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Abstract

Inspired by previous work on information theoretical optimization
problems, the basics of an axiomatic theory of certain special two-
person zero-sum games is developed. Among the two players, one –
“Observer” – is imagined to have a “mind” , the other – “Nature” –
not. Expressing such ideas leads to un-symmetric modeling as the two
players are treated quite differently. We demonstrate that the theory
can be used as a common framework for diverse applications, which
apart from information theory includes problems of geometry.
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1 Introduction
Modern information theory with precisely defined notions to worry about was
founded by Shannon in 1948, cf. [19]. The theory led in itself to interesting
optimization problems, typically centered around the concept of capacity.
Relatively soon after, it was realized that information theoretical reasoning
also leads to principles of scientific inference in other disciplines. We point
to Kullbacks principle of minimum information discrimination, [14], within
theoretical statistics, and to Jaynes’ principle of maximum entropy, [12],
designed for statistical physics, but of much wider applicability as witnessed
by [13].

A key to Shannons theory is his famous formula

H(P ) =
n∑

i=1

pi ln
1

pi

, (1)

here expressed in natural units. Another key to what is now known as Shan-
non theory is the concept of a code. This notion, in a simplified form, will
also be of importance to us. Before entering into that, we note that for
Kullback’s applications to statistics it was essential to broaden the concept
of entropy to a concept, now mainly called divergence and, for the case of
discrete distributions, defined by

D(P, Q) =
n∑

i=1

pi ln
pi

qi

. (2)

The relation to entropy becomes clear if one takes Q to be a uniform dis-
tribution. For this reason, divergence is also called relative entropy or cross
entropy. The important information inequality states that D(P, Q) ≥ 0 with
equality if and only if P = Q, cf. [2] or [24].

Jaynes argues that if P is a set of probability distributions which models
our knowledge in a given situation, it is sensible to infer that distribution in
P which has maximal entropy. This is Jaynes maximum entropy principle,
MaxEnt.

Kullback suggests that if Q – typically, not a distribution in the model P
– represents prior knowledge, one should infer that distribution P ∈ P which
minimizes D(P, Q). This is Kullbacks minimum information discrimination
principle, also referred to as MinXent, the principle of minimum cross entropy
.

2



The good sense of the principles pointed to has since been discussed
thoroughly in many works. Instead of giving comprehensive references, we
refer to the more specialized references [23], [25], [11] and [7]. Common
to these is a basic game theoretical approach which is taken to lie behind
MaxEnt as well as MinXent. A principle of game theoretical equilibrium
(GTE) – the principle to investigate conditions for equilibrium and to search
for optimal strategies for both players in the games considered – is promoted
as a key principle in the cited works of the author. The quantities studied in
these references are those given by (1) and (2) and closely related quantities,
all based on special features of probability distributions.

In [3], [15], [26] and [21] it became clear that for key conclusions to hold,
one need not stick to more habitual concepts of Shannon theory, such as (1)
and (2). Still, the modeling was basically probabilistic or at least measure
theoretic. Work in mathematical finance, cf. [17], is also entering into this
picture.

Here, we shall free ourselves from the probabilistic basis and allow a
completely abstract set-up, tied together by suitable axioms. To test the
good sense in this approach we consider an old problem of Sylvester who
wrote “It is required to find the least circle which shall contain a given system
of points in the plane” – in fact this is the full text of [20]. In addition to
demonstrating how Sylvesters problem can be tackled within our general
framework, we also show how to derive a version of the separation theorem
for convex sets in suitable spaces.

The aim of the present research is to develop key elements of an abstract
axiomatic theory as indicated above and to demonstrate the soundness of
the theory by pointing to interesting applications in diverse fields.

2 Information triples based on complexity
We shall primarily take complexity (Φ), entropy (H) and divergence (D) as key
objects to work with and axiomatize useful properties pertaining to triples
I = (Φ, H, D), here referred to as information triples. Examples from infor-
mation theory proper as well as from convex analysis and geometry will fit
into the theory developed.

Consider two abstract sets X and Y , conceived as strategy sets for two
“players” , Player I who “holds the truth” and is also referred to as Nature,
and then Player II who “seeks the truth” and is also referred to as Observer.
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We imagine that Nature chooses a strategy from X, Observer a strategy
from Y . The further game theoretical aspects this points to are taken up in
Section 5.

The terminology is chosen only for convenience, to arise inspiring associa-
tions and to ease the appreciation of concepts involved, and cannot be taken
as an argument in favour of existence of “absolute truth” – if anything, truth
rather reflects the state of Observer regarding beliefs, knowledge and other
features related to a person with a mind. Regarding the other player, our
modelling views Nature as a “person” without a mind.

Besides the two strategy sets, we have also given a map x y x̂ of X
into Y . Usually, this map, called the connection, is given in some natural
way and we have decided not to reserve a special symbol as a label for this
map. Intuitively, when you see things from the point of view of Nature, you
work with x and when you take the point of view of Observer, you rather
work with x̂ or some y ∈ Y . We stress that though the connection is often
injective, it need not be so. If x̂1 = x̂2 we say that the two strategies are
equivalent and write x1 ≡ x2.

Let us embark on more precise explanations. An information triple I =
(Φ, H, D) is a set of maps: Φ : X ×Y →]−∞,∞], referred to as complexity,
H : X →]−∞,∞], referred to as entropy, and D : X×Y → [0,∞] referred to
as divergence. The value Φ(x, y) is interpreted as the complexity, seen from
the point of view of Observer, when he (yes, let Observer be male, Nature
female) is using the strategy y and the truth (chosen strategy by Nature) is x.
It is technically convenient to allow complexity and entropy to be negative,
but for the more natural examples, these quantities are non-negative. The
interplay between Φ, H and D and the connection x y x̂ is what we set out
to axiomatize.

