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Classical Information Theory: Complexity, entropy
and divergence: either

1
S(a,y) =Y a;ln—,
Yq

1
H(z) =) z;In—,
T
D(z,y) =) x; In2t.
Y;
over X =Y = M_ll_(A) or (often better!)
(D(LE, y) — Z LyYi
H(z) = ®(z,2),
over X = M1 (A), Y = K(A) and with response
r ~ & = y defined by y; = In > where K(A) is
the set of code length functions over A, functions y
satisfying Kraft's inequality > e ™% < 1.

x’'s: “truth”; y’s: Belief, expectation, descriptor...



Axioms for Complexity, entropy, divergence.

Strategy sets are X,Y,amapx ~ z of X into Y
gives the response.

MOL(X) = {molecular measures}

= {a € ML (X)|supp(«) finite }.

Axiom 1 Linking: ®(x,y) = H(x) + D(x,y) with
D>0and D(z,y) =0& y=2.
Axiom 2 Affinity: X is convex and <& affine in its first
variable: Fory € Y, o € MOL(X),

cb( Z oza;a:,y) = Z azP(z,y) .

reX zeX

First consequences: Introduce barycentre
b(a) = Y ,.cx azx, and associated information rate

I(a) = Y awD(z,b(a)).

reX
Concavity and convexity properties:



Let @« € MOL(X). Then

H( > oz;w:) = ) azH(z) +I(a)

reX reX
and, if H(b(«)) < oo, then, forevery y € Y,

> a:D(z,y) =D ( Y awz,y) +1(a) ()

reX reX

(*) is the compensation identity. Only depends on D!

Special case of information rate gives Jensen-Shannon
divergence:

JSD(z1,22) = 3 D(21,%) + 5 D(2, ) with

x = 21+ 3. Often defines the square of a metric!

Problems/ opportunities

1. good examples (+proofs!) and counterexamples
2. isometrically embeddable in Hilbert space?

3. new non-standard entropy inequalities!

4. quantum case?



Proposition JSD is the square of a metric if and only
if, for every x1, x5, x3

3
> (112 — 20Kk + 205118 - [0]) < 0
k=1
where

] = HC i + o) and [i] = [ii] = H(z,).




Models and exponential families For Xy C X, v (Xg)
denotes two-person zero-sum game over Xg x Y with

& as objective function, Player | as maximizer and PI.

Il as minimizer. Write v¢(Xg) € GTE(z,y) if v is

in equilibrium with (xz,y) as optimal strategies.

From Nash’s saddle-value theorem:

Theorem A given pair (xzg, yg) is an optimal pair for a
subgame in equilibrium iff ®(xg, yg) € R and yg = Z.
If so, the possible models are all X with

{zo} C Xo C {P¥ < h}withh = P(z0,y0) -

Natural models (genus-1 case). are the non-empty
level-sets: LY (h) = {®/ = h} = {z|P(z, f) = h}
Let £/ = class of non-empty models of the form L (k).
The associated exponential family is the family

E(f) ={ylVL € £f3ceR: L C LY(h)}.

y€E(f), y=72 = LI (®Y(z)) € GTE(z,y)
Problems: Generalized notions needed, relation to
standard theory, to weaker notions of equilibrium etc.




Reminder: Games, some general considerations

®:X xY — R defines a two-person zero-sum game,
Y. It has & as objective function (complexity!).
Player |, a maximizer, chooses x € X,

Player Il, a minimizer, choosesy €Y.

Specific and global values:

vali(z) = inf ®(x,y) = inf D, ( entropy! H(ac))
yeyY

valii(y) = sup ®(x,y) = sup ®Y ( risk! R(y))
reX
val; = sup valy(x), valyg = inf valy(y).
reX yey
y Is an optimal response to x (or x matches y) if
y € x = argmin®Py.

Redundancy: Compare the potentially possible with
the actually achieved to obtain Player-I redundancy
and Player-1l redundancy:

5I(QE, y) — VaIII(y) — CD(QE, y) )
oz, y) = P(xz,y) — valy(x) (divergence! D(x, y)).



With span(x,y) = valy(y) — vali(x),

span(zx,y) = 6(z,y) + ou(z,y) , hence:
val; < valp (minimax inequality).

