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Abstract

Second order lower bounds for the entropy function (H) expressed
in terms of the index of coincidence (IC) are derived. Equivalently,
these bounds involve entropy and Rényi entropy of order 2 (Hs). The
constants found either explicitly or implicitly are best possible in a
natural sense.
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1 Background, introduction

We study probability distributions over the natural numbers. The set of all
such distributions is denoted M} (N) and the set of P € M (N) which are
supported by {1,2,---,n} is denoted M (n).

We use U, to denote a generic uniform distribution over a k-element set,
and if also Uy 1, U9, -+ are considered, it is assumed that the supports are
increasing. By H and by IC' we denote entropy and index of coincidence,
respectively, i.e.

H(P)=—=) plnps,
k=1

IC(P) =) p};.
k=1

*This work was supported by the Danish Natural Science Research Council and by
INTAS, project 00-738.



Results involving index of coincidence may be reformulated in terms of
Rényi entropy of order 2 (Hs) as

Hy(P) = — In IC(P).

In Harremoés and Topsge [4] the exact range of the map P ~ (IC(P), H(P))
with P varying over either M1 (n) or M} (N) was determined. Earlier related
work includes Kovalevskij [6], Tebbe and Dwyer [7], Ben-Bassat [1], Golic [3]
and Feder and Merhav [2|. The ranges in question, termed [C/H-diagrams,
were denoted A, respectively A,:

A ={(IC(P),H(P)) | P € M}(N)},
A, ={(IC(P),H(P))| P € M}(n)}.

By Jensen’s inequality we find that H(P) > — In IC(P), thus the logarithmic
curve t ~ (t,—Int); 0 < t < 1 is a lower bounding curve for the IC/H-
diagrams. The points @ = (%, In k); k > 1 all lie on this curve. They
correspond to the uniform distributions: (/C(Uy), H(Uy)) = (3, Ink). No
other points in the diagram A lie on the logarithmic curve, in fact, Q; k£ > 1
are extremal points of A in the sense that the convex hull they determine
contains A. No smaller set has this property.

Figure 1, adapted from [4], illustrates the situation for the restricted
diagrams A,,. The key result of [4] states that A, is the bounded region
determinated by a certain Jordan curve determined by n smooth arcs, viz.
the “upper arc” connecting (); and ),, and then n— 1 “lower arcs” connecting
Q, with Q,_1, ,—1 with Q),_» etc. until ()2 which is connected with (.

In [4], see also [8], the main result was used to develop concrete upper
bounds for the entropy function. Our concern here will be lower bounds.
The study depends crucially on the nature of the lower arcs. In [4] these arcs
were identified. Indeed, the arc connecting ;.1 with @) is the curve which
may be parametrized as follows:

s G((1 = s)Upyr + sUyg)

with s running through the unit interval and with J denoting the /C/H-map
given by g(P) = (IC(P),H(P)); P € M}(N).!
The distributions in M} (N) fall in IC-complegity classes. The k’th class
consists of all P € M:(N) for which IC(Uy1) < IC(P) < IC(Uy) or,
1

equivalently, for which =5 < IC(P) < +. In order to determine good lower

bounds for the entropy of a distribution P, one first determines the IC-
complexity class k& of P. One then determines that value of s €]0,1] for

!In passing we note that s ~ @((1 — s)U; + sU,,) parametrizes the upper arc.
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Figure 1: The restricted /C'/H-diagram A,,, (n = 5).



which IC(P,) = IC(P) with P, = (1 — 8)Uy.1 + 5 Uy. Then H(P) > H(P,)
is the theoretically best lower bound of H(P) in terms of IC(P).

In order to write the sought lower bounds for H(P) in a convenient form,
we introduce the k’th relative measure of roughness by

IC(P) — ]C<Uk+1) _ 1
o= tcw =MD (e - ) - 0

This definition applies to any P € M}(N) but really, only distributions of
IC-complexity class k will be of relevance to us. Clearly, MRy(Upy1) =
0, MR,(U,) = 1 and for any distribution of IC-complexity class k, 0 <
MR (P) < 1. A simple calculation reveals the fact that for a distribution on
the lower arc connecting ()1 with ;. the following useful structural relation
holds:

MR,(P) =

M—Rk((1—5>Uk+1—|—8Uk) 282. (2)

In view of the above said, it follows that for any distribution P of IC-
complexity class k, the theoretically best lower bound for H(P) in terms of
IC(P) is given by the inequality

H(P)> H((1 - 2)Upp1 + 2 Uy) (3)

where x is determined so that P and (1 — 2)Uy 1 + x Uy have the same index
of coincidence, i.e.

