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So said Kolmogorov (1983):
“Information theory
must
precede probability theory
and not be based on it”

Let us follow him!

Nature Observer
holds the truth! seeks the truth
does not have a mind! has a mind
an absolute YOU!

passive inventive



In so doing, | reveal nature of entropy and divergence:

e Entropy is minimal complexity
e Divergence measures discrepancy between
actual and minimal complexity

— and what then is complexity ?

e Complexity is whatever complexity should be
in any concrete situation.

— hmmm. So axiomatize based on game theoretical
thinking! — but why games?
- because they provide a perfect setting for the
modeling of conflict situations
|s that what information is about? yes(!?)
Which tools?

- the simplest are the most important:
two-person zero-sum games!

Modeling of un-symmetric conflict situations between
players, one having a mind, the other not - with focus:
complexity (@), entropy (H) and divergence (D)

or: pay-off (W), maximal pay-off ('), divergence (D)



e sirategy sets X and Y (e.g. X=Y),

e connection X — Y writtenz ~ x (e.9. T = x),
e complexity ® : X x Y —] — oo, o] (or [0, o0]),
e entropy H : X —] — 0o, o] (or [0, o<]),

e divergence D : X x Y — [0, o]

e and possibly a preparation Xg € X (or more!)

Axiom 1 (linking): For (z,y) € X x Y,

d(x,y) = H(z) + D(x,y) (linking identity) and
D(z,y) =0 y==2

Axiom 2 (affinity): X is convex and & affine in

first variable: ® (> avzy,y) = > arP(xy, y)

Axiom 3 (semi-continuity): reference topology (X, 7) is
Hausdorff, algebraic operations continuous and, for any
(zo,y0), x ~ D(x,yg) and x ~ D(xg, Z)

are T-lower semi-continuous.

Axiom 4 (weak completeness): For a sequence

(zn) in X, put Tp,m = 5on + 5m and

Yn.m = ZTn.m. If “Cauchy property” D(zn,ynm) — O
as n, m — oo then 3z, (xnk)kzl such that zp,, — «

strong convergence: xp, — x if D(xp,2) — O



Sometimes pay-off W, maximal pay-off M and Diver-
gence D as before are more natural to work with.

By “duality” you pass from the one system to the other:
(P, H,D) « (V,N,D) withd = -, H = —I.
We talk about information triples based on complexity
and information triples based on pay-off.

Example 1(classical information theory) A a discrete
alphabet, X = M3 (A), set of probability distribu-
tions over A, Y = K (A), set of code length functions
over A, i.e. setof x : A — [0, oo] such that Krafts
equality holds: 3°;c4 exp(—k;) = 1. Let P ~ P be
the bijection P «— x with k; = In ) Py = exp(—k;).
With ® as average code length and with

P(P, k) = sz’iz
€A
H(P) = Z p; 1IN i
i=1 b;
D(P,k) = i n 2 (here Q <« K) O

i=1 i



Example (geometric version of updating)

X =Y, a Hilbert space, with identity as connection.
Let yo be a point in Y, the prior. With

W(z,y) = [lz — ol — [z — y||?
N(z) = ||z — yol|?
D(z,y) = ||lz — y|?,
Axioms 1-4 hold. O

For standard updating you will replace ||z — y||2 by a
standard divergence, say Kullback-Leibler divergence.
The reason why seemingly different objects can be
used for the same task lies in the common identities
fulfilled by these quantities. They involve entropy, di-
vergence and information rate I(-) (really the same
as mutual information ) and hold whenever Axioms 1
and 2 hold. Let MOL(X) be the set of probability
distributions over X with finite support. Then, for

a € MOL(X), define

I(a) = ) 0z D(z,7)

reX



Theorem (identities re concavity- and convexity)
(i) Letx = >, x axx be a convex combination of ele-
ments in X corresponding to a« € MOL(X). Then

H( Z a;,;:c) = Z aryH(x) +1I(a) .

reX reX
(i) With notation as in (i), assume that H(Z) < oo and
let y € Y. Then

Z ar D(z,y) = D( Z azr,y) + ().

reX reX
(iii) For elements a1, - ,am In MOL(X) with
barycentres =7 ...,ZTm;, and for any mixture a =

> Tt wiay, with a barycentre z of finite entropy, the fol-
lowing identity holds:

