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Abstract

A general game between market and investor is studied and prop-
erties which are based on the notion of Nash equilibrium are derived.
The results have the potential to unify and to simplify previous re-
search. As an illustration, a problem of calibration in a simple model
of stock price development is treated. A quantitative method is sug-
gested which makes it possible to take belief in a certain trend into
account even when there is no empirical evidence available to support
such a belief.

Keywords. Nash equilibrium, model calibration, relative entropy, re-
verse relative entropy.

1 A calibration game

In Samperi [18], cf. also [19], [20], it was observed that an information the-
oretical game is of significance for certain optimization problems of financial
mathematics. This was based on Topsøe [21], [22] and is also related to
Csiszár [4]. Certain improvements of the information theoretical game with
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Natural Science Research Council (P. Harremoës and F. Topsøe).
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emphasis on the concept of Nash equilibrium were given in Harremoës and
Topsøe [14], in Topsøe [23], [24], and in Harremoës [13]. Of relevance is also
Csiszár and Matúš [5] and Grünwald and Dawid [11].

The game we shall introduce builds on [24]. However, the considerations
are not restricted to quantities defined by relative entropy (Kullback-Leibler
divergence) as in [24], and also, we shall use terms from financial mathematics
in order to assist the reader in applying the approach and results to problems
from this field. We have included some arguments which are adaptations of
arguments from [24] in order to make the paper self-contained.

We consider two sets, SI and SII . These play the role of strategy sets
for the two players in the game to be introduced. The first player we think
of as “the market” , the second as “the investor” . Neutrally, we refer to the
players as Player I and Player II. Elements of SI we refer to as states of the
market whereas elements of SII are referred to as investment strategies or,
more specifically, as calibration strategies or just calibrations.

We assume that
SI ⊆ SII . (1)

Qualitatively speaking, the rationale for this assumption is that the investor
should be allowed to use whatever means are available to assist him, whereas
the rules and behaviour which apply to the market – including also theo-
retical principles we believe in such as the no-arbitrage principle – impose
restrictions on our modelling of the market. One may argue that the nature
of strategies for the two players are quite different, hence the assumption (1)
does not make sense. However, for the applications we shall deal with here,
there is a natural embedding of SI in SII which allows us to identify SI with
a subset of SII .

We assume that prior information is available to both players and given
in terms of an element of SII , denoted P0, and referred to as the prior. If
P0 ∈ SI , the model is already calibrated. In cases of interest, P0 /∈ SI , and
we shall use game theoretical considerations to discuss how an appropriate
calibration can then be achieved.

The objective function which we shall suggest is derived from an extended
real valued function Φ on the product set SII × SII . We assume that the
inequalities

0 ≤ Φ(P‖R) ≤ ∞ (2)

and the bi-implication

Φ(P‖R) = 0 ⇐⇒ P = R (3)

hold for every pair (P, R) ∈ SII ×SII . We use the double bar notation Φ(·‖·)
merely to signal that Φ need not be symmetric (recall the common usage of
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this kind of notation for the non-symmetric relative entropy). We call Φ the
divergence function.

By the scope (Φ-scope) of P0 we understand the set

scopeΦ(P0) = {P ∈ SII |Φ(P‖P0) < ∞}. (4)

We assume that
SI ⊆ scopeΦ(P0). (5)

Formally, (5) is a stronger assumption than (1).
For (P, R) ∈ SI × SII , we define the calibration gain by

Φ(P‖P0 ; R) = Φ(P‖P0) − Φ(P‖R). (6)

In view of the assumption (5), this is a well defined number in [−∞,∞[.
This is the function we shall use as objective function below.

