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Abstract

The Maximum Entropy Principle (MaxEnt) as well
as the Minimum Information Divergence Principle
(MinDiv) and other optimization principles of inform-
ation theory and its applications to physics, statistics,
economy and other fields are here discussed from the
standpoint of two-person zero-sum games.

1. INTRODUCTION

The recent publications [1] and [2] contain refer-
ences to the previous development and do much to mo-
tivate the game theoretical approach which we shall
adopt here.

Our model will be more general than found in pre-
vious work in the sense that it allows applications
which go beyond standard notions of entropy and diver-
gence (due to Shannon and to Kullback and Leibler).
However, we simplify in another direction by imposing
strong finiteness conditions so as to avoid infinite or
undefined quantities in certain situations. Or rather,
we argue as if such conditions are fulfilled, leaving it
to the reader to relax the conditions when the need
arises – as it often does, e.g. regarding applications to
statistics.

Formally, we shall present two models, absolute and
relative games. This will make the intended applica-
tions more clear but really, the relative games of Sec-
tion 3 can be conceived as special cases of the absolute
games of Section 2. Even more general models could be
considered, as is clear from the indications in [3] (which
has not yet been followed up by a full publication).

2. ABSOLUTE GAMES

We consider a quadruple (SI ,SII , i,Φ) where SI

and SII are sets, respectively the potential strategy set
for Player I and the strategy set for Player II, i : SI →
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SII is a map of SI into SII and Φ : SI × SII → R,
denoted (P,Q) y Φ(P‖Q), is a real function, the com-
plexity function1. For the most natural applications,
the complexity function will be non-negative. How-
ever, in order to enable a reduction of the study of
the relative games of the next section to the case of
absolute games introduced here, we allow general real-
valued complexity functions.

If (P,Q) ∈ SI × SII and Q = i(P ), we also write
Q = P̂ . As i is often understood and in most applic-
ations even very simple, viz. the identity map (thus,
in such cases, SI = SII), we may focus on the triple
(SI ,SII ,Φ) or just on the function Φ.

Our basic assumptions are that

Φ(P‖Q) ≥ Φ(P‖P̂ ) for all (P,Q) ∈ SI × SII

and that here, equality holds if and only if Q = P̂ .
We define Φ-entropy, HΦ : SI → R, and Φ-

divergence, DΦ : SI × SII → R, by

HΦ(P ) = inf
Q∈SII

Φ(P‖Q),

DΦ(P‖Q) = Φ(P‖Q)−HΦ(P ).

By assumption,

HΦ(P ) = Φ(P‖P̂ ) for all P ∈ SI .

Now, let P, the actual strategy set for Player I, be
a given subset of SI and consider the two-person zero-
sum game γΦ(P) with P and SII as strategy sets for the
two players and with Φ as objective function, conceived
as a cost to Player II. Then, for Player I, a strategy
P ∈ P is optimal if HΦ(P ) = Hmax

Φ (P), the MaxEnt-
value which is defined by

Hmax
Φ (P) = sup

P∈P
HΦ(P ).

1Some may prefer to refer to this function as description
length “à la Rissanen”, cf. [4]. Anyhow, the interpretation is that
Φ(P‖Q) measures the difficulty (“complexity”) involved when
the “system” is in “state” P chosen by “nature” (Player I!) and
when “we” (Player II!) use Q as the tool for “observation” or
“description” of the state of the system.



And, for Player II, a strategy Q ∈ SII is optimal if
the risk associated with Q ∈ SII , RΦ(Q|P), equals the
minimal risk, Rmin

Φ (P), with these quantities defined
by

RΦ(Q|P) = sup
P∈P

Φ(P‖Q),

Rmin
Φ (P) = inf

Q∈SII

RΦ(Q|P).

If misunderstanding is unlikely, we may write
RΦ(Q) instead of RΦ(Q|P).

Clearly,
Hmax

Φ (P) ≤ Rmin
Φ (P),

and, by definition, the game γΦ(P) is in equilibrium
if equality holds here. We find it convenient also to
introduce the excess which we, ignoring dependence on
Φ and P, simply denote by ε. It is given by

ε = Rmin
Φ (P)−Hmax

Φ (P) .