As guiding principle for the first axiom, we hold that entropy is mini-
mal complexity, divergence represents actual complexity as related to mini-
mal complexity and, furthermore, Observer can always react optimally to any
strategy chosen by Nature – if only her choice is known to Observer.

Guided by these principles, we can state the first axiom:

Axiom 1 (linking). For any (x, y) ∈ X × Y , the linking identity

Φ(x, y) = H(x) + D(x, y) , (3)

holds, as does the biimplication

D(x, y) = 0 ⇔ y = x̂ 2 (4)

4



So entropy is indeed minimal complexity: H(x) = miny∈Y Φ(x, y) and
the minimum is assumed for y = x̂ and, if H(x) < ∞, the minimum is not
assumed for any other strategy. For reasons indicated, we often call x̂ the
strategy adapted to x.

Example 1 (classical information theory). Let A, the alphabet, be a
discrete set (either finite or countably infinite), put X = M1

+(A), the set
of probability distributions over A, and Y = K(A), the set of code length
functions over A, i.e. the set of κ : A → [0,∞] such that Krafts equality∑

i∈A

exp(−κi) = 1 (5)

holds. Denote by P ↔ κ the bijection between M1
+(A) and K(A) given by

κi = ln
1

pi

; i ∈ A (6)

and, in the other direction,

pi = exp(−κi) ; i ∈ A . (7)

With Φ defined as average code length, i.e.

Φ(P, κ) = 〈κ, P 〉 =
∑
i∈A

piκi (8)

(thus 〈·, P 〉 is used for mean values w.r.t. P ) and with H and D as the
classical quantities given by (1) and (2), Axiom 1 is satisfied (apply the in-
formation inequality). Suitable interpretations associated with this example
are indicated e.g. in [25]. 2

In the last section we shall indicate how this example may be extended
to cover many other information triples.

Example 2. Let X = Y be a Hilbert space, e.g. an Euclidean space and
define Φ by

Φ(x, y) = ‖x− y‖2 . (9)

For this complexity function the associated entropy function is trivial: H(x) ≡
0 and divergence coincides with complexity. With x y x̂ as the identity map,
Axiom 1 holds. As the reader will realize, we can use the setting here as point
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of departure for discussion of Sylvester’s problem. However, it may appear
unnatural with the exponent 2 in (9) and also, it is not very informative
to work with an entropy function which is identically 0. In Example 3 we
shall modify this example to arrive at a richer structure which simplifies the
further analysis – carried out in Example 10 – and also explains the choice
of the exponent in (9). 2

The three further axioms we shall consider involve extra structure, either
related to convexity or to topology.

Axiom 2 (affinity). The strategy set X is a convex set and Φ is affine in
its first variable: For every y ∈ Y , and every convex combination of elements
in X, say x =

∑n
1 ανxν ,

Φ(x, y) = Φ
( ∑

ανxν , y
)

=
∑

ανΦ(xν , y) 2 (10)

In (10) the αν ’s are understood to be non-negative with sum 1. Let
us introduce a more streamlined notation by considering the set MOL(X) of
molecular distributions, distributions in M1

+(A) with finite support, supp(α) =
{x|αx > 0} (we use αx rather than α(x) for the weights of α). For such a
distribution we denote by α̂ the barycenter of α:

α̂ =
∑
x∈X

αx · x . (11)

By considering the natural embedding of X in MOL(X) we realize that
α y α̂ is a natural extension of the connection given.

Clearly, Axiom 2 holds for Example 1 but not so for Example 2. This
can, however, be remedied, either by introducing a prior as discussed later
on in Example 7 or by randomization:

Example 3 (Example 2 continued). As in Example 2 let Y be some
Hilbert space. Consider this time the strategy set X = MOL(Y ) and the
connection α y α̂ defined by (11) above. This connection is not injective.
Two strategies in X are equivalent if they have the same barycenter. Intro-
duce complexity, entropy and divergence as follows:

Φ(α, y) =
∑
x∈X

αx · ‖x− y‖2 , (12)

H(α) =
∑
x∈X

αx · ‖x− α̂‖2 , (13)

D(α, y) = ‖α̂− y‖2 . (14)
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Simple checking shows that this defines an information triple which satisfies
Axioms 1 and 2. Whereas complexity is here defined from the complexity
measure of Example 2 by a natural process of randomization, it is the special
properties of the inner product which ensures that there are also natural
extensions of the entropy- and divergence functions which ensures that Axiom
1 holds in the new setting. 2

Useful concavity- and convexity results can be derived from the two first
axioms. The results are connected with yet another key quantity known
from information theory. Consider a convex combination x =

∑
x∈X αx · x

determined by the molecular measure α. Define the associated information
rate by

I(α) =
∑
x∈X

αx D(x, x̂) . (15)

Clearly, I(α) = 0 if and only if all x’s with αx > 0 are equivalent.
The quantity I(α) is also referred to as information transmission rate as

it is associated with the idea that the connection x y x̂ could represent
communication from Nature to Observer with x as the message sent and x̂
as the message received. If Nature selects the message to be sent according
to some distribution determined by the weights αx and if Observer finds that
x best represents what he has to be prepared for, he chooses the strategy x̂.
Nature actually sends an x ∈ X with weight αx and this represents a kind
of “surprisal” to Observer, measured by D(x, x̂). The greater the surprisal,
the better can Observer distinguish between the possible messages sent by
Nature. Taking the average as in (15) we arrive at the (average) information
per communicated message, hence this can be interpreted as the information
rate which Observer obtains from his choice of strategy.