Clearly, if the investor chooses R = P0, the calibration gain will be 0. The
investor should attempt to select a calibration which is closer to the “true”
state of the market. In order to discuss this more closely, we introduce
the two-person zero-sum calibration game, denoted γ = γ(SI ,SII , P0, Φ),
which has (P, R) y Φ(P‖P0 ; R) as pay-off function for Player II (and as
cost function for Player I). The usual minimax/maximin thinking of game
theory then applies and leads us to consider the minimax value Φmin and the
maximin value Γmax given by

Φmin = inf
P∈SI

sup
R∈SII

Φ(P‖P0 ; R), (7)

Γmax = sup
R∈SII

inf
P∈SI

Φ(P‖P0 ; R). (8)

Note that the supremum in (7) can be identified as Φ(P‖P0), hence

Φmin = inf
P∈SI

Φ(P‖P0). (9)

The corresponding infimum in (8) cannot readily be identified. We denote
it by Γ(R‖P0) and call it the calibration risk associated with the strategy R:

Γ(R‖P0) = inf
P∈SI

Φ(P‖P0 ; R). (10)

Clearly,
0 ≤ Γmax ≤ Φmin < ∞. (11)

If Γmax = Φmin, this is the value of the game and the game is said to be in
equilibrium. If R ∈ SII and Γ(R‖P0) = Γmax, the calibration R is an optimal
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calibration. If P ∈ SI and Φ(P‖P0) = Φmin, the market state P is an optimal
state. Using terminology from game theory, a pair (P ∗, R∗) ∈ SI × SII is a
Nash equilibrium pair if the two saddle value inequalities:

Φ(P ∗‖P0 ; R) ≤ Φ(P ∗‖P0 ; R∗) ≤ Φ(P‖P0 ; R∗) (12)

hold for (P, R) ∈ SI × SII .
Let us analyze what can be said when (12) holds. First note that from

the first inequality (applied to R = P ∗) and from (2), (3) and (5) it follows
that R∗ = P ∗. Then, the first inequality of (12) is automatic and the second
inequality tells us that Γ(P ∗‖P0) ≥ Φ(P ∗‖P0). As the reverse inequality
is a trivial consequence of the minimax inequality (11), we conclude that
Γ(P ∗‖P0) = Φ(P ∗‖P0) = Γmax = Φmin. Thus, the game is in equilibrium and
P ∗, viewed as a state of the market, is an optimal strategy for Player I and
P ∗, viewed as a calibration, is an optimal calibration strategy for Player II.

We call P ∗ the bi-optimal strategy. We shall see below that it is unique.
We noted that the essential demand on P ∗ (= R∗) is that

Φ(P‖P0 ; P ∗) ≥ Φ(P ∗‖P0) forP ∈ SI (13)

holds. This inequality we call the Nash inequality (associated with the game
γ). In view of the equilibrium property established, (13) may be written in
the form

Φ(P‖P0) ≥ Φ(P‖P ∗) + Φmin forP ∈ SI . (14)

From (14) it follows immediately that P ∗ is the unique optimal strategy for
Player I. Similarly, from Γ(R‖P0) ≤ Φ(P ∗‖P0 ; R) we see that

Γ(R‖P0) ≤ Γmax − Φ(P ∗‖R) (15)

and it follows that P ∗ is the unique optimal calibration for Player II. The
inequality (14) is the Pythagorean inequality associated with the game. This
inequality is widely used (in the setting when relative entropy is taken for
the divergence Φ) and goes back to Čencov [2] and to Csiszár [4]. Its “dual”
(15), can be found in Topsøe [21] (for relative entropy).