Game Theoretical Equilibrium:if val; = val; € R.
|deally: GTE applies and optimal strategies exist, say
(zo, yo). Notation: v¢» € GTE(x0, y0o) -

Saddle-value theorem (Nash): Assume that
d(zg,yg) € R. Then vg, € GTE(xzq, yo) iff

V(z,y) : ®(z,y0) < P(20,v0) < P(z0,Y) -

(FT): If so, abstract pythagorean inequalities hold:
Vz . vali(z) + §(x,yg) < val(yge) (forward ineq.),

Vy : val(ve) +6(zg,y) < valy(y) (backward ineq.).
Here, 6 = ¢y, d1p or even 41 + dp1. [symmetry!]

Proof: With 6 = 41 + 411, the inequalities become
identities! O

Corollary: Assume that ®(zg,yg) € R. Then, if yg is
an optimal response to xg and if ®(x, yg) is indepen-
dentof z € X, y¢ € GTE(zq,y0)- [asymmetry!]




Creation of Information Triples

Atomic Triples, Integration

(¢,h,d) with X = Y =real interval, and response
the identity leads to atomic information triples.

Example 1 yg a prior,

o(z,y) = (x —y)? — (z — yo)?,
h(z) = —(z — yo)?,
d(z,y) = (z — y)°.

Example 2
1
¢($7y) :33‘”7—,
i
h(z) =z In—,
T

d(x,vy) s
Yy



Examples are of Bregman type: for “smooth” strictly
concave h, (¢, h, d) with ¢ and d defined by

d(z,y) = h(y) —h(z) + (z —y) h'(y),
IS an atomic information triple.

A natural process of integration leads to more general
triples. Given measure p on set 7' and then some
function space X C I1', take identity as response and
define (¥, H, D) by integration, i.e.

P(a,y) = [ o(2(0),y(®))du(t)

and similarly for H and D. ...

By integration, Example 1 extends to a triple over Hilbert
space:

®(z,y) = [z — yl* — |z — ol *,
H(z) = —|lz — yol?,
D(z,y) = ||lz — ylI*.
And similarly, Example 2 leads to standard discrete

information theory by integration w.r.t. counting mea-
sure over an “alphabet”.



Equivalence, Relativization

Equivalence results from adding to both ¢ and to H
an affine function defined on X

If (,H,D) is given and you add z ~ —®(z,yg),
you obtain the relativized triple with yg as prior:

ds(xay) — D(CB,y) o D(wayO)
H(z) = — D(, o)
D(z,y) = D(z,y).

(for this, it suffices that D satisfies the compensa-
tion identity). Leads to Kullback’s minimum informa-
tion discrimination principle , related to the problem of
proper updating .



Randomization

Start with (®, H, D). Allow randomized strategies a €
MOL(X) for Player |. Put b(a) = Y, x azx. Ran-
domization then gives:

b(a),

a =
&D(a,y) — Z Oéil?cb(xay)a
xeX

Ae) = Y axd(,b(a)).

reX
D(a,y) = D(b(a),y) -

By equivalence you obtain:

CT)O(aay) — Z Ox D(x7y>7

reX
Ho(a) = ) azD(z,b()),
reX

Do(a,y) = D(b(a),y) .



Singling out special entropy functions

Put yourself in the shoes of the physicist who is plan-
ning observations and see if you can accept the con-
siderations below.

1 Events have three kinds of assignments,
related to, respectively, truth, belief and ex-
perience. Truth- and belief assignments are
numbers in [0, 1].

2 A characteristic feature of my world is that there
IS an interaction between truth and belief expressed
by a function = on [0, 1] x [0, 1]. The idea is (see
table!) that m; = n(x;, y;).




A | Truth | Belief | Experience

Example A: The classical world is a world of
“no interaction”, hence n(x,y) = .

Example B: The black hole is a world of
“no information”, hence w(x,y) = v.

3 | believe that my world is consistent in the sense
that >°,ca m = 1 whenever (x;);ca and (y;);eca
are probability assignments and m; = 7 (x;, y;).

Note: Then interaction must be sound, i.e. a
perfect match gives no change: For all x € [0, 1],
m(x,x) = x.



4 Any event | may observe entails a certain effort on
my part. The effort must only depend on my belief,
y, and is denoted by «(y). The function &, is the
coder (or descriptor). Of course: k(1) = 0.

5 Separability applies: My total effort related to ob-
servations from a particular situation is the sum of in-
dividual contributions. Weights must be assigned to
each contribution according to the weight with which
| will experience the various events. The total effort
Is the complexity (or description cost), . Thus:

S (x,y) = > mw(xsy)k(ys)
€A
with = (z;);cp the truth- and y = (y;);ca the
belief-assignments associated with the events.