2* = MR, (P). (4)

By writing out the right-hand-side of (3) we then obtain the best lower
bound of the type discussed. Doing so one obtains a quantity of mixed type,
involving logarithmic and rational functions. It is desirable to search for
structurally simpler bounds, getting rid of logarithmic terms. The simplest
and possibly most useful bound of this type is the linear bound

H(P) > H(Uy) MRy(P) + H(Ug11)(1 — MRy(P)) (5)

which expresses the fact mentioned previously regarding the extremal posi-
tion of the points @ in relation to the set A. Note that (5) is the best linear
lower bound as equality holds for P = Uy, as well as for P = Uy. Another
comment is that though (5) was developed with a view to distributions of
IC-complexity class k, the inequality holds for all P € M3 (N) (but is weaker
than the trivial bound H > — In IC for distributions of other /C-complexity
classes).
Writing (5) directly in terms of /C'(P) we obtain the inequalities

H(P)>a,— B IC(P); k>1 (6)
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with oy and [, given via the constants

uk:]n(l—i-%)k:kln(l—i—%) (7)
by
ap = In (k+ 1)+ uy, (8)

Note that u; T 1. 2

In the present paper we shall develop sharper inequalitites than those
above by adding a second order term. More precisely, for £ > 1, we denote
by v« the largest constant such that the inequality

H = Ink MR+ In (k+1) (1= MRy) + JMR(1 - MRy)  (10)

holds for all P € M} (N). Here, H = H(P) and MRy, = MR (P). Expressed
directly in terms of IC' = IC(P), (10) states that

Yk 2 1 1
> — - - P —
H>aoap— 6, 1C+ 5 k(k+1) <IC’ : 1) <k IC') (11)

for P € M (N).
The basic results of our paper may be summarized as follows:

The constants (7;)k>1 increase with 7 = In4 — 1 ~ 0.3863 and
with limit value v ~ 0.9640.

More substance will be given to this result by developing rather narrow
bounds for the ~,’s in terms of v and by other means.

The refined second order inequalities are here published in their own
right. The authors motivation to develop these bounds lies in applications
to problems of exact prediction in Bernoulli models. See the discussion in
Section 3.

2Concrete algebraic bounds for the uy, which, via (6), may be used to obtain concrete
lower bounds for H(P), are given by

2k 2k+1
Su < .
2k +1 2k +2

This follows directly from (6) of [9] (as ux = A(4) in the notation of that manuscript).



2 Basic results

The key to our results is the inequality (3) with x determined by (4) 3. This
leads to the following analytical expression of ~;:

Lemma 1. For k > 1 define f; : [0,1] — [0, 00] by

2k k+a ry_1-= !
_ _ 142 = In(1— In (1+-)] .
fr(z) x2(1_$2){ k+11n( +k:> oy n(-z)+e n( +k>}

Then v, = inf{fx(z) | 0 < z < 1}.

Proof. By the defining relation (10) and by (3) with z given by (4), recalling
also the relation (2), we realize that 7y is the infimum over = €]0, 1] of

2k

m[H((l_ﬁ)Uk+1+$Uk)— Ink-z*— ]H(k'+1)-(1—x2)] .

Writing out the entropy of (1—x)Uj1 42U}, we find that the function defined
by this expression is the function f. O

It is understood that fy(x) is defined by continuity for x = 0 and = = 1.
An application of I’Hospitals rule shows that

fe(0) =2up — 1, fi(1) =00, (12)
Then we investigate the limiting behaviour of (fi)x>1 for £ — oc.

Lemma 2. The pointwise limit [ = limy .o fr exists in [0,1] and is given

by
o — In(1—
f(x):2( xxz(li(;) a:))’ 0<zx<l (13)
with f(0) =1 and f(1) = co. Alternatively,
f(x)zlixznaj:Q;ngSlfl (14)

n=0

3For the benefit of the reader we point out that this inequality can be derived rather
directly from the lemma of replacement developed in [4]. The relevant part of that lemma
is the following result: If f : [0,1] — R is concave/convex (i.e. concave on [0,&], convex
on [¢, 1] for some ¢ € [0,1]), then, for any P € M1 (N), there exists £ > 1 and a convex
combination Py of Ugy1 and Uy such that F(Py)) < F(P) with F defined by F(Q) =
ZT: flan); Q € ML(N).

or, as a power series in z, f(z) =23 0°(=1)"(1 — lpq2)z™ with I, = — > 7 (-1)*1.



