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What is entropy?

Entropy operates in the interface
God ↔ man or Nature ↔ man or
system ↔ physicist studying or actually observing.

Entropy assigns to the true state x of a system the
complexity of the system in that state as seen by

man. More precisely, the entropy of x is given by

S(x) = min
y

Φ(x, y) where

Φ(x, y) = description cost (or effort) needed to de-
scribe the system when the truth is x and your belief
is y.

So: Entropy is minimal description effort

Note: Focus on Φ with S as a derived concept. An-
other important derived concept is redundancy (diver-
gence) D defined by D(x, y) = Φ(x, y) − S(x) .



Problem: Φ =?

Answer requires knowledge about nature, the world
we operate in, and input from man who should design
efficient descriprion strategies via descriptors (see later).

truth x belief y knowledge z

Regarding z : outcome from extended observations,
synthesis of extended experience, knowledge .

x and y will be distributions over some alphabet, A:
x = (xi)i∈A, y = (yi)i∈A and similarly for y.



Possible worlds

Key postulate: There is an interaction between x, y, z
of the form z = Π(x, y). Π characterizes the world.
Some possibilities:

Π(x, y) = x: classical world ,
Π(x, y) = y: black hole ,
Π(x, y) = qx + (1 − q)y: mixtures .

Assume that interaction acts locally via interactor π :
z = Π(x, y) with zi = π(xi, yi). Always assume that
π(s, t) = s if t = s (soundness).

Examples: πq(s, t) = qs + (1 − q)t corresponding
to classical world (q = 1), black hole (q = 0) or mix-
tures.

There are many other possible interactors, but:

under consistency the πq’s are the only ones.

Consistency:
∑

zi = 1, for x, y probability distributions, z = Π(x, y).



What can the physicist do?

We assume that the world is known to the physicist
through the interactor π.

Every observation entails a cost (or effort). The cost
depends on the event being observed. An event with
high probability has little cost. Thus define a descrip-
tor κ to be a decreasing function on [0,1] with κ(1) =

0. Also insist that κ satisfies the normalization condi-
tion κ′(1) = −1, corresponding to a choice of unit .

Interpretation: κ(t) is the effort associated with obser-
vations from an event which you believe occurs with
probability t (equal to some yi, say).

Total description cost, Φ(x, y) , when truth is x and
belief is y is given by

Φ(x, y) =
∑

i∈A

ziκ(yi) =
∑

i∈A

π(xi, yi)κ(yi) .



The perfect match principle (PMP)

To design κ, hence Φ, apply perfect match principle:

PMP: Φ is the smallest when belief matches
truth:Φ(x, y) ≥ Φ(x, x), i.e. Φ(x, y) ≥ S(x).

Theorem Given π, the only possible descriptor
satisfying PMP is the solution to

∂π

∂t
(t, t)κ(t) + tκ′(t) = −1 ; κ(1) = 0 .

If π = πq, this becomes

(1 − q)κ(t) + tκ′(t) = −1 ; κ(1) = 0

with solution κ = κq given by

κq(t) = lnq
1

t
with q-logarithm given by

lnq x =







lnx if q = 1 ,
1

1−q

(

x1−q − 1
)

if q 6= 1 .

However, this only satisfies PMP if q ≥ 0.



Comments on the proof

The differential equation comes up via standard vari-
ational principles (introduce Lagrange multipliers!).

Re πq, κq: Failure of PMP for q < 0: simple direct
counter examples with a 3-element alphabet.

Validity of PMP for q ≥ 0: via PFI, the pointwise fun-
damental inequality , which states that d(s, t) ≥ 0

where

d(s, t) =
(

π(s, t)κ(t) + t
)

−
(

sκ(s) + s
)

.

Indeed,

D(x, y) =
∑

d(xi, yi)

and PMP really says that D(x, y) ≥ 0 (with “=” iff
y = x). Writing up the formulas with πq and κq in
place of π and κ one finds that a simple application of
the geometric/arithmetic mean inequality leads to the
desired inequality d(s, t) ≥ 0.



