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Abstract

It is suggested that thermodynamical equilibrium equals game the-
oretical equilibrium. Aspects of this thesis are discussed. The philo-
sophy is consistent with maximum entropy thinking of Jaynes, but
goes one step deeper by deriving the maximum entropy principle from
an underlying game theoretical principle. The games introduced are
based on measures of complexity. Entropy is viewed as minimal com-
plexity. It is demonstrated that Tsallis entropy (¢g-entropy) and Kani-
adakis entropy (k-entropy) can be obtained in this way, based on suit-
able complexity measures. A certain unifying effect is obtained by
embedding these measures in a two-parameter family of entropy func-
tions.

Keywords. Measure of complexity, maximum entropy, game theoretical
equilibrium, Nash equilibrium, Tsallis entropy, Kaniadakis entropy.

1 Introduction, background

The Mazimum Entropy Principle (MaxEnt) has been studied extensively
by Jaynes from 1957 onwards, cf. [1], [2], [3] and [4]. MaxEnt dictates
that the least biased probability distribution among the set of consistent
distributions in some context, and hence the one best suited for predictions,
is the one with maximal entropy. Following Jaynes, one should not think of
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the ensuing distribution, the MaxEnt-distribution, as the “true” distribution,
but rather as the distribution which best models our knowledge about the
system under study. This distribution is the one best suited for predictions.
If we could suggest better predictions than what can be obtained based on
the MaxEnt-distribution that would reflect that we actually knew something
more.

In [5] and [6] the author pointed out that a principle of Game Theoretical
Equilibrium leads to MaxEnt and to a related principle of updating (based
on a given prior distribution). In [7], [8], [9] and [10] the reader finds more
recent publications on these issues.

The research alluded to above concerns the entropy measure associated
with the names of Boltzmann, Gibbs and Shannon. When, below, we have
this measure of entropy in mind, we refer to “classical entropy”.

Based on the apparent relevance of information theory as e.g. in the
MaxEnt-principle, the importance of this field as a basis for statistical phys-
ics is growing and there are tendencies that this is becoming more widely
recognized. At least, this is the authors impression from participation in
the NEXT2003 conference. The present contribution is in line with these
tendencies. It emphasizes the role of measures of complexity and associated
information theoretical games. Instead of focusing on the finer mathematical
details (as in [8]) we concentrate on the basic ideas. The approach is ax-
iomatic and allows for non-classical entropy measures such as the presently
very popular Tsallis entropies (or g-entropies), cf. [11], and the more recently
proposed Kaniadakis entropies (or k-entropies), cf. [12] and [13].

2 Games of complexity

In this section we focus on concepts related to the information theoretical
games we shall study.

Let A, neutrally referred to as the alphabet, be a finite or countably
infinite set. Introduce two players, Player I (“Nature”, “the system” or - - -)
and Player II which we, less abstractly, identify with the physicist. Let the
strategies available to Player I be given by a set S; of distributions (always
probability distributions) over A. Often, we refer to Sy as the preparation .

As strategy set Sy for Player II we take the set of all distributions over
A. Tf @ € §;;, we may think of () as a means to describe or to code outcomes

'As an indicative example, think of an Ising spin system provided with an energy
function. Then A consists of all sequences (i1, -+ ,i,) of 0’s and 1’s with n the number
of particles. As a natural preparation, consider all distributions over A with a prescribed
mean energy.



in A resulting from observations of the physical system under study. A few
comments on codes related to classical entropy are in place. Technically, the
concept can be avoided, but it ¢s useful and supports the understanding. A
code, more precisely an idealized code, is a map k : A — [0, 00] such that

Kraft’s equality
D e =1 (1)
icA
holds. Intuitively, (i) should be thought of as the length of the “codeword”
which we imagine x assigns to ¢ € A. The good sense in this interpretation

is well known in information theory. For a quick introduction, see [9]. The
code adapted to () € Sy is denoted kg and given by

k(1) = —InQ(i) for i € A. (2)

We now assume that there is given a measure of complexity which, to any
pair (P, Q) of distributions, assigns a number ®(P||Q) € [0, oo], thought of
as the complezity (or difficulty) for Player II involved in observations of the
physical system when he uses the strategy () and when Player I has chosen
the strategy P € S;. We sometimes refer to () as the reference and may
then say that ®(P||Q) is the complexity of P with reference (). We have
used the seperator || in the notation for values of ® as the two distributions
that appear in ®(P||Q) actually have different roles. Also, ® is normally not
symmetric.