Let us summarize our discussion in a form which is convenient for appli-
cations:

Theorem 1. Consider the calibration game γ = γ(SI ,SII, P0, Φ) and assume
that (2), (3) and (5) hold. If there exists P ∗ ∈ SI such that the inequality
(13) holds, then γ is in equilibrium, (P ∗, P ∗) is the Nash equilibrium pair for
γ, and P ∗ is the unique optimal strategy for each of the players. Furthermore,
the Pythagorean and the dual Pythagorean inequalities, (14) and (15), hold.
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It is comforting to note that the converse to this result also holds. In-
deed, under the assumptions (2), (3) and (5) it is easy to see that if γ is in
equilibrium and if optimal strategies exist for both players, then the strate-
gies coincide and the Nash inequality (13) holds for the common strategy.
Therefore, if the game considered allows optimal strategies for each of the
players, the only possible equilibrium type is that there exists a Nash equi-
librium pair. From [24] and [13], see also [12], one will see what may happen
if the players do not have optimal strategies. However, it is believed that for
applications to mathematical finance, the situation we have focused on is the
most important one.

Normally, the strategy set SI can be extended without changing the value
of the game or the bi-optimal strategy. One way to view this is to associate
with each pair (P ∗, P0) with P ∗ ∈ scopeΦ(P0) a maximal model

SP ∗,P0
= {P ∈ scopeΦ(P0)|Φ(P‖P0 ; P ∗) ≥ Φ(P ∗‖P0)}. (16)

Taking this set as strategy set for Player I, we see that it is the largest set S
for which the game γ(S,SII , P0, Φ) is in equilibrium with P ∗ as bi-optimal
strategy and P0 as prior.

Consider again a game γ(SI ,SII , P0, Φ) satisfying (2), (3) and (5) and
assume that the game is in equilibrium and that the bi-optimal strategy P ∗

exists. Often, P ∗ is difficult to determine exactly but it may be possible to
estimate how close P ∗ is to a suitable guess Q ∈ SI by applying the inequality

Φ(P ∗‖Q) + Φ(Q‖P ∗) ≤ Φ(Q‖P0) − Γ(Q‖P0) (17)

which follows from (14) and (15).
Finally, we introduce a concept which is particularly useful in linear mod-

els (e.g. reflecting a martingale condition) when relative entropy is taken for
the divergence Φ. The concept makes sense for any calibration game. So
consider a general game γ = γ(SI ,SII, P0, Φ). A calibration Q ∈ SII is said
to be robust in case Φ(P‖P0 ; Q) is independent of P for P ∈ SI . Clearly,
if Q is robust and if Q ∈ SI , then the Nash inequality (13) holds. Thefore,
we obtain the following result directly from Theorem 1:

Corollary 1. Assume that (2), (3) and (5) are satisfied for the game γ =
γ(SI ,SII, P0, Φ) and that Q ∈ SI is a robust calibration. Then γ is in equi-
librium and has Q as the bi-optimal strategy.

In certain cases, this result may be applied by first searching for robust
calibrations and then searching among these for one in the strategy set SI .
This approach is the one we will adopt in Section 2.1.
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Possible applications of the results in this section include research as con-
tained in Samperi [18], [19], Bellini and Frittelli [1], Goll and Rüschendorf [9],
Grandits and Rheinländer [10], Rüschendorf [17], Delbaen et al [6], Kabanov
et al [15], Cherny et al [3], Glonti et al [8] and others.

2 A model of stock price development

In this section we study a simple and well known model of stock price de-
velopment. In particular, we follow-up on the study of Glonti, Jamburia,
Kapanadze and Khechinashvili [7].

Consider a model of stock price development (Sk)k≥0 where the price at
time k is given by

Sk = Sk−1(1 + ρk) ; k ≥ 1 (18)

with S0 > 0 deterministic and (ρk)k≥1 an iid sequence of random variables
with values in ] − 1,∞[. Previous experience or knowledge gained by other
means is given in terms of the prior distribution P0 of the ρk’s. This may not
render (Sk)k≥0 a martingale w.r.t. the filtration (Fk)k≥0 of σ-fields generated,
for k ≥ 0, by S0, S1, · · · , Sk. Therefore, the model based on the prior distri-
bution P0 may not respect the no arbitrage principle and it is to be expected
that market forces will eventually lead to a state, expressed in terms of a
new distribution, P , of the ρk’s which respects the martingale condition

EP (Sk|Fk−1) = Sk−1 ; k ≥ 1. (19)

In view of (18), this condition amounts to the vanishing of the mean value
of the ρk’s in the new model based on P . By the assumption of identical
distribution, this mean value does not depend on k.

