
MAXIMUM ENTROPY ANALYSIS - A COMPANION

FLEMMING TOPSØE

Abstract. This is a companion to Robert Niven’s block 4, 2007-
lectures. I point to an alternative way of deriving the MaxEnt and
the MinXEnt-distributions which is claimed to be more fundamen-
tal as well as technically a good deal simpler than the standard
method via Lagrange multipliers (sic, still what you find in many
(any ?) textbook you may pick up in this field). I hope you, the
students in Robert’s class, will realize that the method presented
offers a deeper understanding with relevant interpretations which
focus on what the physicist can do in terms of “describing” or
“representing” the system studied, as always respecting the avail-
able knowledge. To fully benefit from the approach, you have to
understand more of coding and to embark on a more thorough
game-theoretical analysis.

1. The price to pay

Nothing is free. We have to learn a new concept. No way around that.
In this section I give the shortest possible introduction to what we
need.

Given is an alphabet A, say consisting of s basic elements or states
which we may label by an index i, running from 1 to s1.

We know what a probability distribution (or just a distribution) over A
is: a set p = (pi)i≤s of non-negative numbers with sum 1:

(1)
∑
i∈A

pi = 1 .

Now define an idealized code length function, in the following simply a
code, as a set of numbers κ = (κi)i≤s such that Kraft’s equality holds:

(2)
∑
i∈A

e−κi = 1 .

It is striking from (1) and (2) that you can go quite freely from distri-
butions to codes and vica versa: Given p, the adapted code is the code

1in fact we could, as I think also Robert has hinted at, allow a countably infinite
alphabet; this will only result in minor modifications in the following (basically
infinite sums instead of finite ones). Actually, for most formulas I keep the option
of an infinite alphabet open by writing i ∈ A instead of i ≤ s.
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κ determined by

(3) κi = − ln pi ,

and, given κ, the matching distribution is the distribution p determined
by

(4) pi = e−κi .

For a code, all values are ≥ 0. One should also allow the value ∞ which
corresponds to an impossible event, an event with zero probability (pi =
0). The other extreme, κi = 0, corresponds to a certain event (pi = 1).
If κ is a code and p a distribution, we call (κ, p) a matching pair if (3)
and (4) hold.

Why bother to introduce codes? After all, the relationships (3) and
(4) are extremely simple and thus the new concept can be avoided
altogether. We will see! Some indications now, more later.

Often we will consider codes and distributions which need not form a
matching pair. For any such pair, say (κ, p), a key quantity to consider
is the average code length, denoted 〈κ, p〉 and defined – as you would
expect – as the average

(5) 〈κ, p〉 =
∑
i∈A

piκi .

To “put you in the mood” , (κ, p) y 〈κ, p〉 is the complexity function
and:

〈κ, p〉 is to be thought of as the complexity seen from the point of view
of the physicist when he is using κ as his tool for describing the sys-
tem under study if the system is in fact governed by the distribution
p.

Instead of the word “describing” , pointing to codes as “descriptors” ,
you could talk about “representations” or “observation strategies” or
“measurement strategies” and emphasize that this should be seen as
reflecting the physicists ideas about the system, indeed his knowledge
about the system. The above point of view is thus in complete confor-
mity with the ideas brought forward by Jaynes.

2. First results

Two definitions suggest themselves:
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Definitions The entropy of a distribution p is the minimal associ-
ated complexity:

(6) H(p) = min
κ
〈κ, p〉 .

And the redundancy D(p‖κ) of κ given p is the actual complexity
minus the smallest achievable complexity, i.e.

(7) D(p‖κ) = 〈κ, p〉 − H(p) .

It is understood that in (6), the minimum is over all codes. We may
write (7) in the form

(8) 〈κ, p〉 = H(p) + D(p‖κ)

which we refer to as the linking identity – indeed, it links together the
three key quantities, complexity, entropy and divergence. As a compan-
ion to the definition (7) we define the divergence D(p‖q) between two
distributions p and q as the corresponding redundancy, replacing q with
the code adapted to q, i.e.

(9) D(p‖q) = D(p‖κ) with κ the code adapted to q .