The simple proof, based directly on Lemma 1, is left to the reader. We
then investigate some of the properties of f:

Lemma 3. The function f is convez, f(0) =1, f(1) = oo and f'(0) = —3.

The real number xy = argminf is uniquely determined by one of the following
equivalent conditions:

(i) f'(x0) =

.. 2z (14zo—22
(i) —In (1 —xo) = (3:1?0(+2)(017:r(;))’

(i) 30y (s + i) o6 = 5
One has xo ~ 0.2204 and v ~ 0.9640 with v = f(zp) = min f.

Proof. By standard differentiation, say based on (13), one can evaluate f
and f’. One also finds that (i) and (ii) are equivalent. The equivalence with
(iii) is based on the expansion

, “/n+1 n-1 "
P = g (g + iy ) e

n=0

which follows readily from (14).
The convexity, even strict, of f follows as f can be written in the form

2 1 1 . 2 gn
f(x>_<§+§'1+x)+;n+21+x’

easily recognizable as a sum of two convex functions.
The approximate values of zy and v were obtained numerically, based on
the expression in (ii). O

The convergence of f; to f is in fact increasing:
Lemma 4. For every k> 1, fi < fri1-

Proof. As a more general result will be proved as part (i) of Theorem 2, we
only indicate that a direct proof involving three times differentiation of the
function

1
Ap(z) = §$2(1 —2°)(frn () = falx))
is rather straight forward. O

Lemma 5. vy = In4 — 1 = 0.3863.



Proof. We wish to find the best (largest) constant ¢ such that
1
H(P)> In4-(1—-1IC(P)) + 2c <[C(P) — 5) (1-IC(P)) (15)

holds for all P € M}(N), c¢f. (11), and know that we only need to worry
about distributions P € M;(2). Let P = (p,q) be such a distribution, i.e.
0<p<1,q=1—p. Take p as independent variable and define the auxiliary
function h = h(p) by

1
h=H — ln4-(1—]C)—20(IC’—5)(1—]0).
Here, H = —pInp —qInq and IC = p? + ¢*. Then:

h' = ln%—|—2(p—q)1n4—2c(p—q)(3—4]0),

1
h" = —— +4In4d —2¢(—10 + 48pq) .
pq
Thus h(0) = h(3) = h(1) = 0, K'(0) = oo, W (3) = 0 and A'(1) = —oo.
Further, (1) = —4 + 4 In4 — 4c, hence h assumes negative values if ¢ >

In4—1. Assume now that ¢ < In4—1. Then h”(3) > 0. As h has (at most)
two inflection points (follows from the formula for h”) we must conclude that
h > 0 (otherwise h would have at least six inflection points!).

Thus h >0ifec< In4 —1. Then h > 0 also holdsif c = In4 — 1. O

The lemma is an improvement over an inequality established in [8] as we
shall comment more on in Section 3.

With relatively little extra effort we can find reasonable bounds for each
of the ~;’s in terms of v. What we need is the following lemma:

Lemma 6. For k> 1and 0 <z <1,

2%k <1
_ . 16
WO =G =) 2 o0 1 2 (16)
l_l,2n+1 1_ 1 _'_]_—1‘2” 1+ 1
2n+3 f2n+2 2n +1 f2n+l
and - ,
2 = 1 1 — g2ttt 1 — g2
— . 1
/(@) 1—x222n+2( o +3 +2n+1) (17)

n=0



Proof. Based on the expansions

n

> x
—r— In(l1-2)=2>)
A H I n:0n+2

and
(1)
2)(n + 1)kntt

v, 5
(k+ z) ]n(1+z) =zr+x % nt
(which is also used for k = 1 with z replaced by —z), one readily finds that

—(l{;—i-x)ln(l—l—%)—(l—x)In(l—x)—l—(k:—l—l):cﬂn(l%—%)

1 " (—1)"
1+ n+2 1)'kn+1_;(n+2)(n+1)<kn+l “)