By S¢ we denote the ®-entropy which is introduced for every distribution
P by

Se(P) = nf O(P|Q). (3)

Thus, by definition, entropy equals minimal complexity.

The key elements in the model we shall study are (A, S7, @), the alphabet,
the preparation and the complexity measure. We always take the set of all
distributions over A as the strategy set for Player II.

We assume that the following axioms are fulfilled:

Se(P) < oo for P € Sy, (4)
S4(P) = B(P|P) for P € S, (5)
(I)(PHQ>>S¢(P) for Pe Sr,Q € Spr,Q # P. (6)

The basic axioms (5) and (6) are quite natural. Indeed, they express that
the complexity of P is the smallest when P itself is taken as reference. And
regarding (4), this is a truly innocent axiom. Therefore, it is understood in
the sequel without further mentioning that this condition is fulfilled for the
preparations we shall deal with.



To any pair (P, Q) € Sy x S;r we can associate the ®-redundancy defined
by
Do (P[|Q) = ®(P[|Q) = Sa(P),

i.e. as actual complexity minus minimal complexity. This identity is best
written as

®(P[|Q) = Se(P) + Do (P[|Q) (7)

and is referred to as the linking identity.

Clearly, Dg(P]|@) > 0 and equality holds if and only if P = Q). Instead of
redundancy, we often use the terminology divergence for Dg. It can be seen
as a kind of, typically, non-symmetric distance between distributions, but the
interpretation indicated above as a redundancy is actually more appropriate
for our purposes.

By the classical complexity measure we understand ®.,s defined as aver-
age code length, i.e. as (kg, P) or, directly in terms of @,

Clas PHQ sz ln - (8)

€A

(Here, the p; and ¢; denote the point probabilities of P, respectively Q).

For brevity, we denote by S.a.s and ®..s the entropy- and redundancy
mesures associated with ®..s. Entropy then is the classical Boltzmann-
Gibbs-Shannon entropy and redundancy the well known relative entropy or
Kullback-Leibler divergence, cf. [14], [15]:

clas sz lIl - (9)
i€EA

clas PHQ sz h’l—. (1())

€A

The fact needed to prove (9) and (10) is the inequality Dgas(P||Q) > 0 with
equality only if P = @ (use (10) with —p;In qui in place of p; In % and apply
Jensen’s inequality). This also shows that our axioms are indeed fulfilled.

Now return to the case of a general measure of complexity, ®, and intro-
duce the two-person zero-sum game v = vo(Sy) with Player I and Player
IT as the two players and with ® as objective function, viewed as a cost to
Player II. Thus, Player II, the physicist, aims at achieving a low complexity
whereas Player I has the opposite aim.

Applying the usual “minimax/maximin thinking” of game theory, Player
I will, when contemplating whether or not to use the strategy P € S;, pay
attention to the best counter strategy by Player II, i.e. the strategy which
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minimizes complexity. By (3), this leads to the value S¢(P). Therefore,
Player I considers P* € S; to be an optimal strategy if Se(P*) = S§™, the
maximum entropy value which is defined by

Se = sup Se(P). (11)
PeSy

Similarly, Player II will associate a certain risk to any strategy ) € Syy.
This risk is given by
Ra(Q) = sup ®(P|Q) (12)
PeSy
Player II will, therefore, consider Q* € &;; to be an optimal strategy if
Re(Q*) = RY™, the minimum risk value which is defined by

R®m — inf R . 13
o = of Rae(Q) (13)

By the general maximin/minimax inequality,
Smax < Rmin (14)

If equality holds in (14), we say that the game is in equilibrium and the
common value is the value of the game. In such cases, mazximum entropy
equals minimum risk or, in other terms, maximum entropy equals minimum
complezity (more precisely, minimum guaranteed complexity).