Then we may write the linking identity in the form

(10) 〈κ, p〉 = H(p) + D(p‖q) ,

it being understood that (κ, q) is a matching pair.

Theorem 1.

H(p) = −
∑
i∈A

pi ln pi(11)

D(p‖q) =
∑
i∈A

pi ln
pi

qi

.(12)

The simple proof below uses the elementary inequality ln x ≤ x− 1.

Proof. Let p and q be two distributions and κ the code adapted to q.
As

(13) 〈κ, p〉 = −
∑
i∈A

pi ln pi +
∑
i∈A

pi ln
pi

qi

and as

(14)
∑
i∈A

pi ln
pi

qi

= −
∑
i∈A

pi ln
qi

pi

≥ −
∑
i∈A

pi

(qi

pi

− 1
)

= 0 ,

(with equality if p = q), the result follows. �
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So entropy is nothing but the familiar Boltzmann-Gibbs-Shannon en-
tropy and divergence the, likewise familiar, Kullback-Leibler diver-
gence. Comforting!

The above proof told us that D(p‖q) ≥ 0 (with equality if and only if
p = q). This is the most fundamental inequality of information theory.
Our findings also show that entropy equals complexity for the adapted
code:

(15) H(p) = 〈κ, p〉 with κ the code adapted to p .

3. MaxEnt made easy

By a model we shall here understand any set of distributions over A.
If P is such a model, we denote by Hmax(P) the maximum entropy
value, defined as the suppremum H(p) = supp∈P H(p)2. And we say that
the distribution p is the maximum entropy distribution (the MaxEnt
distribution) if p ∈ P and H(p) = Hmax(P).

Our first result is an almost trivial but, nevertheless, extremely useful
observation. It relies on the following notion: A code κ∗ is robust (for
the model P) if 〈κ∗, p〉 is independent of p as long as p ∈ P . The
common value of 〈κ∗, p〉 for p ∈ P is the constant of robustness.

Lemma 1. Let (κ∗, p∗) be a matching pair with p∗ ∈ P and κ∗ robust.
Then p∗ is the unique MaxEnt distribution and Hmax(P) = h, the
constant of robustness.

Proof. By (15), H(p∗) = 〈κ∗, p∗〉 = h. And if p ∈ P is distinct from p∗,
then by (10), H(p) < H(p) + D(p‖p∗) = 〈κ∗, p〉 = h. �

As an example, we conclude that if P consists of all distributions over A,
then the uniform distribution is the MaxEnt distribution. This follows
as the code with all codeword lengths equal (= ln s) is robust.

Now, to handle a more general situation, in fact the most important
model for statistical physics as well as for numerous other applications,
let us consider finitely many constraints, say R constraints, all given by
specifying the meanvalues, denoted 〈fr〉, for given functions fr, r ≤ R.
Thus, the fr’s are given real-valued functions defined on A and the
〈fr〉’s are given constants, the specified meanvalues. The model we
have in mind is given by:

(16) P = {p|〈fr, p〉 = 〈fr〉 for r = 1, · · · , R} .

The strategy we shall adopt in the search for the MaxEnt distribution
for P is to search for a robust code κ∗ with matching distribution in

2for models occurring in typical applications the supremum is achieved and may
thus be replaced by a maximum.
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the model. By Lemma 1, this will solve the problem. Clearly, any code
of the form

(17) κ∗ = λ0 + (λ1f1 + λ2f2 + · · ·+ λRfR)

is robust. In more detail, such a code is given by the values κ∗i =
λ0 + (λ1f1,i + · · ·+ λRfR,i) where the function values of fr are denoted
by fr,i, i ∈ A. There are many codes of this form. Indeed, for any set
of constants λr, r ≤ R we can define λ0 so that κ∗ given by (17) is a
code. We only have to make sure that Krafts equation (2) holds, and
this is easily achieved by taking for λ0 the value

(18) λ0 = ln
∑
i∈A

e−λ1f1,i−···−λRfR,i .