I( > wkak) = > wpl(ay) + > wp D(7, 7).
k=1 k=1 k=1

Proof: (i) is trivial by linking and (i) = (i) = (iii) O




Consider (¥, H, D) satisfying Axioms 1-4 and a

preparation X. This defines two-person zero-sum
game v(Xg) with ®© as objective function, Observer
as minimizer and Nature as optimizer, but with re-
striction to strategies in Xy. Some important notions:

e x € X(: consistent strategy

® SUP.cx, iNf ey P(z,y) = supzex, H(=):
maximum entropy value, Hmax = Hmax(Xp)

e inf cy sUp ex, P(z,y) = inf cy R(y):
minimal risk, Rmin = Rmin(Xo)-

e minimax inequality: Hmax < Rmin-

e equilibrium means that Hmax = Rmin < oc.

e x MaxEnt-strategy: consistent x with H(x) = Hmax.

e A sequence (xy,) of consistent strategies is
asymptotically optimal if limy,—oo H(xn) = Hmax.

e x € X is a Hmax-attractor if z,, — x for
every asymptotically optimal sequence (zr,).

ey €Y Rnyip-strategy if R(y) = Rmin(Xo).

o (x*,y*) optimal pair: * MaxEnt-strat., y* Rmnin-strat.




Main Theorem X convex, Hmax(Xg) < oco. Then:

e Observer has unique optimal strategy y*

e an Hmax-attractor z* exists and y* = z*.

e Hmax-attractors are equivalent, hence unique if con-
nection is injective

e the game is in equilibrium: Hmax(Xg) = Rmin(Xo)
o for x € X, y € Y strong inequalities hold:

H(z) + D(z,y") < Hmax(Xo)
Rmin(Xo0) + D(z",y) <R(y).

Application to updating: Consider (®, H, D) satisfy-
ing Axioms 1-4 with x ~ Z injective and, to simplify,
¢ finite. Let Xg € X be convex and let yg € Y be a
“prior”. Define:

\U(:I:,y) — D(wayO) o D(Qﬁ,y)
N(z) = D(=, y0) -

Consider corresponding game. Fory € Y, let

M(y) = inf W(x,y)
reXp



guaranteed updating gain associated with y and let

Mmax = sup Tl (y), Dmin = inf D(%?JO)

A strategy =* € X is the generalized I-projection of
yo on Xq if x, — x™ for every sequence (zp) in
X which is asymptotically optimal in the sense that
iMn—00 D(2,y0) = Dmin-

Theorem The game is in equilibrium: Mmax = Dmin-
There is a unique generalized I-projection =* of yg on
Xp and y* = z* is the unique optimal strategy for Ob-
server: (y*) = [max. Furthermore, for (z,y) €
XO X Y,

D(CIZ, yO) 2 Dmin _I_ D(x7 y*) )
(y) +D(z",y) < Mmax.

This follows from applying main theorem to

(z,y) ~ =W (z,y) = D(z,y) — D(z,y0)
z ~H(z) — ®(z,y0) = — D(z,y0)
(z,y) ~ P(z,y) — H(z) = D(z,y).



Theorem Let X be a closed convex subset of the
Hilbert space Y and let yg ¢ Xg. Then there exists
a hyperplane which separates yg from Xj.

Proof: Take (W, N, D) as before:

W (z,y) = ||z —yol|? — |l — y||?
N(z) = ||z — yol/?

D(z,y) = |z —yl°,

Conclude from main Theorem that the associated game
IS In equilibrium. The value for Nature is

inf,cx, |lz — yol|? which is positive by assumption.
Therefore, the value of the game for Observer must
also be positive, i.e.

, 2 2
sup inf <||=’L’—yo|| = [lz =yl >>0-

We conclude that there exists y € Y such that
|z — yol| > ||z —yl| forallz € Xgq.

This shows that the hyperplane of all z with the same
distance to y as to yg separates yg and Xg. O



Change focus from existence to identification. Key
to this: Nash equilibrium! Requires pair (z*,y*) €
(X0, Y) such that saddle value inequalities ®(z, y*) <
d(z*,y*) < P(a*,y) hold for all (z,y) € Xg x Y. If
also ®(z*, y*) < oo, equilibrium follows with (z*, y*)
a (MaxEnt,Rnnin)-pair. With our special assumptions
we find:

Theoremlet z* € X, put y* = z*. Then the game
is in equilibrium with (z*, y*) as (MaxEnt,Rnin)-pair iff
H(x*) < oo and Nash'’s inequality

b (x,y*) < d(x*,y*) holds for all x € X.

