D(P‖κ) with Q ↔ κ: Div. btw. P and Q

〈κ, P 〉 = H(P) + D(P‖κ): linking identity or:
〈κ, P 〉 = H(P) + D(P‖Q with Q ↔ κ:

Theorem 0

H(P) = −
∑

pi ln pi , D(P‖Q) =
∑

pi ln
pi

qi



Code length game, MaxEnt, Optimal codes

P ⊆ M1
+(A): the preparation (set of possible worlds).

Distributions in P : consistent worlds (or distributions).

γ(P): the code length game. Nature chooses P ∈ P ,
Observer chooses κ, cost is average code length :
c(P, κ) = 〈κ, P 〉 =

∑
κipi .

Optimal strategies:
• for Nature: consistent P ∗ with

inf
κ∈K(A)

〈κ, P ∗〉 = sup
P∈P

inf
κ∈K(A)

〈κ, P 〉

• for Observer: a minimum risk code κ∗:

sup
P∈P

〈κ∗, P 〉 = inf
κ∈K(A)

sup
P∈P

〈κ, P 〉 = inf
κ∈K(A)

R(κ|P)

Theorem A P ∗ optimal ⇔ P ∗ MaxEnt distribution,
the distribution in P with H(P ∗) = Hmax(P).

Thus: game leads to the Maximum Entropy principle



Existence of optimal codes, minimax ineq.

Theorem B For every preparation P , Observer has
a unique optimal strategy, κ∗ (given Rmin(P) <

∞).

Proof. Let K(A) be set of κ : A → [0,∞] with
∑

i∈A exp(−κi) ≤ 1 in the topology of pointwise con-
vergence. Extend previous definitions to K(A). Then
R(·|P) is lower semi-continuous on the compact set
K(A), hence assumes its minimal value. Clearly, min-
imum must be assumed for a κ∗ ∈ K(A). For unique-
ness, apply geometric-arithmetic mean inequality to a
mixture of two postulated optimal codes.

By the general minimax-inequality,

sup
P∈P

inf
κ∈K(A)

〈κ, P 〉 ≤ inf
κ∈K(A)

sup
P∈P

〈κ, P 〉

or

Hmax ≤ Rmin .



Equilibrium

If Hmax = Rmin: equilibrium! (“<” is possible)

Theorem C Assume Hmax(P) < ∞. Then
γ(P) in equilibrium ⇔ Hmax(coP) = Hmax(P).

Proof. “⇒”:
Hmax(coP) ≤ Rmin(coP) = Rmin(P) = Hmax(P) .

“⇐”: To prove: γ(coP) in equilibrium. Assume P con-
vex. (κ, P) y 〈κ, P 〉 on K(A) × M1

+(A) is affine in
each variable, lower semi-continuous in the first vari-
able. By Kneser’s minimax theorem,

sup
P∈P

min
κ∈K(A)

〈κ, P 〉 = min
κ∈K(A)

sup
P∈M1

+(A)

〈κ, P 〉

As in proof of B, K(P) may be replaced by K(P).
Thus, γ(P) is in equilibrium.



Properties under equilibrium

(Pn)n≥1 asymptotically optimal if (Pn)n≥1 ⊆ P and
H(Pn) → Hmax(P). P ∗ (not necessarily in P !) is
attractor if D(Pn‖P ∗) → 0 for (Pn) asymptotically
optimal. Need not exist. When it does, it is unique and
Pn → P ∗ in total variation (by Pinsker’s inequality).

Theorem D Any game γ(P) in equilibrium has an
attractor: Let κ∗ be the optimal code. Then the at-
tractor is the dist. P ∗ matching κ∗. Furthermore:

a: H(P) + D(P‖P ∗) ≤ Hmax(P) for all P ∈ P ,

b: Rmin + D(P ∗‖κ) ≤ R(κ|P) for all κ .

Proof. a: We have 〈κ∗, P 〉 ≤ Rmin(P) = Hmax(P)

for any P ∈ P . Then use linking.
b: For κ ∈ K(A) and (Pn) asymptotically optimal,

R(κ|P) ≥ 〈κ, Pn〉 = H(Pn) + D(Pn‖κ) .

Then consider the limit as n → ∞!



Criteria enabling Identification

κ∗ robust : 〈κ∗, P 〉 finite and independent of P ∈ P .
P ∗ ess. consistent : ∃(Pn) ⊆ P : D(Pn‖P ∗) → 0.
P ∗ ess. MaxEnt dist.: attractor s.t. H(P ∗) = Hmax.
(κ∗, P ∗) opt. pair: κ∗ opt. code, P ∗ ess. MaxEnt dist.