The principle of game theoretical equilibrium (GTE) simply dictates that
you search for optimal strategies for the players and investigate if the game is
in equilibrium. By the identification of the optimal strategies for Player I, we
already see that this leads to the MaxEnt-principle. But the corresponding
principle for Player II, call it the minimum complexity principle, ought to
be just as interesting. It reflects what best the physicist can do.?2 In the
classical case this second principle is, in a sense, not needed as usually the
two optimal objects which you are led to consider agree and lead to the same
value, S5 = RE™ (see Theorems 1 and 2 below and apply them to standard
examples as in [8]). But when you turn to non-extensive statistical physics
the situation may well be different and one should be aware of the possible
significance of the point of view offered by the game theoretical approach.

If there is a discrepancy between S3™ and R§™ this is interpreted in the
classical case that the excess value in complexity can be used to perform some
work, hence the physical system is not in equilibrium. This interpretation

2In information theory this kind of thinking is usually referred to as the principle of
minimum description length, a principle promoted by Rissanen, cf. the survey article [16].



will need a more thorough analysis but we shall not go into that here 3. When
these considerations are sound, they point to the thesis that thermodynamical
equilibrium s the same as game theoretical equilibrium.

Often, one and the same distribution is optimal for Player I as well as
for Player II. Such a distribution is said to be a bi-optimal strategy. The
optimal strategies for Player II do not seem to have an analogy in established
principles of statistical physics, at least not directly. In the classical case, the
optimal strategies for Player II almost always exist — and are actually best
understood in terms of coding — whereas the MaxEnt-distributions may fail
to exist, cf. Ingarden and Urbanik [17] and the already cited papers [5] and

8].

3 Criteria for equilibrium

We need a general notion of equilibrium from game theory: A pair (P*, Q*) €
S; x Sy is a Nash equilibrium pair if the saddle value inequalities

O(PQ7) < o(P|Q7) < o(PT|Q) (15)

hold for any P € S; and any ) € S;;. If the players choose strategies
prescribed by such a pair, none of the players will benefit from changing
strategy — assuming that the other player does not do so either.

A final concept is useful, at least for the classical case: A strategy @) for
Player II is said to be robust if the complexity that may appear when using
this strategy is finite and independent of Player I's choice of strategy, i.e. if,
for some finite constant h, ®(P||Q) = h for all P € §;. The set of all robust
strategies forms the exponential family associated with the game o

Theorem 1. (GTE-fundamentals for vg). Assume that Sg™* < oo.

(i) (Nash equilibrium properties). If (P*,Q*) is a Nash equilibrium pair,
then Q* = P*, vg is in equilibrium, P* is the unique optimal strategy for
Player I, hence the unique MaxEnt-distribution, and Q* is the unique optimal
strateqy for Player II. In particular, P* is the unique bi-optimal distribution.
Furthermore, for any P € Sy, the trivial inequality Se(P) < Sg™* can be
sharpened to

Se(P) + Do (P|[P7) < S™, (16)

3This depends, as indicated to me by Peter Harremoés, on the realization that, at least
for the classical case, information in terms of bits, typically via redundancy, can be related
to free energy.

4The family will be recognized as the usual family that emerges when studying standard
cases related to the canonical or grand canonical ensemble of statistical thermodynamics.



and, for any Q € Sy, the trivial inequality RY™ < Re(Q) can be sharpened
to

Rg"™ +De(P*[Q) < Re(Q) - (17)

(ii) (necessity of Nash equilibrium). If v is in equilibrium and if both

players have optimal strategies, then there exists a Nash equilibrium pair for

the game, hence also a bi-optimal strategy.
(iii) (identification). Let P* be a distribution. If P* € S; and

O(P||P*) < Se(P") for all P € Sy, (18)

then ~ve is in equilibrium and P* is the bi-optimal distribution.