We may now forget about the structure of the model we started with
(given by (18)) and translate everything to conditions involving distributions
on R. Let M1

+(R) denote the set of probability distributions on R and agree
to use the bracket notation 〈·, P 〉 for mean values w.r.t. distributions P ∈
M1

+(R). We find it convenient to denote by id : R → R the identity map on
R.

The prior is then a distribution P0 ∈ M1
+(R) and regarding the condition

that it be concentrated on ] − 1,∞[ this condition may in fact be ignored
as it does not play any role for the further analysis. We do assume that
〈id, P0〉 6= 0, either 〈id, P0〉 < 0 – when we speak of a negative trend – or
〈id, P0〉 > 0 – when we speak of a positive trend.

For the acceptable market states, now modelled by distributions P ∈
M1

+(R), the martingale condition amounts to the condition 〈id, P 〉 = 0. We
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also find it natural to demand that P is equivalent to P0 (i.e. that the two
measures have the same null sets). We denote by M(P0) the set of admissable
market states thus arrived at:

M(P0) = {P ∈ M1

+(R)|P ≡ P0, 〈id, P 〉 = 0}. (20)

Regarding this set, we assume that M(P0) 6= ∅. In fact, we may assume
that M(P0) contains more than one distribution (hence M(P0) contains in-
finitely many distributions), i.e. that the market is incomplete (the situation
with a complete market may be conceived as a special, singular case).

In (20) we agreed on the set of admissable strategies for Player I (the
market) in the game we shall study. Regarding Player II (the investor),
we conceive the available strategies – likewise given as distributions P ∈
M1

+(R) – as calibrations (chosen by the investor, not enforced by the market
as was the case above when we defined M(P0)). Accordingly, the investor
will be allowed to choose strategies which do not respect the martingale
condition. On the other hand, we only allow strategies which in some sense
can be derived from the prior P0. To be precise, we define the set M 1

+(P0) of
admissable calibration strategies (for the investor) by

M1

+(P0) = {P ∈ M1

+(R)|P � P0}, (21)

i.e. as the set of distributions which are absolutely continuous w.r.t. P0.
It remains to specify the divergence function Φ before a game theoretic

setting as discussed in Section 1 makes sense. We shall work with Csiszár
φ-divergences for distributions on R. They are given by the usual formula

Φ(P‖Q) =

∫

φ(
dP

dQ
)dQ (22)

(∞ in case this integral does not make sense) where φ is some convex function
on R+ which vanishes at 1 and is strictly convex at that point. Here, we shall
only pay special attention to relative entropy (Kullback-Leibler divergence)
given by

D(P‖Q) =

∫

ln
dP

dQ
dP (23)

(corresponding to φ(u) = u lnu) and to reverse relative entropy given by

Dinv(P‖Q) = D(Q‖P ) (24)

(corresponding to φ(u) = − ln u).
The games we shall study only depend on P0 ∈ M1

+(R) and on the chosen
divergence Φ and we denote these games by γ(P0, Φ). They are defined to
be the calibration games γ(M(P0), M

1
+(P0), P0, Φ) of Section 1.
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In order to simplify and also to ensure that the condition (5) holds what-
ever the divergence Φ, we shall assume that P0 is discrete with finite support,
supp(P0). We may then write P0 in the form

P0 =

n
∑

i=0

p0,iδai
(25)

with the ai distinct and with a0 = 0 (0 is treated as a special value where
P0 may or may not have positive mass). Here, δa denotes a unit mass at
a ∈ R. We assume that p0,i > 0 for 1 ≤ i ≤ n. The points a0 (if p0,0 > 0)
and a1, · · · , an are referred to as the locations in the model. As M(P0) is
assumed to contain more than one distribution, there are both positive and
negative locations. Therefore, n ≥ 2 and we may assume that a1 < 0 and
an > 0.