:0

Upon writing 1 in the form

- 1 1
ZQnJrQ (2n+1+2n+3)

n=0

and collecting terms two-by-two, and subsequent division by 1 — 22 and
multiplication by 2k, (16) emerges. Clearly, (17) follows from (16) by taking
the limit as k converges to infinity. O

Putting things together, we can now prove the following result:

Theorem 1. We have 1 < v < ---, 1 = In4 —1 = 0.3863 and vy, — v
where v ~ 0.9640 can be defined as

o 2 L]
7T e 22(1+ ) "o

Furthermore, for each k > 1,

1 1 1

(1—E)7§%§(1—E+ﬁ)7- (18)

Proof. The first parts follow directly from lemmas 1-5. To prove the last
statement, note that, for n > 0,

1 1
1_k;2n+2 Zl_ﬁ'
It then follows from Lemma 6 that (1—1—%)]‘}C > (1 — kl—g) f, hence f > (1—%)}“
and and v > (1 — )7 follows.



Similarly, note that 1+ k~?"+1) <14 k=3 for n > 1 (and that, for n = 0,
the second term in the summation in (16) vanishes). Then use Lemma 6 to
conclude that (1 + +)fi < (1 + 75)f. The inequality v < (1 — ¢ + )7
follows. O

The discussion contains more results, especially, the bounds in (18) are
sharpened.

3 Discussion and further results

Justification:

The justification for the study undertaken here is two-fold: As a study of
certain aspects of the relationship between entropy and index of coincidence
— which is part of the wider theme of comparing one Rényi entropy with
another, cf. [4] and [10] — and as a preparation for certain results of exact
prediction in Bernoulli trials. The former type of justification was carefulle
dealt with in Section 1.

Regarding the latter type of justification, related to prediction, let us
briefly indicate what is involved. We consider a Bernouilli source generating
a string of symbols z1, x5, z3, - - - from an n-letter alphabet. For the special
model we have in mind, it is assumed that the source distribution is a uniform
distribution over a subset of the alphabet — possibly over the entire alphabet.
The goal is, given integers 0 < s < ¢, to make predictions of 2 | = x4y1 - -2y
based on knowledge of 5 = z; - - - z,. Equivalently, one seeks good codes (or
descriptions) of x!, ;. Unique optimal objects exist, theoretically, but are
difficult, or often even impossible to calculate in closed form. The central
technical tool needed in order to make exact calculations in cases where this
is possible turns out to be inequalities of the type here studied. Presently it
is not, possible to point to literature which explains in more detail why this
is the case. However, the short proceedings contribution [5| may be helpful
in this respect.

Lower bounds for distributions over a two-element alphabet:

Regarding Lemma 5, the key result proved is really the following inequal-
ity for a two-element probability distribution P = (p, q):

4pq(ln2+(lﬂ2—%)(1—4pq)) < H(p.q). (19)

Let us compare this with the lower bounds contained in the following
inequalities proved in [8]:
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InpInq
In2
In2-4pg <H(p,q) < In2(4pg)"/™*. (21)

Inplng<H(p,q)

IN

Clearly, (19) is sharper than the lower bound in (21). Numerical evidence
shows that “normally” (19) is also sharper than the lower bound in (20)
but, for distributions close to a deterministic distribution, (20) is in fact the
sharper of the two.

More on the convergence of fi. to f:

Though Theorem 1 ought to satisfy most readers, we shall continue and
derive sharper bounds than those in (18). This will be achieved via a closer
study of the functions f; and their convergence to f as k — oo. By looking
at previous results, notably perhaps Lemma 1 and the proof of Theorem 1,
the suspicion is raised that it is the sequence of functions (1 + 1)fi rather
than the sequence of f;’s that are well behaved. This is supported by the
results assembled in the theorem below, which, at least for parts (ii) and (iii),
are rather combersome to establish:

Theorem 2. (i) (1+ 1) fi 1 f,ie. 2/i <3fa <3fs<---— f.
(it) For each k > 1, the function f — (14 1) fx is decreasing in [0,1].
(iti) For each k > 1, the function (1+ ) [/ [ is increasing in [0, 1].

The technique of proof will be elementary, mainly via turturous differ-
entiations (which may be replaced by cowardice MAPLE look-ups, though)
and will rely also on certain inequalities for the logarithmic function in terms
of rational functions. The proof is relegated to the appendix.

An analogous result appears to hold for convergence from above to f.
Indeed, experiments on MAPLE indicate that (1 + ¢ + 75)/, | f and that
natural analogs of (ii) and (iii) of Theorem 2 hold. However, this will not
lead to improved bounds over those der ived below in Theorem 3.