(iv) (robustness). If the distribution P* is consistent (P* € S;) and

robust, then (P*, P*) is a Nash equilibrium pair, hence v¢ is in equilibrium
and has a bi-optimal strategy, viz P*.
Proof. (i): Assume that (P*, Q") is a Nash equilibrium pair. By choosing P*
for @ in (15), we realize that ®(P*||Q*) < Se(P*). By (6) this implies that
P* = @Q*, hence ®(P*||Q*) = S¢(P*). Then the first inequality of (15) shows
that Re(P*) < S¢(P*). Therefore,

RE™ < Ra(P") < Sa(P) < 83>

and by (14) we conclude that here, equality must hold throughout. Thus, 74
is in equilibrium and P* is a bi-optimal strategy.

By (7), the left-hand-side in (16) equals ®(P||P*) which is bounded above
by Se(P*) = S§™, hence (16) holds.

To prove (17) note that

RE™ 4+ Do (P*|Q) < Ra(P*) + Do (P*||Q)
= Se(P*) + Do (P*]|Q)
= o(P"|Q)
< Rs(Q) .

By (16) and (17), the uniqueness assertions regarding optimality of P*
follow. All parts of (i) are now verified.

To prove (ii), assume that P* € S;,Q* € Sy and that S¢(P*) = Sg™ =
RI™ = Re(Q*). Then, for P € S; and Q € S;; we have

P(P||Q") £ Ra(Q7) = Sa(P*) < (P*|Q7)
< Re(Q7) = Sa(P") < ©(P[|Q),

and we conclude that (P*, Q*) is a Nash equilibrium pair. This proves (ii).
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The property (iii) follows from the analysis above regarding property (i).
To prove (iv) note that if ®(P||P*) = h for all P € §; and P* € Sy,
then h = ®(P*||P*) = Se(P*), hence (iii) applies and the desired result
follows. O

NoTE 1. No convexity assumptions regarding the preparation S; or
concavity assumptions regarding the ®-entropy function are required in the
result. But, of course, such conditions will be fulfilled for many applications
of interest.

NOTE 2. The inequality (16) is of the “Pythagorean type’ and goes back
to Cencov, [18], and to Csiszér, [19]. The “dual” inequality (17) appeared in
[5].

NoTe 3. The proof of (ii) is a general argument that applies to any
two-person zero-sum game. Thus, if such a game is in equilibrium and allow
optimal strategies for both players, then the two optimal strategies must
form a Nash equilibrium pair.

NOTE 4. If 74 is in equilibrium and admits a bi-optimal distribution, we
see from (iii) that the strategy set S; can be extended without destroying
the equilibrium properties. In fact, the maximal extension consists of all
distributions P which satisfy the inequality in (18).

NoTE 5. Regarding the soundness of the GTE principle it is appropriate,
not so much to think of the game as such but more so to think of the actual
Nash equilibrium pair as an expression of physical equilibrium.

NoOTE 6. The criterion (iv) — which in practise does not even require
the introduction of Lagrange multipliers in order to identify the MaxEnt-
distribution — is very powerful when it applies, cf. [8]. However, one cannot
expect that it works when dealing with non-extensive entropy functions. The
usefulness is limited to the classical case and to preparations defined via mo-
ment constraints as in the discussion of the canonical and the grand canonical
ensemble.

It is extremely easy to suggest concrete measures of complexity which
satisfy our axioms. We can even achieve that any given non-negative function
of P occurs as the ®-entropy function. In fact, just add to the given function a
suitable function D(P||Q) such as a true metric or a Csiszdr f-divergence (for
these, see the next section). Of course, not all complexity measures arising in
this way are of interest. The fact is that though Theorem 1 is important, there
are other aspects which should be considered when suggesting reasonable
entropy functions.

In a sense, Theorem 1 is “too general”. It only deals with situations
when equilibrium holds, and says nothing about how often this happens. For



instance, one might want v4(Sy) to be in equilibrium for any convex prepara-
tion Sy or at least that the MaxEnt-distribution exists for these preparations.
This points to concavity of the ®-entropy function as a natural requirement.
Other consequences, e.g. related to a study of certain derived games with a
given prior, point to the good sense in requiring that ®-redundancy is convex
(in the first variable or even jointly).