Comments on result:
• Strong argument in favour of the view that only pos-
sible entropy measures of statistical physics are those
in the Tsallis family : Sq(x) =

∑

xiκq(xi)

=

(

∑

x
q
i − 1

)

/(1− q) for q ≥ 0. Classical value for

q = 1, and for black hole, S(x) = n − 1, number of
degrees of freedom (n = size of alphabet).
• Φ more important than S, gives more, e.g. shows
which are the feasable preparations , viz. those of the
form P = {x|Φ(x, y0) = c}, and Φ also assists
greatly in finding equilibrium distributions (via Max-
Ent , and even without introducing Lagrange multipli-
ers – instead a natural, therefore better, intrinsic ap-
proach is used). (more on next slides)
• The roles of God and man (nature and man, system
and man) clearly separated!
• Formulas are mathematically attractive, e.g. lines
up with popular Bregman divergencies ... there “must
be some truth in them”!
• main outstanding issues are: interaction, how? de-
scription, how – via coding as in classical case (à la
Shannon) ?



Equilibrium calculations

Background theorem P any preparation (set
of x’s). Given x∗, y∗ such that: x∗ ∈ P , y∗

robust , i.e. ∃h∀x ∈ P : Φ(x, y∗) = h, and
y∗ = x∗. Then x∗ is the MaxEnt distribution of
P (and y∗ the MinRisk strategy for the physi-
cist, i.e. argmin

(

maxx∈P Φ(x, y)
)

= y∗).

Proof: Assume Φ(x, y∗) = h for all x ∈ P . Then
S(x∗) = Φ(x∗, x∗) = Φ(x∗, y∗) = h, and, for x ∈
P and x 6= x∗ we have S(x) < S(x)+D(x, y∗) = h.
The min-risk part is proved just as easily. 2

Define: y∗ ∈ E(y), the exponential family of y, if
Φ(x, y∗) only depends on Φ(x, y). In short:

E(y) = {y∗|∃ξ : Φ(x, y∗) = ξ
(

Φ(x, y)
)

} .

Corollary Put Ly(h) = {x|Φ(x, y) = h}. If
P = Ly(h) and x∗, y∗ are given such that:
x∗ ∈ P , y∗ ∈ E(y) and y∗ = x∗, then x∗ is the
MaxEnt distribution of P .



... continued

Let Ly be the class of non-empty models of the form
Ly(h) with h ∈ R . The associated exponential family
or equilibrium generating family , is the family

E(y) = {x|∀L ∈ Ly∃c ∈ R : L ⊆ Lx(c)} .

x ∈ E(y) , S(x) = h ⇒ x is MaxEnt dist. of Lx(h)

Thus one should try and determine the elements in
E(y). Looking at it, you find that for the worlds deter-
mined by one of the interactions πq, every x for which
there exist constants α and β such that

∀i ∈ A : κ(xi) = α + βκ(yi)

are in E(y). For q = 1 this leads to classical analy-
sis (with partition function etc.) and even without the
use of Lagrange multipliers. For the general case, you
have to adjust constants so that

∑

i∈A

κ−1
(

α + βκ(yi)
)

= 1 .
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Figure shows family (κq)q≥0 of descriptors

So, given a probability t, you can see what effort is
needed, measured in nats (natural units) , in order to
describe events with probability t when you use the
chosen descriptor.
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Figure shows inverses of descriptors.
“probability checkers”

You can use these functions (q-deformed exponen-
tials ) to check, for a chosen descriptor, how compli-
cated events you can describe with a given number of
nat’s available, i.e. how low a probability an event can
have and still be describable with the available num-
ber of nat’s. This kind of consideration is important in
order to carry out MaxEnt calculations indicated pre-
viously.