Before continuing with the axiomatics, let us derive the concavity- and
convexity results hinted at before:

Theorem 1 (concavity- and convexity properties).
(i) Let x =

∑
x∈X αxx be a convex combination of elements in X corre-

sponding to α ∈ MOL(X). Then

H
( ∑

x∈X

αxx
)

=
∑
x∈X

αx H(x) + I(α) . (16)

(ii) With notation as in (i), assume that H(x) < ∞ and let y ∈ Y . Then∑
x∈X

αx D(x, y) = D(
∑
x∈X

αxx, y) + I(α) . (17)
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(iii) For elements α1, · · · , αm in MOL(X) with barycentres x1 . . . , xm,
and for any mixture α =

∑m
1 wkαk with a barycentre x of finite entropy, the

following identity holds:

I
( m∑

k=1

wkαk

)
=

m∑
k=1

wk I(αk) +
m∑

k=1

wk D(xk, x) . (18)

Proof. (adapted from [24]).
By the linking identity, the right-hand side of (16) may be written as∑
αxΦ(x, x̂) which by affinity equals Φ(x, x̂), the left-hand side of (16).
Adding

∑
αx D(x, y) to both sides of (16), applying linking and subse-

quently affinity we conclude that

H(x) +
∑

αx D(x, y) =
∑

αxΦ(x, y) + I(α)

= Φ(x, y) + I(α) = H(x) + D(x, y) + I(α) .

Subtracting H(x), (17) follows.
To establish (18), let y ∈ Y be arbitrary. As all H(xk) are finite by the

assumption H(x) < ∞ and by (16) (or rather by (20) below), we find that,
for each k = 1, · · · , m,∑

x∈X

αk(x) D(x, y) = D(xk, y) + I(αk) .

Multiplying with wk and adding terms, we find that

∑
x∈X

α(x) D(x, y) =
m∑

k=1

wk D(xk, y) +
m∑

k=1

wk I(αk) .

The left-hand side can be transformed further by (17) and we have proved
the following identity

D(x, y) + I(α) =
m∑

k=1

wk D(xk, y) +
m∑

k=1

wk I(αk) , (19)

which is an identity of interest in its own right. We obtain (18) as the special
case corresponding to y = x̂ . The reader may want to note that the term∑

wk I(αk) is itself a kind of information rate but of a “higher order” as it
concerns elements in MOL(MOL(X)).
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From the theorem we obtain the following concavity-and convexity rela-
tions:

H
( ∑

x∈X

αxx
)
≥

∑
x∈X

αk H(x) , (20)

D
( ∑

x∈X

αxx, y
)
≤

∑
x∈X

αx D(x, y) (21)

I
( m∑

k=1

wkαk

)
≥

m∑
k=1

wk I(αk) . (22)

For the discussion of equalities in these inequalities, recall that I(α) = 0
requires that x̂ be independant of x for all x with αx > 0.

We may conceive the left hand side of (17) as an attempt to calculate
I(α). Then the equation says that this is in error, as it underestimates I(α)
by the “compensation term” D(x, y). For this reason, (17) is referred to as
the compensation identity.

Now, let us continue with the axiomatization and introduce topology into
the picture.

Axiom 3 (semi-continuity). The strategy set X = (X, τ) is a topological
Hausdorff space and, provided X is assumed to be convex, the algebraic
operations are continuous. Further, for each (x0, y0) ∈ X × Y , the two maps
x y D(x, y0) and x y D(x0, x̂) are τ -lower semi-continuous. 2

The topology τ is called the reference topology. We shall only need sequen-
tial notions. Thus the essential conditions of lower semi-continuity amount
to the requirements

D(x, y0) ≤ lim inf
n→∞

D(xn, y0) , (23)

D(x0, x̂) ≤ lim inf
n→∞

D(x0, x̂n) (24)

whenever xn → x and (x0, y0) ∈ X × Y .
The reason why we insist on a Hausdorff topology on X is that we do wish

to distinguish the various elements in X and though it may, as we shall se by
example, be difficult to distinguish equivalent elements in X, we do at least
want that such elements can be distinguished topologically. Of course, if the
connection x y x̂ is injective, the Hausdorff requirement is quite natural
anyhow.
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In addition to the sequential notion of convergence induced by the topol-
ogy τ , we shall also consider an intrinsic notion of convergence, again only
for sequences. This notion is called convergence in divergence or information
theoretical convergence. For a sequence (xn) in X and an element x ∈ X, the
notion is denoted xn � x and defined by

xn � x ⇔ D(xn, x̂) → 0 . (25)

We note that a given sequence (xn) either does not converge in divergence
or converges in divergence to all x’s in a certain equivalence class.

In [10] one finds some of the technical intricacies of convergence in diver-
gence and the topology one may associate with it (when the connection is
injective).

The final axiom is also topological and assumes that the previous axioms
hold.

Axiom 4 (weak completeness). For a sequence (xn) in X, put xn,m =
1
2
xn + 1

2
xm and yn,m = x̂n,m. If the “Cauchy-type property”

lim
n,m→∞

D(xn, yn,m) = 0 , (26)

holds, then some subsequence of (xn) converges in the reference topology:
For some x ∈ X and some subsequence (xnk

)k≥1, xnk
→ x. 2

Lemma 1. Assume that Axioms 1-4 hold and that the connection is injective.
Then convergence in divergence is at least as strong as convergence in the
reference topology: xn � x ⇒ xn → x.

Proof. Assume that xn � x. By the compensation identity associated with
the convex combination 1

2
xn + 1

2
xm and the strategy y = x̂, one finds that

the Cauchy-type property of Axiom 4 holds. Therefore, for some x0 ∈ X,
and some subsequence (xnk

), xnk
→ x0. Then, from lower semi-continuity,

we conclude that D(x0, x̂) ≤ lim inf D(xnk
, x̂) = 0. By Axiom 1, x̂ = x̂0,

hence x ≡ x0 and as the connection is injective, x0 = x follows. Applying
this argument to any subsequence of (xn), we find that every subsequence of
(xn) contains a further subsequence which converges to x. As the notion of
convergence here involved is topological, we conclude that xn → x.