In the next section we suggest a widely applicable method to generate
suitable measures of complexity. Here we point to a general property which
guarantees existence of equilibrium for a large class of preparations.

Theorem 2. (Equilibrium for convex preparations). Assume that, besides
azxioms (5) and (6), ®(P||Q) is concave in P for any distribution Q). Then
Se is concave. In fact, the following strong form of the concavity inequality
holds: For any mizture P =" a, P, (v, ’s non-negative with sum 1),

Se(d_aP) =Y a,Se(P) + Y, De(P|[P). (19)

Furthermore, under mild and natural continuity conditions (see the proof
below), the game vo(Sy) is in equilibrium and the bi-optimal distribution
exists if only Sy is conve.

Proof. By the linking identity, the right hand side of (19) can be
> a,®(P,||P) which is dominated by ®(3" o, P,||P) = ®(P||P)
the left hand side of (19).

Now assume that Sy is convex and that Sg(P*) = Sg™ with P* € Sy (if,
e.g. Sy is compact and convex and Sg continuous, the distribution P* with
the stated properties exists). Let P € S;. Then, for every € € [0,1], P. € S,
with P. = (1 — €)P* + eP. Therefore, S¢(P.) < Sg™* = S¢(P*). By (19),

e Wr 1tten as

(P>7

(1 — 8) S@(P*) +ESq><P) +8D¢(PHP€) < S@(P*) .

After rearrangement, division by £ and appeal to the linking identity we get
O(P||P.) < Se(P*). Assuming that ® is lower semi-continuous in the second
variable, we conclude that ®(P||P*) < S¢(P*) by letting € tend to 0. As this
holds for every P € Sy, the desired result follows by (iii) of Theorem 1. [

NoTE. Following ideas in [5] or [8], it is possible to refine the argument
and establish equilibrium in cases when the MaxEnt-distribution does not
exist.



4 Generation of complexity triples

We now propose to look closer into a simple and quite general class of com-
plezity triples by which we mean triples (®, S, D) consisting of a complexity
measure and its associated entropy and redundancy functions. Rather than
redundancy we shall in the sequel talk mainly about divergence since the
approach we shall adopt depends on properties of Csiszdr f-divergences. We
only need a few basic properties, some of which are derived below for the
readers convenience. For more information, see Liese and Vajda, [20] or,
more easily accessibly, Osterreicher and Vajda, [21], and references therein.

We find it convenient to introduce the notion of a generator as a real-
valued function f defined on [0, co[ such that

f(0)=f(1) =0, (20)
F=1, 1)
fis strictly convex (22)

and, furthermore, we assume that f is “smooth” | say continuous on [0, o]
and twice continuously differentiable on ]0, co| (possibly with less strict con-
ditions, e.g. allowing for exceptional points regarding the requirement of
differentiability).

Equation (21) is just a normalization condition. By (20) and (22), f is
negative on ]0, 1], positive on |1,00[. Putting f(cc) = oo, f maps [0, 0]
continuously onto the interval [a, oo] where a > —o0 is the minimal value of
f. The limat slopes

: o f) - f(x)
F(0) = lim ===, f/(c0) = lim — (23)
play a certain role. Often, f’(0) = —o0, f/(c0) = 0.

As a typical example, consider the classical generator, by which we mean
the all-important function of information theory, f(z) = zlnz. Other con-
crete examples will be discussed in the next section.

For any generator f, we define the associated triple consisting of f-
complezity, f-entropy and f-divergence by

2,(PIQ) = 3 (wf (1)~ F(p). (24)
Sf(P) = — Z f (i) (25)
Dy(PIQ) =3 af (). (26)
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We use the standard convention 0 f (8) = 0, thus all sums above could be
replaced by sums only over i € A with p; > 0. If p > 0, we define 0f(5) by
continuity, i.e. by

0f(5) =lmaf (7) = pf'(c0). (27)

Clearly, Sy is well-defined and 0 < Sy < oo. Also Dy is well-defined.
In fact, an application of Jensens inequality shows that the sum of negative
terms in (26) is bounded below by Q= f(P~/Q~) where P, respectively Q)
is the sum of p;, respectively ¢; with p; < ¢;. A further application of Jensens
inequality shows that D;(P||Q) > 0 with equality if and only if P = Q.
Then, for any preparation S; (which satisfies (4)), axioms (5) and (6) are
satisfied. We may, therefore, following the approach of Section 2, consider
the associated game, denoted v;(Sy).