The sum in (18) plays a central role. It is the partition function associ-
ated with P . We denote it by the letter “Z” (german: “Zustandssumme”
– in danish the term is “tilstandssum” ). The function is defined for all
vectors (λ1, · · · , λR) ∈ RR 3 by the formula

(19) Z(λ1, · · · , λR) =
∑
i∈A

e−λ1f1,i−···−λRfR,i .

Let us introduce a more streamlined notation by using boldface letters
for vectors: λλλ for (λ1, · · · , λR), f for (f1, · · · , fR) and, for any i ∈ A,
f(i) for (f1,i, · · · , fR,i). Also, we use · to denote an inner product (the
same as a scalar product) of two vectors. Thus (17), (18) and (19) can
be written as follows:

κ∗ = λ0 + λλλ · f ,(20)

λ0 = ln Z(λλλ) with(21)

Z(λλλ) =
∑
i∈A

e−λλλ·f(i) .(22)

Applying Lemma 1 in conjunction with the above analysis, we obtain
the following key result:

Theorem 2. The MaxEnt distribution for the model P given by (16)
is the distribution p∗ of the form

(23) p∗i =
e−λλλ·f(i)

Z(λλλ)
; i ∈ A

for which the R parameters in λλλ are determined from the R con-
straints 〈f1, p

∗〉 = 〈f1〉 , · · · , 〈fR, p∗〉 = 〈fR〉. The MaxEnt value is

(24) Hmax(P) = ln Z(λλλ) + λλλ · 〈f〉 .

3if the alphabet is infinite, the restriction that the defining sum (19) must be
convergent also has to be taken into account.
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In (24), λλλ · 〈f〉 is short for λ1〈f1〉+ ·+ λR〈fR〉.

Proof. As stated, this really follows from the analysis above. Indeed,
with λ0 given by (18) (equivalently, by (21) and (22)), and κ∗ given by
(17) (equivalently, by (20)), p∗ given by (23) is the distribution which
matches κ∗. And if we make sure that the R constraints are satisfied,
this distribution will be in P and then Lemma 1 applies directly. As the
constant on the right hand side of (24) is the constant of robustness,
(24) follows. �

There is no general formula which allows us to express the solution in
closed form. However, it is pretty clear that a solution exists as we have
R equations to determine the R unknowns λ1, · · · , λR

4 .

4. MinXEnt made easy

In this section we study exactly the same model as before – so the
model is given by (16) – but now with the change that the physicist
has already – based on previous experience or for other reasons – settled
for a prior distribution. Let us denote this prior distribution by q and let
κ0 denote the code adapted to q. Again, the physicist is searching for an
optimal choice of a distribution p∗, this time thought of as a posterior
distribution representing a suitable updating of the prior, taking the
information available, expressed by the model (16), into account.

Instead of basing the performance on complexity as before, it is now
more reasonable to look at the saving one can achieve. This saving
can be measured by the difference between the a priori complexity and
the new, hopefully lower, a posteriori complexity, i.e. by the difference
〈κ0, p〉 − 〈κ∗, p〉 with p ∈ P .

Note that 〈κ0, p〉 − 〈κ∗, p〉 = D(p‖q) − D(p‖p∗), hence, if the physi-
cist knew p, his response would be to update by p∗ = p (of course!)
and his maximal saving would be D(p‖q). We argue with Jaynes that
the proper choice of the physicist should be “least committal” , i.e. the
physicist should be prepared for the least favourable eventuality – any-
thing else would correspond to extra information which the physicist
does not have. Therefore, we realize that the physicists strategy should
be to choose as update, that distribution p∗ ∈ P which minimizes the
cross entropy D(p‖q) among all distributions p ∈ P. This distribution
is the minimum cross entropy distribution – for short, the MinXEnt
distribution. Of course, it need not exist. But in natural models – as
the one we are considering – it does. In the information theoretical and
the statistical literature, this distribution is called the I-projection of

4mathematically, the situation is more complicated if we allow an infinite alpha-
bet – even if we stick to finitely many constraints.



MAXIMUM ENTROPY ANALYSIS - A COMPANION 7

q on P . We denote by Dmin(P‖q) the value to aim for which then is
the minimum (strictly speaking the infimum) of D(p‖q) for p ∈ P .