Nash inequality gives strong inequalities (Pythagorean
ineq.).

Useful corollaries: Kuhn-Tucker type theorems (not
discussed here) and robustness lemma below. Given
preparation X, y € Y is robust if 3¢ < coVz € X :
b (x,y) = c. Define exponential family:

£ = E(Xg) = {y|y robust }.

—~

Lemma If =* is consistent and y* = «* robust then
(x*,y™) is a (MaxEnt,Rpin)-pair.

Only Axiom 1 required for this! Proof is easy.



Return to standard probabilistic setting:

Discrete alphabet A, both strategy sets = M_ll_ (A),
connection=identity. Now use notation: P, @ rather
than =, y and P for typical preparation. We aim at
discussing preparations given by linear constraints.
Given set f = (fv)1<, <y Of real functions on A. The
natural preparations are

Po = {P|(fy, P) = ay for 1 < v < k}

with a = (ay)lgygk c R-.
Natural exponential family:

E = {Q| Q robust for all the P} .

Question: which complexity measures ?
try to simplify search for distributions in £!




key idea: Take & of the form

S(P.Q) = §Q<<R(Q), p>) where

(E(Q)) (i) = r(q;) fori € A thus

(R(Q), P) =) pir(g) .
iCA
with assumptions:
eThe {p’s increasing and concave (e.g. linear)
ethe coder k is smooth, decreasing, convex, k(1) = 0

e d satisfies Axiom 1

classical: £g's the identity map, x(q) = In%
Then 1 is restriction of x ~ exp (—z) to [0, co]. En-
tropy generated by this measure of complexity is stan-

dard BGS-entropy.




From previous page:

S(P.Q) = gQ(m(Q), P>> where

(R(Q),P) =) pir(a).

1€A

Trivial but key observation: any @ for which £(Q) is a
linear combination of the constant function 1 and the

given functions f1,-- -, fi, I.e. of the form

RQ) =X+ f1i+ - FXfe=X o+ f
for certain constants A\g and A = (A\q,---, ), is a
member of £.

Motivated by this, fix constants A = (A1, -+, Ar) and
ask: g, Q : B(Q) = Ao+ X - f? This amounts to
q; = kT Ao+ f(3)). Summarizing what this leads
to we find:



Theorem (MaxEnt calculus) Let A = (A1, -, A\;) be
given constants. Then “normally”, the equation

> Do+ A f() =1
iCA
has a solution, necessarily unique, and @ given by

qi = ﬁ_l(ko—l—)\-f(i)) fori € A

has the stipulated form, hence belongs to the exponen-
tial family £. This distribution is the MaxEnt-distribution
for P, with a = (a1, -, a) given by

ay =— Zquy('&) fOI‘I/Z ].7 ,k‘
1€A
and, for this value of a,

Hmax(®,Pa) = (Ao + A -a).

Theorem replaces and expands the standard recipe
for MaxEnt-calculations. Focus on \g rather than on
the classical partition function.

Which complexity measures?



Example The complexity measures

B _ 1 qg_ _ 49  q-1
SPP.Q) = 1+ (af - T opil )

1 _
¢C(P,Q)=1—_qu§(l—q7;l q)
R _ 1 > pf

all give Tsallis entropy. Only &2 is good! O

First restrict form of ®: From

(P, Q) = £o((R(Q), P)) to

P(P,Q) = (R(Q), P) + £(Q) with
Q) =) &(a).

1€EA
k is the coder, £ the corrector.



Generation of information triples a la Bregman:

Bregman generator: a strictly concave and smooth
real function h defined on [0, 1] with h(0) = h(1) =
0and h'(1) = —1.

From h we generate two more functions, ¢ = ¢(p, q),
and d = d(p, q):

¢(p,q) =h(g) + (»—q)h'(q),
d(p,q) =h(g) —h(p)+ (p—q)"'(q).

Consider the internal functions, ® = &, H = Hy,
and D = Dy, generated by ¢, h and d:

i€A

H(P) = > h(p),
€A
i€A



| the slides ended here — orally | ended by stressing
the importance of not considering entropy alone, and
the essentials of using the method of generation a la
Bregman ]