2.1 Calibration w.r.t. relative entropy

First consider the case when Φ = D, relative entropy. This case really
contains the archetypical information theoretic optimization problem and
has been treated in a long range of different contexts, see Kapur [16]. We
base the analysis on Corollary 1. For measures P and R which are equivalent
to P0, we find that

D(P‖P0 ; R) =

〈

ln
dR

dP0

, P

〉

. (26)

Therefore, we realize that if ln dR
dP0

is a linear combination of the constant

function 1 and the identity id, say ln dR
dP0

= α − β id, then R is a robust
calibration. This leads us to consider, for every β ∈ R, the distribution
Rβ ∈ M1

+(R) defined by

ln
dRβ

dP0

= − ln Z(β) − β id (27)

or, equivalently,

Rβ(A) =
1

Z(β)

∫

A

e−βxdP0(x) (28)

for measurable subsets A ⊆ R and with Z(β), the partition function evaluated
at β, given by

Z(β) =

∫ ∞

−∞

e−βxdP0(x) =

n
∑

i=0

p0,ie
−βai . (29)
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We find that
d

dβ
ln Z = −〈id, Rβ〉. (30)

Therefore, Rβ ∈ M(P0) if and only if β is chosen such that

n
∑

i=1

p0,iaie
−βai = 0. (31)

It is clear (as a1 < 0 and an > 0) that this transcendental equation has
a unique solution, say β∗. By Corollary 1, it then follows that the game
has a Nash equilibrium pair and that P ∗ = Rβ∗ is the bi-optimal strategy.
Using terminology of Csiszár [4], this contains the result that P ∗ is the I−
projection of P0 on M(P0).

We also see that if the trend is negative, then β∗ < 0 and if the trend is
positive, β∗ > 0. Consider the maximal model associated with P0 and P ∗.
As

D(P‖P0 ; P ∗) − D(P ∗‖P0) =

〈

ln
dP ∗

dP0

, P

〉

−
〈

ln
dP ∗

dP0

, P ∗

〉

= 〈− ln Z(β∗) − β∗ id, P − P ∗〉
= −β∗〈 id, P 〉,

it follows from (16) that when the trend is negative, the maximal model
consists of all P ∈ M 1

+(P0) with mean value 〈id, P 〉 ≥ 0. For the original
model, cf. (18), this corresponds to allowing also sub martingale measures.
Similarly, if the trend is positive, the maximal model corresponds to allowing
also supermartingales.

We have proved the following result:

Theorem 2. For P0 of the form (25) with 〈id, P0〉 6= 0 and a1 < 0 , an > 0,
the game γ(P0, D) has a Nash equilibrium pair and the bi-optimal distribution
P ∗ = Rβ∗ is determined by the equations (28), (29) and (31) (with β = β∗).

If the trend is negative, respectively positive, the associated maximal model
consists of all P ∈ M 1

+(P0) with 〈id, P 〉 ≥ 0, respectively 〈id, P 〉 ≤ 0.

2.2 Calibration w.r.t. reverse relative entropy

We then turn our attention to another choice of divergence, viz. Φ = Dinv,
reverse relative entropy. Again, we assume that P0 is of the form (25) with
〈id, P0〉 6= 0 and a1 < 0 , an > 0 and we consider the game γ(P0, D

inv).
In this case we have to impose extra conditions to ensure that the game

has a Nash equilibrium pair:
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Theorem 3. Assume that P0 is of the form (25).
If the trend is negative, a necessary and sufficient condition that the

game γ(P0, D
inv) has a Nash equilibrium pair is that there is precisely one

positive location. When this condition is fulfilled, the maximal model (as-
sociated with the bi-optimal distribution) contains all distributions P with
supp(P ) = supp(P0) and 〈id, P 〉 ≥ 0.