Lemma 1. Consider the game γΦ(P) and let ε be the
excess.

(i). If Player I has an optimal strategy P ∗, then,
for every Player II-strategy Q,

Rmin
Φ (P) + D(P ∗‖Q) ≤ ε + RΦ(Q) . (1)

(ii). If Player II has an optimal strategy Q∗, then,
for every Player I-strategy P ,

H(P ) + D(P‖Q∗) ≤ ε + Hmax
Φ (P) . (2)

Proof. (i): Assume that HΦ(P ∗) = Hmax
Φ (P). Then,

for any Q ∈ SII ,

Rmin
Φ (P) + D(P ∗‖Q) = ε + Hmax

Φ (P) + D(P ∗‖Q)
= ε + HΦ(P ∗) + D(P ∗‖Q)
= ε + Φ(P ∗‖Q)
≤ ε + RΦ(Q) ,

and (i) follows.
(ii): Assume that RΦ(Q∗) = Rmin

Φ (P). Then, for
any P ∈ SI ,

H(P ) + D(P‖Q∗) = Φ(P‖Q∗) ≤ RΦ(Q∗)

= Rmin
Φ (P) = ε + Hmax

Φ (P) ,

hence (ii) follows.

For the further study of the game γΦ(P), the no-
tion of a Nash equilibrium pair for γΦ(P) is important.
This is a pair (P ∗, Q∗) ∈ P × SII such that, for every
(P,Q) ∈ P × SII , the saddle value inequalities

Φ(P‖Q∗) ≤ Φ(P ∗‖Q∗) ≤ Φ(P ∗‖Q)

hold. When these inequalities hold, no player can bene-
fit from changing his strategy (P ∗ or Q∗) provided the
other player stick to his (Q∗ or P ∗). The significance
in our setting is made clear in Theorem 1 of Section 4.

3. RELATIVE GAMES

Consider a model (SI ,SII , i, Q0,D) with (SI ,SII , i)
as in Section 2, with Q0, the reference (or prior) an ele-
ment in SII and with D : SI×SII → R+, the divergence
function, a function such that

D(P‖Q) ≥ 0

for (P,Q) ∈ SI × SII and such that equality holds if
and only if Q = P̂ .

Let (P,Q) ∈ SI×SII be a pair of possible strategies
for the two players. We then define the associated cal-
ibration gain, denoted D(P‖Q0 ; Q), as the quantity

D(P‖Q0 ; Q) = D(P‖Q0)−D(P‖Q).

For P ⊆ SI , the relative game γD(P, Q0) is defined
as the two-person zero-sum game with P and SII as
strategy sets for the two players and with calibration
gain restricted to P × SII as objective function, this
time conceived as a gain from the point of view of
Player II.

Here, key quantities to consider are the MinDiv-
value (minimum divergence) given by

Dmin(P|Q0) = inf
P∈P

sup
Q∈SII

D(P‖Q0 ; Q)

= inf
P∈P

D(P‖Q0)

and the MaxGain-value (maximal gain). The latter is
defined as the supremum of the guaranteed gains as-
sociated with fixed strategies. Using the letter “Γ”for
“gain” , the basic definitions are as follows:

Γmax
D (P|Q0) = sup

Q∈SII

ΓD(Q|P, Q0)

with
ΓD(Q|P, Q0) = inf

P∈P
D(P‖Q0 ; Q).

Now,
Γmax

D (P|Q0) ≤ Dmin(P|Q0).

If equality holds above, the game γD(P, Q0) is in equi-
librium.

A strategy P ∈ P is optimal for Player I if
D(P‖Q0) = Dmin(P|Q0) and a strategy Q ∈ SII is
optimal for Player II if ΓD(Q|P, Q0) = Γmax

D (P|Q0).
A pair (P ∗, Q∗) ∈ P × SII is a Nash equilibrium

pair for γD(P, Q0) if the inequalities

D(P ∗‖Q0 ; Q) ≤ D(P ∗‖Q0 ; Q∗) ≤ D(P‖Q0 ; Q∗)

hold for all (P,Q) ∈ P × SII .