Regarding technical issues, we note that ®;,S; and Dy are lower semi-
continuous (using the topology of pointwise convergence in the set of dis-
tributions). This property is important for certain finer investigations (not
pursued here — for an indication, see [8]).

As a final comment to the definitions, note that, clearly, the linking iden-
tity holds:

Op(PlQ) = S¢(P) + Ds(PlIQ). (28)
It is convenient, given the generator f, to consider also the Csiszdr-dual
® which is defined as the function f given by

f(x)zwf(é), 0<z<o0. (29)

Usual conventions are observed, e.g. 0-0o = 0. For the classical generator,
we see that f(z) = In 2, the (second-) most important function of information
theory. Expressed in terms of the Csiszar-dual, the definitions (24)-(26) take
the form:

@ (P|Q) = sz( l (). (30)

— pi pi
==Y nf(=), (31)
€A Z
D (P|Q) = Zpif(]%) . (32)
icA t

Some general remarks on Csiszdr-duals are in place. Clearly, f~~ = f.
The duality operation is easy to illustrate geometrically. Indeed, f(x) is the

not to be confused with the Fenchel conjugate of convexity theory .
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slope of the chord OA corresponding to the arguments 0 and 71, cf. Figure
1. Also, f(x) has a simple interpretation as the ordinate of the point B
on Figure 1 (this point is obtained by intersecting the tangent to f in A
with the second axes). These interpretations show that fis decreasing and
]7’ increasing, in particular, f is convex, in fact strictly convex. This also
follows analytically since

f@) =a=3f"(a™). (33)

Adding a few more simple observations we can summarize the discussion as
follows:

il

Figure 1. The functions f and f

Lemma 1. The Csiszdr-dual f of the generator f is strictly decreasing and
strictly convez on [0,00], f(0) = f'(00), f(1) =0, f(o0) = f'(0) and f'(1) =
—1.

Inspired by the form of (30), we define local complezity, ¢, and contrib-
uted complexity, 1, by

or(plla) = f(%) - f(%) : (34)
Vr(pllg) = poy(pllq) - (35)

These definitions are used for (p, ¢) €]0, 1] x [0,1] (and (35) also for p = 0).
We see that complexity (“total” complexity) is the average of local com-
plexity which equals the sum of contributed complexity.
Let us summarize some facts which are relevant for the study of the games

Vr
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Theorem 3. Let f be a generator. Then f-entropy S¢(P) is strictly con-
cave in P, f-divergence D;(P||Q) is strictly convex in both variables and
f-complexity ®;(P||Q) is strictly convex in Q. For any preparation Sy, the
risk

Ry (Q) = sup ®4(P[|Q)

PeSy
s convex in Q).
In case f-complexity ®;(P||Q) is concave (not necessarily strictly) in P
for each distribution Q, in particular if, for 0 < p <1 and 0 < q < 1, the

inequality
2

0
8—p2wf(pHQ) <0 (36)

holds, then the game v¢(Sr) is in equilibrium and the bi-optimal distribution
exists for every convex and compact preparation Sy.

Proof. The defining relation (25) shows that f-entropy is strictly concave.
Consider a mixture P =) a, P, and any ). Then, by (26),

ZO@ Dy (P, Q) = Z%Z%f(p;i)
Di B _
> zijqif(@) = D,(P|lQ),

hence D(-||@) is convex. Closer inspection of the argument tells us that the
convexity is strict.

The strict convexity for every P of D¢(P||-), and then also of ®;(P|-),
follows in a similar way as above but based on (32) and on Lemma 1. Then,
the function @ ~ R¢(Q) can be viewed as a supremum of convex functions,
hence this function is convex, too.