If the trend is positive, the corresponding necessary and sufficient condi-
tion is that there is precisely one negative location and when this condition
is fulfilled, the maximal model contains all P with supp(P ) = supp(P0) and
〈id, P 〉 ≤ 0.

Proof. Throughout this proof we assume that the trend is negative. The case
of a positive trend may be treated similarly or reduced to the case with a
negative trend in an obvious manner.

The Nash inequality has the following form:

Dinv(P‖P0 ; P ∗) ≥ Dinv(P ∗‖P0). (32)

In order to study this closer we note that for P and P ∗ in M(P0) one has:

Dinv(P‖P0 ; P ∗) − Dinv(P ∗‖P0)

=

∫

ln
dP0

dP
dP0 −

∫

ln
dP ∗

dP
dP ∗ −

∫

ln
dP0

dP ∗
dP0

=

∫
(

1 − dP ∗

dP0

)

ln
dP ∗

dP
dP0 ,

hence, with natural notation for the point probabilities of P ∗ and P ,

Dinv(P‖P0 ; P ∗) − Dinv(P ∗‖P0) =
n

∑

i=0

(p0,i − p∗i ) ln
p∗i
pi

(33)

(for i = 0 we have to interpret the contribution to the sum as 0 in case
p0,0 = 0).

Now assume that the game has a Nash equilibrium pair and let P ∗ ∈
M(P0) be the bi-optimal distribution. Then, as P varies over M(P0), the
right hand side in (33) assumes its minimal value, 0, for P = P ∗. As suit-
able regularity conditions regarding differentiability are fulfilled, there exist
Lagrange multipliers λ and µ such that, for i = 0, 1, · · · , n,

∂

∂pi

[

n
∑

j=0

(p0,j − p∗j) ln
p∗j
pj

− λ
n

∑

j=0

pjaj − µ
n

∑

j=0

pj

]

= 0
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when P = P ∗. It follows that

p∗i − p0,i

p∗i
= λai + µ (34)

for i = 0, 1, · · · , n. By a multiplication with p∗
i and subsequent summation,

we find that
∑n

i=0
(p∗i − p0,i) = µ, hence µ = 0. From (34) we then see that

p∗i (1 − λai) = p0,i (35)

for i = 0, 1, · · · , n. This shows that if p0,0 > 0, then p∗0 = p0,0 (thus, this
equality holds in any case) and that λ 6= 1

ai

for i = 1, · · · , n. Further, λ 6= 0
(as P0 6∈ M(P0)).

At this stage it is convenient to introduce the notation bi = 1

ai

and to
assume, as we may, that the indexing is chosen so that b1 < b2 < · · · < bn.
From (35) we find that

p∗i = − p0,ibi

λ − bi

(36)

and hence also

p0,i − p∗i =
λp0,i

λ − bi

(37)

for i = 1, · · · , n.
From (36) and from the requirement that the p∗

i ’s be positive it follows
that λ is located in what we shall call the central interval, namely that
interval ]bj, bj+1[ which contains 0. It follows from (37) that

n
∑

i=1

p0,i

λ − bi

= 0 (38)

(recall that p∗0 = p0,0). As is easily seen, the function x y
∑n

1
p0,i/(x − bi)

is continuous in the central interval ]bj, bj+1[ and decreases from +∞ to −∞
over that interval. Therefore, λ is uniquely determined.

As the trend is negative, we see that λ > 0. Assume now, for the purpose
of an indirect proof, that an−1, hence also bn−1, is positive. Then there exists
a distribution R with 〈id, R〉 = 0 such that supp(R) = supp(P0)\{an}. Let S
denote that distribution with 〈id, S〉 = 0 for which supp(S) = {a1, an}. For
0 < ε < 1, denote by Pε the distribution

Pε = (1 − ε)R + εS.