Refined bounds for vy in terms of v:

Such bounds follow easily from (ii) and (iii) of Theorem 2:

Theorem 3. For each k > 1, the following inequalities hold:

o 2% +1
F+1l kg1l

k
2, — 1)y < < . 22
(2uy, )V_Vk_k+17+ k (22)
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Proof. Define constants a; and by by

o= int (@)= 1+ DA )

0<z<1
s (T ()
N

Then
1
by < (1+E)'7k§7_ak-

Now, by (ii) and (iii) of Theorem 2 and by an application of ’'Hopitals
rule, we find that

1
ak:(2+_)uk_27

k
1
The inequality (22) follows. O

Note that another set of inequalities can be obtained by working with sup
instead of inf in the definitions of a; and b,. However, inspection shows that
the inequalities obtained that way are weaker than those given by (22).

The inequalities (22) are sharper than (18) of Theorem 1 but less trans-
parent. Simpler bounds can be obtained by exploiting lower bounds for wy
(obtained from lower bounds for In (1 + z), cf. [8]). One such lower bound
is given in footnote [2] and leads to the inequalities

2k —1
2k +1

k
WS’VkSk—HW- (23)

Of course, the upper bound here is also a consequence of the relatively
simple property (i) of Theorem 2. When you apply the bound (27) quoted
further on of the logarithmic function, the inequalities in(23) are sharpened
as follows:

6k -1k 1 ”
621 6k+1 =1\ T 62 tok+1)

Appendix

We shall here give the proof of Theorem 2. We need some auxiliary bounds
for the logarithmic function which were researched in their own right and are

12



available from [9]. In particular, we quote a result for the function \ defined
by

In (1
Az = 20+ 2)
x
What we have in mind is the following double inequality:
1l—x
(2—2)My) - 1 ;= Azy) < zA(y) + (1 — =), (25)

cf. (16) of [9]. The inequalities here are valid for 0 <z <1 and 0 <y < ©
(with A(0) = 1).

Proof of (i) of Theorem 2:

Fix 0 < z <1 and introduce the parameter y = 1. Put

1. 2%(1 — 2?)

k;) 5 fr(@)+ (1 —2)In(1—x)

Y(y) =1+

(with k = 1). Then
v

—(I+ay) In(I+zy)+2*(1+y) In(1+y)
U(y) = -
Y
Allow y to vary in ]0,1]. We will show that v is a decreasing function of y.

This will imply the desired result. We find:

Y (y) = % (—zy+2°y+ In(14+2y) —2* In (1+y))

which is < 0 in view of the right hand inequality of (25). As ¢’ <0, ¢ is
decreasing as claimed.
Proof of (ii) of Theorem 2:
Fix k > 1 and put p = f — (1+%)fk. Then
2 x 9 1 9
o(x) = P (k+x)in <1+E) —z*(k+1)n 1+E —r+x
and ¢’ can be written in the form
2kx
¢'(z) = mw(@

where, with y =+,

() =ry(32° — 1) In (1 + zy) + (4% — 2) In (1 + zy)
—22' (1 +y)in (14 9) + 2zy(2® — 22% +1).
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We have to prove that ¢» < 0 in [0,1]. One finds that

V' (x) =(92% — y + 8x) In (1 + zy) — 8z°(L +y) In (1 +y)
3x3y? — xy? + da’y — 2y
142y

+y(82% — 122 + 2) +

and, further, that

V" (x) =(18zy + 8) In (1 + zy) — 242*(1 + y) In (1 + y)
zy(1—y?)

+24:E2 — gy + —— =~
y y (1+ zy)?

From the formulas for v, ¢’ and " one finds that
$(0) = (1) =4'(0) = ¢'(1) = ¢"(0) = 0.
Furthermore, we claim that ¢”(1) < 0. This amounts to the inequality

y(8 + Ty)
(I+y)(8+3y)

In(1+4y) > (26)

This inequality, which is valid for y > 0, may either be proved directly by
elementary means or one may deduce it from the stronger inequality

3y(2+y)

In(1+y)>—22t9
n(1+y) 6 + 6y + 32

(27)

which, in turn, is known from the theory of Padé approximation, cf. [9] (the
right hand side of (27) is the Padé approximant ¢, listed in Table 1 of [9]).
Further differentiation yields