4. EQUILIBRIUM AND OPTIMAL
STRATEGIES

The following general result holds:

Theorem 1. (i). The absolute game γΦ(P) is in equi-
librium and both players have optimal strategies if and
only if there exists a Nash equilibrium pair (P ∗, Q∗)
for the game, and this holds if and only if there exists
P ∗ ∈ P such that

Φ(P‖P̂ ∗) ≤ HΦ(P ∗) for all P ∈ P .

If so, then Q∗ = P̂ ∗ and for any pair (P,Q) ∈ P ×SII ,
the following inequalities hold:

HΦ(P ) + DΦ(P‖Q∗) ≤ Hmax
Φ (P) (3)

≤ Rmin
Φ (P) ≤ RΦ(Q)−DΦ(P ∗‖Q) . (4)

(ii). The relative game γD(P, Q0) is in equilibrium and
both players have optimal strategies if and only if there
exists a Nash equilibrium pair (P ∗, Q∗) for the game,
and this holds if and only if there exists P ∗ ∈ P such
that

D(P ∗‖Q0) ≤ D(P‖Q0 ; P̂ ∗) for all P ∈ P .

If so, then Q∗ = P̂ ∗ and for (P,Q) ∈ P × SII , the
following inequalities hold:

D(P‖Q0)−D(P‖P̂ ∗) ≥ Dmin(P|Q0) (5)
≥ Rmax

D (P|Q0) ≥ ΓD(Q|P, Q0) + D(P ∗‖Q) . (6)

Proof. (i): The simple proof is given in [1]. Basic parts
may be derived from Lemma 1.

(ii): Consider Φ given by

Φ(P‖Q) = −D(P‖Q0 ; Q) ,

and note that HΦ(P ) = −D(P‖Q0), DΦ(P‖Q) =
D(P‖Q0) and RΦ(Q) = −ΓD(Q|P, Q0). Then apply
(i) to Φ and the results of (ii) follow.

A pair (P ∗, Q∗) is the bi-optimal matching pair for
the game considered (either γΦ(P) or γD(P, Q0)) if P ∗

is an optimal strategy for Player I, Q∗ is an optimal
strategy for Player II and Q∗ = P̂ ∗ and (P ∗, Q∗) is the
unique pair with these properties. Theorem 1 tells us
that if a Nash equilibrium pair exists, then so does the
bi-optimal matching pair and, furthermore, the game
in question is in equilibrium in the sense defined previ-
ously. The existence of the bi-optimal matching pair is
a relatively weak notion of equilibrium which it appears
worth while to study further. If i is the identity map,
we say that P ∗ is the bi-optimal strategy if (P ∗, P ∗) is
the bi-optimal matching pair.

Further theoretical investigations depend on the in-
troduction of more structure on the strategy sets SI

and SII . Typically, this involves topological and lin-
ear or affine structure and convexity considerations be-
come important. Though the optimal abstract setting
for this kind of modelling is perhaps not yet in place, a
good idea about the possibilities may be gathered from
[1], [2], [3] and references therein.

Modelling in a probabilistic context is the most
common. However, wider possibilities exist, not neces-
sarily related to information theory. As an indication,
see Subsections 5.1 and 5.2 below.

5. EXAMPLES

Apart from the first two examples, SI and SII are
sets of probability distributions or sets closely related
to such spaces. We ignore below that strict finiteness
conditions as required in Sections 2 and 3 may not al-
ways hold.

5.1. A Problem of Location

A classical problem of location theory, cf. [5],
was introduced as follows by Sylvester in 1857: “It
is required to find the least circle which shall con-
tain a given system of points in a plane”. If we take
SI = SII = R2 and Φ(P‖Q) = ‖P −Q‖, the Euclidean
distance between P and Q, and consider a suitable set
P of points, then Sylvesters problem corresponds to
that of finding an optimal strategy for Player II in the
associated absolute game. Clearly, here every strategy
for Player I is optimal and the game is not in equi-
librium. Anyhow, if P is convex with finitely many
extremal points, the bi-optimal distribution exists. If
we change the strategy set for Player I by allowing ran-
domization, the situation changes and Theorem 1 can
be applied.