Finally, the statement about equilibrium when ®¢(-||Q) is concave follows
from Theorem 2. O

To check (36), we may use the formulas

62

Svrlo) = gf"<§) — "), (37)

—3( 27m4 w1

=p (qf——f—>- 38

@ -7 39
For the classical generator, (36) holds with equality, reflecting the fact

that then ®;(P||Q) is even affine in P for every distribution Q).
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5 Possible interpretations

In this section we consider the measure of complexity ®; associated with
a generator f. The section is partly speculative. It is intended as a first
attempt to reach a better understanding of the significance of the notion
of complexity as used in this paper. This is highly desirable as an overall
aim of the present paper is to promote complexity as a key concept, even
more fundamental than entropy. An interpretation of complexity in practical
terms will support this view.

There is a completely satisfactory interpretation of ®.,s via coding as
hinted at in Section 2. For more general complexity functions, we do not
know of a fully convincing interpretation. However, the formula (30) is a step
in the right direction. Firstly, complexity is written as a kind of average with
respect to the distribution P. The average is “entangled” as it involves the
pi’s as well as the ¢;’s. Secondly, the quantity being avaraged, i.e. the local
complexity, can with some good will be seen as a sensible one for which the f-
function represents difficulty or complexity associated to various situations,
measured relatively so that only differences occur.

We suggest to interpret ¢;(p|lq) as the complexity of an event, say B,
with probability p in case our reference probability attached to the event is
q. Consider first the extremal case when B is deterministic, i.e. p = 1. This
does not — so we imagine — give rise to any interaction (disturbance) and
the complexity is given by f(q) Then assume that p is (a bit) smaller than
1. This corresponds — again according to our imagination — to a surprise
factor p = % > 1. The reference value to be used should really be ¢ but
the surprise factor results in a disturbance to the level pg which results in a
smaller complexity, f(pq), than that associated with q. However, we have to
accept a penalty associated with the level of the surprise. Thus we have to

add —f (%)
It looks as if interference is due to events that have not occured as there
is no disturbance associated with deterministic events.
As a special case, consider the possibility that the local complexity is
independent of the surprise factor. Then ¢(pllq) = ¢(1||q) or
~q ~1 ~
FE) = (=) =1a). (39)
p p
If this is to hold generally we see, recalling also the normalization requirement

(21), that there is only one such possible generator, viz the classical one,

f(z)=Ini.
Thus, even though our considerations are preliminary and highly specu-
lative they do indicate the significance of the classical quantities. They also

14



point to what is missing in non-classical (non-extensive) modelling, viz a
substitute for the classical coding process. A deeper analysis of the measur-
ing process may be needed. Possibly — another speculation — this may work
better if one extend the quantities found to the quantum setting.

6 Non-extensive entropy via complexity

In statistical physics, the search for non-extensive entropy measures which
have reasonable structural properties in relation to mixtures (concavity) and
in relation to superposition, and otherwise satisfy the needs of statistical ther-
modynamics led Tsallis to suggest his by now well known q-entropy functions,
cf. [11] and the many papers which followed. These further papers can be
traced from the bibliographical file maintained by Tsallis, cf. [11]. Here, we
only point to Tsallis [22], Plastino and Plastino [23], Kaniadakis [12] and
Souza and Tsallis [24].

The g-entropy functions of Tsallis were first considered in mathematics
as we shall comment on in the final section, but it was not until Tsallis and
followers argued for the g-entropies as useful in the study of certain phenom-
ena of statistical physics that these entropy measures gained in popularity,
now predominantly within the physical community. More recently, Kaniada-
kis introduced another family of non-extensive entropies, called k-entropies,
cf. [12] and [13]. The motivation was to serve the needs of relativistic non-
extensive statistical physics.

We shall introduce a two-parameter family (P, g, 543, Da,g) of concrete
complexity triples which will contain both the entropy functions of Tsallis and
those of Kaniadakis. The family is defined via a family (f,3) of generators
and these, in turn, are defined via deformed logarithms For any pair (a, ()
of real numbers we define the («, 3)-deformed logarithm as the following
function on 0, ool:

8 _ o
In, gz = % if 5# «, (40)
Inggr =2z if f=a. (41)

When needed, these definitions are extended in the natural way, allowing
also for z = 0 or x = oo.