Example 4 (Example 1 continued). The information triple of Exam-
ple 1 satisfies all four axioms with the topology of pointwise convergence as
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reference topology. By Scheffé’s lemma, cf. Lemma 3.1 of [24], the refer-
ence topology coincides with the topology of convergence in total variation.
Axiom 3 holds since divergence can be written as sums of non-negative con-
tinuous functions (write D(P, κ) as

∑
(qi − pi − pi ln

qi

pi
) with κ adapted to

Q). For similar reasons, it also follows that entropy is lower semi-continuous.
Axiom 4 holds by Pinsker’s inequality, cf. [2] or [24]. For this example,
convergence in divergence is considerably stronger than convergence in the
reference topology. 2

The consequences that can be drawn from the four axioms introduced
mainly concern game theoretical properties. This will be taken up in Section
5 after we have developed another route to information triples.

3 Information triples based on pay-off
When we deal with systems where concepts involved centres around the no-
tion of “information” in one sense or another, it may well be that “pay-off”
is more to the point than “complexity” . Mathematically the change is trivial
– it just amounts to a change of sign – however, conceptually the change
is important as it leads to situations which are quite different in flavour.
We therefore fix special notation enabling us to deal with information triples
based on pay-off in addition to the information triples in the previous section,
which we may refer to as information triples based on complexity.

Consider now objects X, Y, x y x̂, Ψ, Π, D which we refer to, respectively,
as strategy set for Nature, strategy set for Observer, connection (assumed to
map X into Y ), pay-off (mapping X × Y into [−∞,∞[) , maximal pay-off
(mapping X into [−∞,∞[) and divergence or discrepancy (mapping X × Y
into [0,∞].

Axioms 1 and 2 pertaining to this setting are as follows, briefly expressed:

Axiom* 1. Π(x) = Ψ(x, y) + D(x, y)1 and D(x, y) = 0 ⇔ y = x̂. 2

Axiom* 2. X is convex, Ψ affine in its first variable. 2

Axiom* 3 and Axiom* 4 are taken to be verbatim the same as Axiom 3
and Axiom 4.

1by convention, this is automatically fulfilled if the right-hand side is indeterminate, of
the form −∞+∞. Alternatively, the equation could be written in the form −Ψ = −Π+D
but this is less intuitive.
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There is then a complete duality (Φ, H, D) ↔ (Ψ, Π, D) between the two
types of information triples we have introduced.

4 Information triples generated by divergence,
updating

The starting point for the approaches taken in Sections 2 and 3 have been
either complexity or pay-off. Other approaches focus either on entropy or
on divergence as the basic object to start with. Here we shall focus on
the generation of information triples from divergence. Some examples will
be complexity-based, others are most naturally expressed for pay-off based
triples.

The geometry-oriented Examples 2 and 3 serve as motivation for the
abstract modeling to follow. As point of departure we take two abstract
sets, X and Y and a connection x y x̂ from X to Y and then a function
D : Y × Y → [0,∞], called divergence (though it may not come from any
natural complexity function in the way described in Section 2).

The axioms we shall now consider are the following:

Axiom 5. For any pair (y1, y2) of points in Y , D(y1, y2) = 0 ⇔ y1 = y2.

Axiom 6. The set Y is a convex set and for every β ∈ MOL(Y ), and every
y0 ∈ Y , ∑

y∈Y

βy D(y, y0) = D(y, y0) +
∑
y∈Y

βy D(y, y) (27)

with y =
∑

y∈Y βy · y.

Axiom 7. The set Y = (Y, τ) is a topological space for which the algebraic
operations are continuous and for each y0 ∈ Y the mappings y y D(y, y0)
and y y D(y0, y) are lower semicontinuous.

Axiom 8. The set X is finite.

Axioms 5-7 correspond quite closely to Axioms 1-3. As for Axiom 8 this
is stronger than what one might have expected considering Axiom 4.

Based on Axioms 5 and 6, we define the information triple obtained from
D by randomization over X. It has MOL(X) as strategy set for Nature, Y
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as strategy set for Observer and the connection α y α̂ of MOL(X) into Y
is given by

α̂ =
∑
x∈X

αx · x̂ . (28)

Further, complexity, entropy and divergence are defined by

Φ(α, y) =
∑
x∈X

αx D(x̂, y) , (29)

H(α) =
∑
x∈X

αx D(x̂, α̂) , (30)

D̂(α, y) = D(α̂, y) . (31)

Clearly, Axioms 1 and 2 are satisfied for this triple.
On MOL(X) we consider as reference topology the topology of pointwise

convergence, thus αn → α means that αn(x) → α(x) for each x ∈ X. Under
Axiom 8, this is a compact metrizable topology, hence Axiom 4 automatically
holds. If also Axiom 7 is satisfied, the map α y α̂ is continuous and the
semi-continuity requirements of Axiom 3 hold. Thus Axioms 5-8 for the
given divergence function are reflected in the validity of Axioms 1-4 for the
generated triple (Φ, H, D̂). When we later refer to triples generated in this
way, we shall use the same letter, D, for the two types of divergence involved
in the definition (31) as no misunderstanding seems likely.