6 | will attempt to minimize complexity and shall ap-
peal to the principle that complexity is the smallest
when belief matches truth, ((y;);epa = (2;)ica)- AS

> (g, yi)r(y) — Y mir(x;)
i€A i€A
represents my frustration, the principle says that
frustration is the least, in fact disappears, when
(Yi)ica = (%) ien-

Note: Given z = (z;),c 5, minimal complexity is what
| am aiming at. It is an important quantity. | will call it
entropy:

H(z) = inf ®(x,y) = Z xik(x;) .
y=(i)ica A

Frustration too looks important. Perhaps | better call it
divergence:

D(z,y) = ®(z,y) — H(z).

Can you accept all this? If so, you can conclude:



Theorem: Modulo regularity conditions and a con-
dition of normalization, ¢ = =« (1,0) must be non-
negative and m and « uniquely determined from ¢
by:

m(z,y) =gz + (1 — @)y,
1
k(y) = Ing—,
Yy
where the g-logarithm is given by

| Inxifg=1,
n p—
a* 1qln‘q#l

Hence entropy is given by

H(z) = ) = lnq

1€A




Challenges:

e explain interaction on physical grounds,

e suggest possibilities for an accompanying process
of real coding,

e illuminate the good sense (if any :-)) of the views
put forward in well studied concrete cases (possibly
distinguishing between the cases 0 < ¢ < 1,1 <
g < 2andq > 2).

Let us look into the following:

e proof of theorem
e connection with Bregman generation
e relaxing the condition of consistency.



Indication of proof of main result

Functions 7w and x are assumed continuous on their
domains and continuously differentiable and finite val-
ued on the interiors of their domains. Normalization of
x means that (1) = 0 and that x’(1) = —1.

You can exploit the consistency condition to show that,
for all (z,vy) € [0, 1]2,

m(z,y) =qz+ (1 —q)y
with ¢ = =(1,0).

Consider a fixed finite probability vector (x;);ca With
all z; positive. Varying (y;);ca We find, via the intro-
duction of a Lagrange multiplier, that f given by

f@) = 5 (@ 2)n(@) + (a2 (@)
Y

is constant on {x;|i € A}. Exploiting this for three-
element alphabets A shows that f = —1. Then the
formula for x is readily derived.



Bregman generation: Look at concave generator hq
and associated “Bregman quantities”:

(hg(z) =z In gL,

bq(z,y) = he(y) + (x — y)hy(y)
dg(z,y) = hq(y) — hq(x) + (x —y)hy(y),
(P, Q) = Xpen b¢(Pis @) 5

He(P) = > aen hq(pi) ,

|Dqg(P,Q) = Xaeca dg(pi i) -

-compare with “interaction quantities”:

7\,

(7Tq(33‘, y) = qx + (1 — q)y (interaction),
kq(z) = In 4% (coder),
£(x,y) =y — x, (corrector),
(P, Q) = Yae Tq(Pis 4i)kq(q;)
= > achA (Wq(pz', qi)kq(qi) + &(pi, %)) :
Hqe(P) = ZaeAPiﬁq(pz‘) 7
Dq(P,Q) = Xaea <7rq(pz', q;)kq(qi) — pwq(pq;))

= > ucA (Wq(pq;, 7i)kq(q;) — pirg(pi) + £(pi, Qi)) :

7\

\



Here, £ is the corrector introduced so that the Bregman-
and interaction- quantities are synchronized. Indeed,
then the individual quantities coincide, in particular,

wq(Pi» @) kq(q;) + EWi, @) = dq(Pi) ;) -

Note that the corrector is independent of q. When
seeking further physically founded explanations for the
whole set-up it may well be important to take the cor-
rector into account.

Quantities written out:

P(P,Q) = %_q( 14+ Y (g + Q- q)(]ﬁ-")) :

€A
— 1 . q
H(P) = _q( 1+i§pi),
D(P,Q) = —— Z (qu'q?_l —pl 4+ (1 - q)qf) -

zEA



Relaxing the condition of consistence: If we only
assume that = is sound, i.e. that n(x,z) = =« for
0 < x < 1, then other forms of interaction may leed
to Tsallis-entropy as well. This happens with

m(z,y) = zly' 9.

Thus, many quite different forms of interaction may
give the same entropy function. But of course, the
complexity- and divergence-functions will be different.



References in brief:

e Havrda and Charvat (1967): first appearence in the
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e [sallis (1988): well known (:-)) take-off point which
triggered much research and debate.
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search, | mention Naudts (2008) and my own contri-
bution from (2007).