The problem then is to identify the MinXEnt-distribution and to cal-
culate Dmin(P‖q). Really, the solution is just as easy as before. This
time we rely on the following notion of robustness: A code κ∗ is robust
relative to the prior q if, for some constant d, 〈κ0, p〉 − 〈κ∗, p〉 = d for
all p ∈ P . The constant d is the constant of relative robustness. The
relevant lemma now reads:

Lemma 2. Let (κ∗, p∗) be a matching pair with p∗ ∈ P and κ∗

robust relative to q. Then p∗ is the unique MinXEnt distribution and
Dmin(P‖q) = d, the constant of robustness relative to the prior q.

Proof. Clearly, D(p∗‖q) = 〈κ0, p
∗〉 − 〈κ∗, p∗〉 = d and, since, for any

p ∈ P which is different from p∗, we find that

D(p‖q) = 〈κ0, p〉−H(p) > 〈κ0, p〉−
(
H(p)+D(p‖p∗)

)
= 〈κ0, p〉−〈κ∗, p〉 = d ,

the result follows. �

Armed with Lemma 2, the MinXEnt-problem is as easy to solve as the
MaxEnt-problem: One notes that all codes of the form κ∗ = κ0+λ0+λλλ·f
are robust relative to q. Indeed, for p ∈ P ,

〈κ0, p〉 − 〈κ∗, p〉 = 〈κ0 − κ∗, p〉 = 〈−λ0 − λλλ · f , p〉 = −λ0 − λλλ · 〈f〉 .

For given λλλ we must adjust λ0 so that κ∗ becomes a genuine code. This
leads to the consideration of Zq, the partition function relative to the
prior q, which is defined by

(25) Zq(λλλ) =
∑
i∈A

qi e
−λλλ·f(i) .

Imitating the proof of Theorem 2, we then find the solution to our
problem:

Theorem 3. The MinXEnt distribution for the model P given by
(16) and with prior q is determined as the distribution p∗ of the form

(26) p∗i =
qi e

−λλλ·f(i)

Zq(λλλ)
; i ∈ A

for which the R parameters in λλλ satisfy the R constraints 〈fr, p
∗〉 =

〈fr〉, r ≤ R. The MinXEnt value is

(27) Dmin(P‖q)) = − ln Zq(λ)− λλλ · 〈f〉 .
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5. Discussion

We have given natural intrinsic proofs of key results. To do so we
had to introduce some new concepts, rooted in coding. In this way,
it appears that Jaynes views can be supported more strongly than
by other means. However, to reach the full benefit of the approach
taken, one has to consider more explicitly the two sides involved, that
of the model (“Nature”) and that of the physicist. This requires more
acquaintance with concepts from game theory.

The elegant and important general technique of Lagrange multipliers
has been avoided. Not a deed in itself, but as it turned out, it gives more
insight into the problem, e.g. the constants that appear in the solutions
to the MaxEnt- and the MinXEnt problems – the same constants that
would appear had we applied the standard method via Lagrange multi-
pliers – have a clear influence on the code which the physicist is adviced
to use. As a technical advantage, apart from being very expedient, our
method leaves no doubt as to the nature of the solutions found (with
Lagrange multipliers involved, extra effort is necessary if you want to
ensure what kind of stationary point you have found – a minimum, a
maximum or some kind of saddlepoint).

Our method can also be generalized considerably to involve different
kinds of complexity functions (however, I cannot indicate here the wide
range of further possibilities).

The technique presented was published in the seventies. One can ask
why it is not universally adopted in textbooks concerned, especially in
statistical physics. Perhaps, this is partly due to a resistence among
scientists to adopt unfamiliar concepts (codes etc.), partly to the not-
so-efficient promotional efforts. In fact, the results were first published
in journals of pure mathematics and are only now finding their way to
the more applied literature.

Note the great similarity between Theorems 2 and 3. It lies nearby to
ask if a general result can be developed comprising both results at one
stroke. Indeed, this is possible. We leave it to the readers ingenuity to
suggest exactly how this can be achieved (not quite trivial but once
done, it is nice!).
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