Example 3 is clearly an example which fits the construction above. How-
ever, the prototype is in information theory as we shall now indicate:

Example 5. We consider two finite, alphabets: A representing the messages
to be sent, and B representing messages that may be received. We take
X = A, Y = M1

+(B) and for divergence we take ordinary Kullback-Leibler
divergence on Y ×Y . Further, for each x ∈ A, we assume that a distribution
Px is given which models what goes on at the receiving end in case x is sent.
In other words, Px is the conditional distribution over B under the condition
that x is sent. As connection X → Y we take x y Px. The model obtained
is a discrete memoryless channel. We note that H(α) is the transmission rate
as defined by (15) when, as one says, the channel is driven by the source α.
A key object to consider is the capacity of the channel defined by

C = sup
α∈MOL(A)

H(α) . (32)
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The related notion of an optimal source is defined as a source α such that
H(α) = C. 2

We shall return to Examples 3 and 5 in Section 6.
We shall now suggest another axiomatic approach which from a diver-

gence function (which need not be generated from any given complexity- or
pay-off function as explained in the two previous sections) leads to pay-off
based information triples.

Axiom system for divergence with prior: Given is a convex Haus-
dorff space X, a set Y , a connection x y x̂ between these sets, an element
y0 ∈ Y , the prior, and a divergence function D : X × Y → [0,∞[ which
satisfies the usual condition D(x, y) = 0 ⇔ y = x̂, the technical conditions
of Axioms 3 and 4 as well as the condition specific to what we have in mind,
namely that the function x y D(x, y0) − D(x, y) is affine for evert y ∈ Y .
Based on these axioms we define pay-off and maximal pay-off by

Ψ(x, y) = D(x, y0)−D(x, y) (33)
Π(x) = D(x, y0) . (34)

It is then a trivial matter to check that I = (Ψ, Π, D) is indeed a pay-off
based information triple. This triple is the pay-off based triple for updating
generated by D and the prior y0.

In suggestive terms we say that Ψ(x, y) is the pay-off of Observer resulting
from the updating strategy to take y as posterior (or update). If Ψ(x, y) is
negative, it is not a good idea for Observer to update the prior y0 with y.
If Observer sticks to y0, hence does not change strategy (or opinion), his
pay-off will be 0. But he may do better. We realize that Π(x) is the maximal
possible pay-off for Observer as his response if he knows x.

Let us indicate two examples where the construction above is applicable:

Example 6. Let (Φ, H, D) be a complexity-based information triple satisfy-
ing Axioms 1-4 and assume that Φ is finite. Further, let y0 ∈ Y . Then we
may “forget about Φ and H” and base updating solely on D to obtain the
pay-off based triple for updating generated by D and y0 as explained above.
Note that the essential condition of affinity is satisfied since

Ψ(x, y) = D(x, y0)−D(x, y) = Φ(x, y0)− Φ(x, y) (35)

and the affinity assumption for Φ applies. 2
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Example 7. Let us return to Example 2 where X = Y is a Hilbert space
and squared norm difference plays the key role, cf. (9). We use this as
divergence: D(x, y) = ‖x − y‖2. The identity is chosen for the connection
and as prior we take any element y0 ∈ Y . As reference topology we use
the norm topology. Clearly, convergence in divergence as enters into Axiom
3, reduces to convergence in this topology. It is easily checked that the
requirements in the axiom system for divergence with prior are satisfied and
we arrive at an information triple (Ψ, Π, D) with pay-off and maximal pay-off
given by

Ψ(x, y) = ‖x− y0‖2 − ‖x− y‖2 (36)
Π(x) = D(x, y0) . (37)

Regarding the requirement of affinity, this follows from the fact that second-
order terms in x disappear in (36), and may also be seen from any of the
following expressions:

Ψ(x, y) = 2〈y0 − x, y − y0〉 − ‖y0 − y‖2 (38)
= ‖y0 − y‖2 − 2〈y − x, y − y0〉 . (39)

We return to this example in Example11. 2

5 Information triples and games
Consider a complexity-based information triple I = (Φ, H, D) related to the
strategy sets X and Y and the connection x y x̂. Unless explicitly pointed
out to the contrary, we assume that Axioms 1–4 are satisfied. We shall study
two-person zero-sum games with Φ as objective function and Observer as
minimizer and Nature as optimizer, but with the important restriction that
Nature has to choose a strategy from a certain non-empty subset X0 of X.
This set is called the preparation of the game and strategies in X0 are called
consistent strategies. The game considered is denoted γ(X0).

The values of the game are defined as usual, cf. e.g. [1]. For Nature, the
value is

sup
x∈X0

inf
y∈Y

Φ(x, y)

which we recognize as the maximum entropy value, denoted by Hmax(X0):

Hmax(X0) = sup
x∈X0

H(x) . (40)
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For brevity, we often write Hmax in place of Hmax(X0).
As for Observer, the value is denoted Rmin(X0):

Rmin(X0) = inf
y∈Y

sup
x∈X0

Φ(x, y) (41)

which may be conceived as the minimal risk. It is often written as Rmin. For
a specific Observer strategy y, the associated risk is given by

R(y) = sup
x∈X0

Φ(x, y) . (42)

By the minimax inequality, Hmax ≤ Rmin. The game is in equilibrium if
Hmax = Rmin < ∞.

Important strategies and sequences of strategies associated with γ(X0)
are defined as follows: A strategy x is an optimal strategy for Nature, or a
MaxEnt-strategy, if it is consistent and H(x) = Hmax. A sequence (xn) of
consistent strategies is said to be asymptotically optimal if limn→∞H(xn) =
Hmax. A strategy x ∈ X (obs, not necessarily consistent) is an Hmax-attractor
if xn � x for every asymptotically optimal sequence (xn).

A strategy y ∈ Y is an optimal strategy for Observer, or a Rmin-strategy,
if R(y) = Rmin(X0).

A pair (x∗, y∗) ∈ X0 × Y is an optimal pair, or a (MaxEnt,Rmin)-pair, if
x∗ is a MaxEnt-strategy and y∗ a Rmin-strategy.