5.2. Convex Sets and Nearest Points

If, for the problem above, one considers relative
games, one will more often find games in equilibrium.
One will observe that whereas a monotone transform-
ation of the distance function will not influence the
question of equilibrium for the absolute game, such a
change may well effect the relative games in a signi-
ficant way. It is appropriate to choose squared norms.
For instance, one may take SI = SII to be a Hilbert
space, and D to be defined by D(P‖Q) = ‖P − Q‖2.
For closed convex sets P and any reference point Q0,
equilibrium holds and the orthogonal projection of Q0

on P is the bi-optimal strategy.



This example and the previous one indicate that in-
teresting games which are not in equilibrium do occur,
that squared metrics may be appropriate to consider
and that it is more natural for Player II to have unique
optimal strategies than for Player I.

5.3. The MaxEnt Principle

Let A be finite, put SI = M1
+(A), the set of prob-

ability distributions over A, and put SII = K(A), the
set of (abstract) codes over A defined as the set of
κ : A → [0,∞] such that Kraft’s equality∑

a∈A
e−κ(a) = 1

holds.
The map i is given by κ(a) = − lnP (a) ; a ∈ A

where κ = i(P ) = P̂ .
If we take Φ as averagge code length:

Φ(P‖κ) = 〈κ, P 〉 =
∑
a∈A

P (a)κ(a) ,

and consider the associated absolute game, we are led
to the MaxEnt-principle. See [6] for a rather compre-
hensive study from the game theoretical point of view.

5.4. The MinDiv Principle

Now take SI = SII = M1
+(A) and as D choose

Kullback-Leibler divergence

D(P‖Q) =
∑
a∈A

P (a) ln
P (a)
Q(a)

.

When we fix some prior distribution as our reference,
we may consider the associated relative game. This
leads us to the MinDiv principle and the much studied
notion of information projection, cf. [7] and further
references in [2]. Also look out for the soon-to-appear
comprehensive treatment [8].

The inequalities (3)-(6) of Theorem 1 are Py-
thagorean type inequalities. The game theoretical de-
rivation of these inequalities appears illuminating, e.g.
the derivation indicates that the most well known of the
inequalities, viz. (5), which is mainly associated with
Csiszár’s name, involves strategies for Player I but is
really more closely associted with the existence of an
optimal strategy for Player II, cf. also Lemma 1.

5.5. Channel Capacity

Consider a discrete memoryless channel defined in
terms of a finite input alphabet A, a finite output al-
phabet B and a Markov kernel P. Take SI to be the

set of input distributions, SII to be the set of output
distributions and let i map an input distribution to the
induced output distribution. As Φ take information
transmission rate. The absolute game then leads to
the capacity-redundancy theorem. More details are in
[2].

5.6. Non-extensive Entropy

The group of examples discussed here is related to
areas of statistical physics where there is a need to go
beyond Shannon entropy. For details, see [1].

Consider SI = SII = M1
+(A) with A finite, say,

and look at complexity functions which induce Csiszár
f-divergences. We shall assume that f is smooth, say
twice differentiable on ]0,∞[, that f is strictly convex
on [0,∞[ and that f(0) = f(1) = 0 and f ′(1) = 1.
Such functions are here called generators.

Using standard conventions and denoting point-
probabilities of P and Q by (pi), respectively (qi), we
define Φ = Φf by

Φf (P‖Q) =
∑
i∈A

(
qif(

pi

qi
)− f(pi)

)
.

Then, writing Hf for HΦ and Df for DΦ,

Hf (P ) = −
∑
i∈A

f(pi) ,

Df (P‖Q) =
∑
i∈A

qif(
pi

qi
) .