Theorem E (κ∗ , P ∗) given with κ∗ ↔ P ∗.
a: R(κ∗|P) ≤ H(P ∗) < ∞, P ∗ ess. consistent
⇒ γ(P) in equilibrium with optimal pair (κ∗, P ∗).
b: κ∗ robust, P ∗ consistent ⇒ γ(P) in equilibrium
with optimal pair (κ∗, P ∗), P ∗ is even the unique
MaxEnt distribution.

Proof. b follows from a. To prove a: Choose
(Pn) ⊆ P such that D(Pn‖P ∗) → 0. By assumption,

Rmin(P) ≤ R(κ∗|P) ≤ lim sup
n→∞

〈κ∗, Pn〉

=limsup
n→∞

H(Pn) + D(Pn‖P
∗) = Hmax(P) .2

Standard example: P = {P |〈E, P 〉 = E} (or “≤”)
with E the energy function, e.g. on A = N.



A dialogue

S: Can you help me to identify the distribution behind
some interesting data I am studying?
IT: OK, let me try. What do you know?
S: All observed values are non-negative integers.
IT: What else?
S: Well, I have reasons to believe that the mean value
is 2.3.
IT: What more?
S: Nothing more.
IT: Are you sure?
S: I am!
IT: This then indicates the geometric distribution.



S: What! You are pulling my leg! This is a very special
distribution and there are many, many other distribu-
tions which are consistent with my observations.
IT: Of course. But I am serious. In fact, any other
distribution would mean that you would have known
something more.
S: Hmmm. So the geometric distribution is the true
distribution.
IT: I did not say that. The true distribution we cannot
know about.
S: But what then did you say – or mean to say?
IT: Well, in more detail, certainty comes from obser-
vation. Based on your information, the best descriptor
for you, until further observations are made, is the one
adapted to the geometric distribution. In case you use
any other descriptor there is a risk of a higher cost.



S: This takes the focus away from the phenomenon I
am studying. Instead, you make statements about my
behavior.
IT: Quite right. “Truth” and “reality” are human imag-
inations. All you can do is to make careful observa-
tions and reflect on what you see as best you can.
S: Hmmmm. You are moving the focus. Instead of all
your philosophical talk I would like to think more prag-
matically that the geometric distribution is indeed the
true one. Then the variance should be about 7.6. I
will go and check that.
IT: Good idea.
S: But what now if my data indicate a different vari-
ance?



IT: Well, then you would know something more, would
you not? And I will change my opinion and point you
to a better descriptor and tell you about the associated
distribution in case you care to know.
S: But this could go on and on with revisions of opin-
ion ever so often.
IT: Yes, but perhaps you should also consider what
you are willing to know. Possibly I should direct you to
a friend of mine, expert in complexity theory.
S: Good heavens no. Another expert! You have con-
fused me sufficiently. But thanks for your time, any-
how. Goodbye!



Entropy loss

For a game γ(P) in equilibrium with optimal code κ∗,
matching distribution P ∗ we have H(P ∗) ≤ Hmax(P).
If the inequality is strict, we have entropy loss or col-
lapse of the entropy function. If equality holds, P ∗ is
the essential MaxEnt distribution.

P ∗ has potential entropy loss if P ∗ is attractor for some
model P in equilibrium with entropy loss. Requires
ultra heavy tails! For convenience, take A = N.

P ∗ is power-dominated if, for some a > 1,
p∗n ≤ n−a, eventually. If P ∗ is not power-dominated,
P ∗ is hyperbolic.

Example P with pn ≈ 1
n(lnn)K hyperbolic with finite

entropy iff K > 2.

Theorem F P ∗ has potential entropy loss
iff P ∗ is hyperbolic and H(P ∗) < ∞.



Re Theorem F: Points to a potential for “generation” of
entropy, almost contradicting the law of energy preser-
vation. If a phenomenon is governed by a hyperbolic
distribution P ∗, this requires only finite “energy” ,
H(P ∗) = 〈κ∗, P ∗〉, but does lead to preparations
Ph = {〈κ∗, P 〉 = h} which operate at as high an
“energy level” Hmax = h we wish.

This applies to Zipf’s law and explains why a stable,
yet flexible language is possible with a potential for
unlimited expressive power.

Phenomena modelled by hyperbolic or other heavy-
tailed distributions all seem to require high energies
for their emergence. (creation of a language, of the
internet, of large economies, of the universe (!) etc.).

Statistical handling of such phenomena is difficult, cf.
Embrechts, Klüppelberg and Mikosch: “Modelling Ex-
tremal Events”. Could it be that in some sense it is
impossible to handle statistically data generated by a
hyperbolic distribution?



Predicting the future!

The mixed game- and information theoretical ideas
will be integrated in central parts of probability and
statistics, thereby leading to a change of paradigm
for these areas of science.

A main difficulty: Natural information theoretical proofs
of basic limit theorems of probability theory and statis-
tics must be in place for this development to take place.
Though many results of this nature can be established,
the central limit theorem still poses problems!