The main result can now be formulated:

Theorem 2. If X0 is convex and Hmax(X0) < ∞, then Observer has a unique
optimal strategy y∗ and, regarding Nature, an Hmax-attractor x∗ exists and
y∗ = x̂∗. All Hmax-attractors are equivalent. Furthermore, the game is in
equilibrium and for each x ∈ X0 and each y ∈ Y the following inequalities
(stronger than the trivial H(x) ≤ Hmax(X0) and Rmin(X0) ≤ R(y)) hold:

H(x) + D(x, y∗) ≤ Hmax(X0) (43)
Rmin(X0) + D(x∗, y) ≤ R(y) . (44)

Proof. (modeled after [23])
Let (xn) be an asymptotically optimal sequence. Assume, as we may,

that the sequence (H(xn))n≥1 converges “fast” to Hmax in the sense that

lim
n→∞

n
(

Hmax−H(xn)
)

= 0 . (45)
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This information will be used later. For now, we put xn,m = 1
2
xn + 1

2
xm and

yn,m = x̂n,m and use (16) and convexity of X0 to find that

Hmax ≥ H(xn,m) =
1

2
H(xn) +

1

2
H(xm) +

1

2
D(xn, yn,m) +

1

2
D(xm, yn,m) .

From this we conclude that (xn) satisfies the Cauchy-property of Axiom 4.
Hence there exists a subsequence (xnk

)k≥1 and an element x∗ ∈ X such that
xnk

→ x∗ as k →∞.
For the next part of the proof we consider any consistent strategy x and

put ξk = (1 − 1
nk

)xnk
+ 1

nk
x. By continuity of the algebraic operations,

ξk → x∗. Put ηk = ξ̂k. For each k,

Hmax ≥ H(ξk) ≥ (1− 1

nk

) H(xnk
) +

1

nk

H(x) +
1

nk

D(x, ηk)

and it follows that

H(x) + D(x, ηk) ≤ nk

(
Hmax−H(xnk

)
)

+ H(xnk
) .

By (45) and the lower semi-continuity property (24) applied to ξk → x∗ we
conclude that H(x) + D(x, y∗) ≤ Hmax, i.e. Φ(x, y∗) ≤ Hmax. As this holds
for any x ∈ X0, we find that R(y∗) ≤ Hmax. By the minimax inequality, the
opposite inequality also holds. Thus, y∗ is an optimal strategy for Observer
and the game is in equilibrium. As we also established (43) – equivalent
with R(y∗) ≤ Hmax – it follows that any asymptotically optimal sequence
converges in divergence to x∗. Thus x∗ is indeed an Hmax-attractor. Clearly,
any other Hmax-attractor must be equivalent to x∗.

As our last task, we establish (44). To this end, consider any y ∈ Y and
exploit again the asymptotically optimal sequence (xn) which we started out
with. Now we use the other semi-continuity property, (23), and observe that

R(y) = sup
x∈X0

Φ(x, y) ≥ lim inf
n→∞

Φ(xn, y) = lim inf
n→∞

(
H(xn) + D(xn, y)

)
≥ Hmax + D(x∗, y) = Rmin + D(x∗, y) .

This establishes (44) and also implies uniqueness of y∗. Indeed, from (44)
we conclude that if Rmin = Rmin for some y ∈ Y , then D(x∗, y) = 0 and
y = x̂∗ = y∗ follows from Axiom 1.
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Corollary 1. Denote by co(X0) the convex hull of X0. Then, a necessary
and sufficient condition that γ(X0) is in equilibrium, is that Hmax(X0) < ∞
and that maximum entropy is not increased by taking mixtures in the sense
that

Hmax(co(X0)) = Hmax(X0) . (46)

Proof. Sufficiency follows by Theorem 2 since, by Axiom 2, Rmin(co(X0)) =
Rmin(X0). This equation is also behind the proof of necessity. Indeed, if
γ(X0) is in equilibrium, then

H(co(X0)) ≤ Rmin(co(X0)) = Rmin(X0) = Hmax(X0) (47)

and (47) follows.

The MaxEnt-strategy need not exist. It is unique if the connection is
injective, but otherwise it need not be so. But, using the reasoning from the
proof of Theorem 2 we realize that the following holds:

Corollary 2. A MaxEnt-strategy of a convex preparation with Hmax < ∞ is
also an Hmax-attractor.

Further results which can be used to show the existence of a (or the)
MaxEnt-strategy may be obtained from the standard theory of games. Most
important is the notion of Nash equilibrium. For the game γ(X0), this re-
quires the existence of a pair of strategies (x∗, y∗) ∈ (X0, Y ) such that the
saddle value inequalities

Φ(x, y∗) ≤ Φ(x∗, y∗) ≤ Φ(x∗, y) for all (x, y) ∈ X0 × Y (48)

hold. By standard considerations, γ(X0) is in equilibrium with (x∗, y∗) as
(MaxEnt,Rmin)-pair, if and only if Φ(x∗, y∗) < ∞ and (48) holds. With
our special assumptions, we see that from (48) and finiteness of Φ(x∗, y∗) it
follows that y∗ is adapted to x∗ (use (48) with y = x̂∗) and then, the right-
hand inequality of (48) is automatic. This points to the essential importance
of the first half of (48), here called Nash’s inequality:

Φ(x, y∗) ≤ Φ(x∗, y∗) for all x ∈ X0 . (49)

By the above discussion we have proved the following result:
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Theorem 3. . Consider the game γ(X0). Let x∗ be consistent and y∗ adapted
to x∗. Then a necessary and sufficient condition that γ(X0) is in equilibrium
with (x∗, y∗) as an (MaxEnt,Rmin)-pair is that H(x∗) < ∞ and that Nash’s
inequality holds.

The reader should note that Nash’s inequality is nothing but the inequal-
ity (43), except that for Theorem 3 we must assume that x∗ is consistent,
whereas in Theorem 2 a main point is that we deal with strategies x∗ which
need not be so.