Expressed in terms of the Csiszár-dual defined by

f̃(x) = xf
( 1
x

)
, 0 ≤ x ≤ ∞ ,

we find that

Φf (P‖Q) =
∑
i∈A

pi

(
f̃
( qi

pi

)
− f̃

( 1
pi

))
,

Hf (P ) = −
∑
i∈A

pif̃
( 1
pi

)
,

Df (P‖Q) =
∑
i∈A

pif̃
( qi

pi

)
.

These formulas may lead to interesting interpreta-
tions which extend the standard interpretations for the
classical case which corresponds to the choice f(x) =
x lnx, f̃(x) = ln 1

x .
A concrete two-parameter family of generators is

obtained by taking

fα,β(x) = x lnα,β(x)



where the deformed logarithms occurring here are
defined by

lnα,β x =
xβ − xα

β − α
if β 6= α

(xα lnx if β = α).
By far the most popular subfamily among physicists

was introduced in 1988 by Tsallis, cf. [9], and corres-
ponds to the family (fq−1,0)q>0. This leads to a family
of entropy measures closely related to Rényi entropy.
For q = 1

2 , Hellinger divergence, a squared metric, ap-
pears (it is the only symmetric divergence measure in
the Tsallis family).

In [1] the following result was proved:

Theorem 2. If 0 < q ≤ 1 (and for no other parameter
values), the absolute games associated with Φf ; f =
fq−1,0 are in equilibrium for any compact convex set
P ⊆ M1

+(A) and the bi-optimal distribution exists.

5.7. Calibration in a Model from Finance

We turn to an application to mathematical finance,
cf. [10], which involves the following standard model
of stock price development: (Sk)k≥0 where the price at
time k is given by Sk = Sk−1(1 + ρk). Here, S0 > 0 is
deterministic and (ρk)k≥1 an iid sequence with values
in ] − 1,∞[. A prior distribution, Q0, of the ρk’s is
given. This may not render (Sk)k≥0 a martingale w.r.t.
the natural filtration of σ-fields. Therefore, the model
based on Q0 may not respect the no arbitrage principle
and a move to a new state, P , can be expected.

The martingale condition amounts to the vanishing
of the mean value of the ρk’s in the new model based on
P . By the assumptions, this does not depend on k. We
may then translate everything to conditions involving
only distributions on R. We only consider discrete dis-
tributions with finite support. Let 〈·, P 〉 denote mean
value w.r.t. P . We denote by id the identity map on
R.

For the prior Q0 we assume, say, that 〈id,Q0〉 < 0,
i.e. there is a negative trend, and that some point in
the support of Q0 is positive. The set P of acceptable
market states is modelled by distributions P such that
〈id, P 〉 = 0 and, with an exception discussed later, we
also demand that P is equivalent to Q0. We have SI 6=
∅, i.e. the market is incomplete. The set SII , referred
to as the set of calibration strategies is taken as the set
of distributions which are absolutely continuous w.r.t.
Q0. As divergence function Φ we only consider one
choice here, viz. reverse relative entropy given by

D(P‖Q) =
∑

Q(a) ln
Q(a)
P (a)

.

A bit surprisingly, the following result holds:

Theorem 3. The game γD(P, Q0) is in equilibrium
and the bi-optimal calibration strategy exists if and only
if the support of Q0 contains only one positive element.

It is possible to identify the bi-optimal distribution.
This we shall do in the simple case when Q0 is suppor-
ted by −a, 0, a where a > 0. Let the point probabilities
of Q0 be (p, q, r). Then the bi-optimal distribution is
given by the point probabilities

(
1
2 (p + r), q, 1

2 (p + r)
)
,

thus involves arithmetic averages (whereas usual diver-
gence would lead to geometric averages).

We point out that calibration using reverse relat-
ive entropy makes it possible to calibrate meaning-
fully when r = 0. The calibrated distribution has
point probabilities (p

2 , q, p
2 ). (Calibration w.r.t. rel-

ative entropy would give the unreasonable result P ∗ =
(0, 1, 0)). Calibration when r = 0 corresponds to a situ-
ation with negative trend when previous evidence did
not show any instance of increase in stock price but,
never the less, for one reason or another, one expects
that increase in stock price could occur in the future
but only corresponding to the location a.
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