" (x) = 18yin (1 + zy) — 48x(1 + y) In (1 + y) + 9y + 48zy

1oy y(l-y?)  2y(l-9?)
l+ay (I4+ay)?  (L+ay)®’

hence 1" (0) = —y* < 0. We need two more differentiations:

18y?
W(z) = —48(1 In (1 48
v (z) Tty (I+y)in(l+y)+48y
10y° 20* (1 —y?)  6y*(1 —¢*)
(I+azy)?  (L+azy)d  (L+ay)t
18y3 20y° 6y3(1 —y2)  24y3(1 — 2
() = — 2y 6y —y7) yl-y°)

(I+zy)?  (I+ay)?® (I+ay)! (1+zy)°
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Now, if 1) assumes positive values in [0, 1], /" (x) = 0 would have at least
4 solutions in ]0,1[. Then ¢"(z) = 0 would have at least 3, v (z) = 0 at
least 2 and ¥®)(z) = 0 at least one solution in ]0, 1[. In order to arrive at a
contradiction, we put X = 1 + 2y and note that 1 (z) = 0 is equivalent to
the equality

—9X% —10X* - 3(1 —¢y*)X +12(1 —¢y*) = 0.
Now, the left hand side here is upper bounded by
—9— 10— 3(1 — %) +12(1 — y?) = —10 — 9y?,

a negative number. This gives us the desired contradiction, hence ¢ < 0 in
[0,1].

Proof of (iii) of Theorem 2:

Again, fix k£ and put

Then, once more with y = %,

(1+zy)In(1+2y) — 2?1 +y)In (1 +y) —2y(l —z)
y(l—z)(—x— In (1 —2x))

We will show that ¢’ < 0. Write ¢’ in the form

() =

;o Y
- . 9
denominator?

where “denominator” refers to the denominator in the expression for ¢). Then
{(z) = (yIn (1+zy) — 2z +2zy) In (1 +y) 4+ 2zy) (—z+ 2> — (1 —z) In (1 — 2))
—(I42y) In(14+2y) —2*°(1+y) In (1+y) — 2y +2°y) 2z + In (1 —z))
=—(14+y)n(l+zy)In(l—2)+22—-2)(1+y)In(1+y)In(l—2x)
—a(zy +y+2)In (1 +2y)+22%(1 +y) In (1 +y) — 2zy(1 — 2)%.

It follows that £(0) = £x(1) = 0. In more detail regarding the continuity of £
at 1 with £(1) = 0, the key fact needed is the limit relation

0.

1
lim In(l1—2)- In Ty _
z—1- 1+y

15



This follows easily from the general inequality In x < x—\/}l forx > 1, cf. (14)
of [9].
We differentiate:

¢ =1+ 9) ([ -0 - ()

+(1+y)ln(1+y)-((2—2x)1n(1—x)—m(2—x)-1ix)

Yy
— | (2 2 1 2
(( ry+y+2)In(1+zy) +z(zy+y+ )1+:cy)
+4x(1+y) In (1 +y) —2y(1 — x)* + day(1l — ).

Thus £'(0) = =2y < 0, £'(1) = co. Further differentiation and exploitation
of the left hand inequality of (25) gives:

@)= (204 - G Cm-a)

+ (<11jj)2 —Qy) In (1+zy) — (1+y)M In(1+vy)

(1—a)
2 1 — ay?
5 — — 12
+y( +1—x (14 zy)? x)

> (2(1+y)ln(1+y)—%) (—In(1—ux))

2—x 11— ay?
— 2y In (1 5 — — 12
y In ( +xy)+y( + e x)

(1+ )y 2 1 1 — xy?
> 2y — —22— -2 6 — — 12
_<y (1+ zy)? v yrty +1—:(; (14 zy)? v
) )

6
1+xy+ y+1—x

= —10zy — 2’z —

Dividing by y we obtain the expression

I

1
—10x — 22y — +6+
1 Y 11—z

which we have to prove is > 0. Now note that, for fixed z,
1 1
—2xy — > =2z — ,
1+ a2y 1+
thus we have to prove that ¢ > 0 with

1
—— +6.
1—|—;1:+1—1:Jr

((x) = —12x —
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By simple differentiation we find that ¢ is minimal for x = %\/5 with

minimum 6 — 4v/2 ~ 0.34 > 0.

All parts of Theorem 2 are hereby proved.
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