Theorem 3 has two important corollaries which often lead to the deter-
mination of MaxEnt (and Rmin-) distributions. The first one depends on the
concept of a robust Observer strategy. For a single preparation X0, we say
that y ∈ Y is robust if there exists a finite constant ρ = ρ(X0), the level of
robustness, such that Φ(x, y) = ρ for every consistent strategy. We put

E = E(X0) = {y| y is robust for X0} (50)

and call E the exponential family associated with X0. A useful extension
depends on a preparation family which is nothing but a family of preparations,
here typically denoted by X . For such a family, we say that y ∈ X is robust
for the family, or simply robust if the family is understood, if y is robust
for every preparation X0 ∈ X . The family of all such Observer strategies
constitutes the exponential family associated with X . Notation and defining
formula is given by

E = E(X ) =
⋂

X0∈X

E(X0) . (51)

We can now state the first result hinted at above. It is often applied for
a preparation family, however, the essence only involves one preparation:

Corollary 3. Let X0 be a preparation, assume that x∗ is consistent and that
y∗ = x̂∗ is robust. Then (x∗, x̂∗) is a (MaxEnt,Rmin)-pair for the game γ(X0).

We leave the trivial verification to the reader.
The second corollary is more special as it builds on the models constructed

in Section 4.

Corollary 4 (Kuhn-Tucker criterion). Consider an information triple
(Φ, H, D) generated by a divergence which satisfies Axioms 5-8. Consider the
game γ related to this triple which has MOL(X) as strategy set for Nature.
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Then, if α∗ ∈ MOL(X), if y∗ = α̂∗ and if, for a finite constant R,

D(x̂, y∗) ≤ R for all x ∈ X and (52)
D(x̂, y∗) = R for all x ∈ X with αx > 0 , (53)

then (α∗, y∗) is a (MaxEnt,Rmin)-pair and R the equilibrium value of γ.

Proof. For any α ∈ MOL(X) we find that

Φ(α, y∗) =
∑
x∈X

αx D(x̂, y∗) ≤ R =
∑
x∈X

α∗x D(x̂, y∗) = Φ(α∗, y∗) ,

hence Theorem 3 applies and the result follows.

We mention that the necessity of the conditions related to (52) and (53)
can also be proved.

6 Some applications
Example 8 (MaxEnt). Theorems 2 and 3 point directly to a general max-
imum entropy principle and when specified to the situation in Example 1 is
in line with and elaborates on Jaynes classical maximum entropy principle.
We refrain from a longer discussion and refer to references already cited.

Example 9 (MinXent). In order to demonstrate the relevance of the theory
developed for Kullback’s minimum discrimination principle (MinXent), let
us return to Example 6. In additions to assumptions made there let us for
simplicity assume that the connection x y x̂ is injective. Also, let a convex
preparation X0 be given. Consider the two-person zero-sum game γ with
pay-off Ψ given by (35).

For y ∈ Y , let
Γ(y) = inf

x∈X0

Ψ(x, y) , (54)

the guaranteed updating gain associated with the strategy y and let

Γmax = sup
y∈Y

Γ(y) (55)

.
Put Dmin = infx∈X0 D(x, y0). A strategy x∗ ∈ X is the generalized I-

projection of y0 on X0 if xn � x∗ for every sequence (xn) in X0 which
is asymptotically optimal in the sense that limn→∞D(x, y0) = Dmin. With
assumptions made we can now prove:
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Theorem 4. The game γ is in equilibrium, hence Γmax = Dmin. There is
a unique generalized I-projection x∗ of y0 on X0 and y∗ = x̂∗ is the unique
optimal strategy for Observer: Γ(y∗) = Γmax. Furthermore, for (x, y) ∈
X0 × Y ,

D(x, y0) ≥ Dmin + D(x, y∗) , (56)
Γ(y) + D(x∗, y) ≤ Γmax . (57)

Proof. Consider the triple of maps

(x, y) y −Ψ(x, y) = D(x, y)−D(x, y0)

x y H(x)− Φ(x, y0) = −D(x, y0)

(x, y) y Φ(x, y)− H(x) = D(x, y) .

This triple is a complexity-based information triple which, just as (Φ, H, D)
satisfies Axioms 1-4. Theorem 2 applies and the result follows.

Example 10 (Sylvester’s problem). Let us return to Sylvester’s problem
and consider a finite subset X0 of a Euclidean space Y . Points in Y are now
referred to as locations. As a general reference to location theory we mention
[5].

Theorem 5. There exists a unique location y∗ for which the maximal dis-
tance to points in X0 is minimal. There also exists α∗ ∈ MOL(X0) for
which the sum of the weighted squared distances from the barycenter of α∗

to the points in X0 is maximal. Any such molecular distribution has y∗ as
barycenter. The following relation holds:

max
x∈X0

‖x− y∗‖2 =
∑
x∈X0

α∗x‖x− y∗‖2 , (58)

With preparations done in Example 3 and Section 4 an application of
Theorem 2 gives the result. Details are left to the reader, except for pointing
to the relevance of the relation

sup
α∈MOL(X0)

Φ(α, y) = sup
α∈MOL(X0)

∑
x∈X0

αx · ‖x− y‖2

= sup
x∈X0

‖x− y‖2 = R(y) .
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We add to the result that the Kuhn-Tucker Theorem of the previous
section provides a useful means of identifying the optimal location.

Simple examples illustrate that the molecular distribution α∗ may not be
unique. Consider for instance as X0 a set consisting of three points of which
one is the midpoint of the two other. Such examples also illustrate that not
all molecular distributions in the appropriate equivalence class can be used
in the place of α∗. In other situations – here we can point to the set of 4
corners of a square in the plane – all equivalent α’s with the right barycenter
can be used. Of course, if co(X0) is a simplex, α∗ is unique.