Then Pε ∈ M(P0) for 0 < ε < 1. As λ > 0, it follows from (37) that
p∗n > p0,n. Then, from (33), we see that

inf
0<ε<1

(

Dinv(Pε‖P0 ; P ∗) − Dinv(P ∗‖P0)
)

= −∞,
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contradicting the Nash inequality. We conclude that an−1 < 0, hence there
is only one positive value among the locations. We have thereby proved the
necessity assertion of the theorem.

In order to prove the remaining parts of the theorem, assume that there
is only one positive location, an. Determine λ > 0 by (38) and consider
the distribution P ∗ = (p∗i )i=0,1,··· ,n determined by p∗0 = p0,0 and by (36) for
i = 1, · · · , n. What we have to prove is that the Nash inequality holds for all
P ∈ M(P0), i.e., according to (33), we have to establish the validity of the
inequality

n
∑

i=0

(p0,i − p∗i ) ln
p∗i
pi

≥ 0

for all P = (pi)i=0,1,··· ,n ∈ M(P0). In order to prove at the same time also
the assertion regarding the associated maximal model, we assume only that
supp(P ) = supp(P0) and that 〈id, P 〉 ≥ 0. If the inequality above can be
established under these conditions, the proof will be complete. This is in fact
quite easy:

n
∑

i=0

(p0,i − p∗i ) ln
p∗i
pi

=
n−1
∑

i=1

(p0,i − p∗i ) ln
p∗i pn

pip∗n

≥
n−1
∑

i=1

(p0,i − p∗i )

(

1 − pip
∗
n

p∗i pn

)

=

n−1
∑

i=1

−λai(p
∗
i − pi

p∗n
pn

)

= λ

[

anp∗n + (〈id, P 〉 − anpn)
p∗n
pn

]

≥ 0.

Above we used the facts λ > 0 and p0,i − p∗i > 0 for i = 1, · · · , n− 1.

We note that it would be natural to allow in the maximal models discussed
in the theorem also distributions with support strictly contained in that of
P0. Note however, that then (5) need not hold and one would have to extend
the general theory slightly.

In the course of the proof we also determined the bi-optimal distribution:

Theorem 4. Assume that the game γ(P0, D
inv) has a Nash equilibrium pair.

Then the bi-optimal distribution, P ∗, is determined by p∗0 = p0,0 and by (36)
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for i = 1, · · · , n, where λ is that number in the central interval which satisfies
(38).

In this result, we may replace the requirement that λ belongs to the
central interval, by the requirement that λ is of the opposite sign of 〈id, P0〉.

3 The trinomial scheme

It is straight forward to apply Theorems 2, 3 and 4, combined with standard
algorithms, in order to obtain efficient numeric solutions of the optimization
problems connected with the games considered. It is, however, only in special
cases that exact solutions can be worked out. We now consider such an
instance.

What we shall study is the trinomial scheme, cf. Glonti et al [7], i.e.
we study the case when n = 2. In more detail, we assume that the prior
P0 has positive mass at a1 < 0 and at a2 > 0, and also at a0 = 0 (so that
we are in the case of incompleteness with M(P0) containing more than one
distribution). To simplify notation, we characterize distributions over the
locations a1, a0 and a2 by their vectors of point probabilities corresponding
to these locations. The point probabilities of the prior P0 are denoted p, q
and r, i.e. P0 = (p, q, r).

By Theorem 2, γ(P0, D) has a Nash equilibrium pair and the bi-optimal
distribution, P ∗, is determined by (28), (29) and (31). One finds the formulas:

P ∗ =
1

Z

(

pe−βa1 , q, re−βa2

)

(39)

with Z a normalization constant and

β =
1

a2 − a1

ln
ra2

−pa1

. (40)

By Theorems 3 and 4, γ(P0, D
inv) also has a Nash equilibrium pair (in-

dependently of whether the trend is negative or positive). The bi-optimal
distribution, now denoted Q∗, is most simply determined by noting that the
point mass at 0 is the same for Q∗ as for P0. Therefore, as also Q∗ ∈ M(P0),

Q∗ =

(

a2

a2 − a1

(p + r), q,
−a1

a2 − a1

(p + r)

)

. (41)

We may express the formulas in a way which better allows us to compare
P ∗ and Q∗. We shall see that P ∗ is related to a certain geometric average
and Q∗, the simpler of the two distributions, to the corresponding arithmetic
average.
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Let (s, t) be the probability vector

(s, t) =

(

a2

a2 − a1

,
−a1

a2 − a1

)

(42)

and let
p̃ = −pa1 , r̃ = ra2 (43)

be weights associated with the point masses p and r and their respective
locations, a1 and a2.

The relevant averages are those of (p̃, r̃) w.r.t. the probability vector
(s, t), both the arithmetic average, denoted A, and the geometric average,
denoted G, i.e.

A = sp̃ + tr̃ , G = p̃sr̃t. (44)

We collect the key formulas and qualitative results in the following theo-
rem:

Theorem 5. Consider the trinomial scheme defined by the prior P0 = (p, q, r)
corresponding to the locations a1 < 0, a0 = 0 and a2 > 0. Assume that p, q
and r are all positive and that pa1 + ra2 6= 0. Then both games γ(P0, D) and
γ(P0, D

inv) have a Nash equilibrium pair and the corresponding bi-optimal
distributions are given by

P ∗ =
1

Z

(

G

−a1

, q,
G

a2

)

, Q∗ =

(

A

−a1

, q,
A

a2

)

, (45)

where the averages A and G are determined by (42), (43) and (44).
The normalization constant Z satisfies 0 < Z < 1 and, furthermore,

G < ZA. Accordingly, P ∗ assigns larger weight to the location a0 = 0 than
Q∗ does and smaller weight to each of the locations a1 and a2.

Proof. From (40) it follows that

e−βa1 =

(

r̃

p̃

)t

, e−βa2 =

(

r̃

p̃

)−s

and then that

pe−βa1 =
1

−a1

p̃sr̃t , re−βa2 =
1

a2

r̃tp̃s ,

hence the formula for P ∗ in (45) follows by (39). Clearly, the formula for Q∗

in (45) follows from (41).
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By the inequality relating geometric and arithmetic means we find that

Z = G

(

− 1

a1

+
1

a2

)

+ q

< A

(

− 1

a1

+
1

a2

)

+ q

= 1

(with strict inequality as p̃ 6= r̃). It follows that P ∗(a0) > Q∗(a0). As
P ∗(a1)/Q

∗(a1) = P ∗(a2)/Q
∗(a2), we have P ∗(a1) < Q∗(a1), hence G < ZA.

In the symmetric case: a2 = −a1, one finds the formulas

P ∗ =
1

Z
(
√

pr, q,
√

pr) , Q∗ =

(

p + r

2
, q,

p + r

2

)

(46)

with Z = q + 2
√

pr = 1 − (
√

p − √
r)2. As it is to be expected, P ∗ and Q∗

are independent of the location a2 = −a1.
We may also remark that calibration using the reverse relative entropy

measure makes it possible to calibrate meaningfully a prior distribution P0

which assigns probability 0 to a1 or to a2. Assume, say, that r = 0. Using
the formula (41) gives

Q∗ =

(

a2

a2 − a1

p, q,
−a1

a2 − a1

p

)

(47)

whereas the formula for calibration w.r.t. relative entropy would give the
unreasonable result P ∗ = (0, 1, 0). Calibration when r = 0 corresponds
to a situation with negative trend when previous evidence did not show any
instance of increase in stock price but, nevertheless, for one reason or another,
one expects that increase in stock price could occur in the future but only
corresponding to the location a2.
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