The Sylvester problem and the natural problems related to discrete mem-
oryless channels as discussed in Example 5 have much in common, in fact
can be treated together. We leave this to the reader to work out.

Example 11 (separation). Let us return to Example 7 and prove a classical
result:

Theorem 6. Assume that X0 is a closed convex subset of the Hilbert space Y
and consider a point y0 /∈ X0. Then there exists a hyperplane which separates
y0 from X0.

Proof. Consider the game γ with pay-off given by (36) and X0 as strategy
set for Nature. Conclude from Theorem 2 (applied to the dual game with
−Ψ as complexity) that the game is in equilibrium. The value of the game
for Nature is infx∈X0 ‖x − y0‖2 which is positive by assumption. Therefore,
the value of the game for Observer must also be positive, i.e.

sup
y∈Y

inf
x∈X0

(
‖x− y0‖2 − ‖x− y‖2

)
> 0 .

We conclude that there exists y ∈ Y such that

‖x− y0‖ > ‖x− y‖ for all x ∈ X0 .

This shows that y 6= y0 and that the hyperplane π of all x with ‖x − yo‖ =
‖x− y‖ separates y0 from X0.

We remark that by translating the hyperplane π found, we can obtain a
separating hyperplane through y0.

Also note that by standard considerations one can use the point separa-
tion result above to prove separation for disjoint closed convex sets, one of
which is assumed compact.
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7 Discussion
Information before probability

In 1983 Kolmogorov stated that “Information theory must precede proba-
bility theory and not be based on it” The present research may be seen as an
attempt to go some way in this direction and as such is in line with ongoing
tendencies, cf. Shafer and Vovk, [18] and also watch out for Harremoës [8].
For the cited works game theory also has a dominant role.

As an indication of the flavour of Kolmogorov’s attitude, when discussed
from the standpoint of the approach here taken, consider the following exam-
ple pointed out to me by Harremoës: In case you have accepted the notion of
probability distributions but not yet the notion of conditional distributions,
you need only observe that if in a standard set-up you consider a (measur-
able) set A and express information available to you by the preparation of
all distributions supported by A, then the I-projection of a distribution on
that preparation is nothing but the conditional distribution.

The choice of axioms
The axioms have been chosen as a balance between generality and a wish

to make them acceptable on intuitive grounds and smooth to work with for
a wide readership. The key testing ground for the choice was that a result
like Theorem 2, our main result, should be easy to state and prove, and yet
general enough to open up for applications in diverse directions.

It has not been a main aim here to develop new applications, rather we
aimed at providing easy access to known results.

It seems that Axiom 1 is natural and central. As to Axiom 2 it turned
out that key applications required affinity, hence a natural weakening to
concavity has not been taken up. Regarding Axiom ??, it came as a surprise
that apparently one does not need to assume lower semi-continuity of entropy
– the requirement of marginal lower semi-continuity of divergence appears to
be quite sufficient. In this connection one may ask if there are any worth while
applications where lower semi-continuety of entropy does not hold. Another
surprise concerns Axiom 4 where the weak form of completeness is all that is
needed, hence a natural strengthening to strong completeness (avoiding the
passing to a subsequence) was not necessary. As it stands, the weak form of
completeness is perhaps more of a weak form of sequential compactness.

Mixtures
Only standard finite mixtures appear throughout the manuscript. More

general structures – either countably infinite mixtures or mixtures defined
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by integration – are known to be of importance in traditional information
theory and may be included in further work on the axiomatics.

Notions of convergence or topological notions?
As indicated in the text, a sequential notion of convergence for the ref-

erence structure would suffice. However, this refinement is hardly needed.
More interesting is it that recently, it was discovered in Harremoës [9], cf.
also [10] that for the classical information theoretical situation, cf. Example
1, convergence in divergence is in fact a topological notion. This is true quite
generally for injective connections x y x̂ as one can easily verify the condi-
tions for a sequential notion of convergence to be topological. However, the
resulting topology is quite inticrate (as are related topologies, cf. [10]), but
may come to play an important role for the more subtle points of certain op-
timization problems. In this connection, we mention that essential technical
difficulties which do not turn up for the applications we have chosen do turn
up, e.g. for MinXent-problems in the continuous case.

The compensation identity
As we have seen this identity (17) plays a significant role. Apparently,

it first appeared in [22]. It is also of significance for quantum information
theory and is there called Donalds identity, cf. [4].

Taking entropy as the basis
For the main approach, complexity is the most dominant notion from

which the notions of entropy and divergence can be derived. We showed in
Section 4 how focus can be shifted to divergence. In the authors recent work
[21] one way of generating information triples based on socalled Bregman
divergence was discussed. This appears to be of great interest especially for
statistical physics perhaps, as witnessed by recent activity in this area. We
refer the reader to [21] where one will find expedient methods for MaxEnt-
(and MinXent-) calculations. The approach there also has a bearing on more
abstract notions of exponential families.

The Gallager-Ryabko theorem
In connection with the discussion of Example 10 we indicated possibilities

for a common treatment considering also well known problems of information
theory, actually problems indicated in Example 5. For the relevant informa-
tion theoretical result, known as the redundancy/ capacity theorem and due,
independently, to Gallager and Ryabko, the reader should consult [6] and
[16].

Further work
There are several possibilities for expanding on the axiomatics. Some
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are indicated in [11], others concern games in networks, covering the non-
commutative case (the quantum case), introducing geometry etc. However,
rather than working out generalizations, consolidation by pointing to other
fruitful applications within the framework here presented may be at least
as fruitful. Obvious possibilities concern standard optimization- and duality
results from mathematical analysis which we did not find room for here.
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