For « = ¢ — 1,3 = 0 we obtain the g-logarithms which are related to the
entropy functions introduced by Tsallis:

1 — gt

T (12)

In,z =
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and for « = —k, 3 = Kk we recognize the k-logarithms which are related to
the entropy functions introduced by Kaniadakis:

K —K

-z
2K
Geometrically, In, gz is the slope of the chord on the function y ~ z¥

corresponding to the two values v and 3 for the independent variable y, with

the understanding that the chorde is replaced by the tangent in case § = a.

We point out that In, 31 = 0 (normalization), In, g = Ing, (symmetry),

Ingiepre® = 2¢In, g (translation property),

(43)

ln{,i} xr =

1
In,g—=—-In_g_,2 (44)
x
(inversion) and, finally, that the following functional equation holds:

In, s(zy) = yﬁ Ing sz +2%In,py. (45)

For suitable values of the parameters a and 3, the generators we shall
consider are given by

fop(x) = wlnggz). (46)
According to standard conventions, it is understood that f, (0) = 0.

The Csiszar-duals are |

fap(@) =Inap —.
Let us clarify when the f, 3’s are genuine generators:

Lemma 2. Let Q) denote the set of pairs of real numbers («, 3) for which fa g
1s a generator according to the definition in Section 4. Then ) consists of all
points in | —1,0] x [0, 00] and in the symmetric set obtained by interchanging
o and (3.

Proof. For aw = 3, only fo ¢ is a generator. Assume that o < 3 and that f, 3
is a generator. As

xafl

foalw) = 5= (A4 98" — (14 a)a) 20, (47)

we must have —1 < a <0 < 3. As f,p is strictly convex, we must exclude
the case « = —1, # = 0. But also other cases with a = —1 are excluded as
we require that f is continuous at 0. ©

5The cases excluded in this way could be allowed, though. Then the entropy function
will not be continuous, even for a finite alphabet A. For o = —1, 3 = 1, for example, one
finds the entropy function S(P) = 1(np — 3 p?) where np is the number of non-zero p;’s
and divergence is closely related to the well known Pearson x2-divergence (cf. [25]). In
fact, for equivalent distributions, D(P||Q) = % S (pi — ¢:)*/qi, half the x2-divergence.
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The cases which we are left with, all define legitimate generators. We
have, therefore, identified all generators with a < (. The case a > [ is
handled by symmetry. O

The set Q is referred to as the natural domain. As pointed out in the
footnote, one could add certain parameter values ((—1,3) with 8 > 0 and
(o, —1) with a > 0) and obtain a larger domain, the extended domain, €2, cf.

Figure 2.

T2
X
K
Y T1 C T2
TIN\K %
Y

X

Figure 2. The extended domain € in the («, 3)-plane.

We now define (a, 3)-complezity, («, 3)-entropy and (o, 3)-redundancy
(or -divergence) for (a, 3) € 2 in the obvious way by substituting f, s for
f in the formulas (24)-(26). In terms of deformed logarithms we find the
expressions

Das(PIQ) = > pi(1nes 2~ Inapi) . (48)
icA 4
Sas(P) = — Zpi I, g pi s (49)
i€EA
bi
Dos(PllQ) = pilngg " (50)
icA v

The local and the contributed complexity are denoted in a similar way
(¢a,p and 1, ) and so are the associated games (74,3).

Let us discuss two special subfamilies which are known to be of signific-
ance for statistical physics.

First consider the cases obtained by choosing (a, 3) = (¢ —1,0). In order
to assure that (a, ) € Q, we assume that ¢, called the Tsallis indez, is
positive. This choice leads to the Tsallis family. For this family, we use the
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suffix “g” instead of “g—1,0" for all associated concepts (®,S,D, ¢, and

7). In particular, for ¢ # 1, we find the expressions:

D (Pl|Q) = T—q pi(l—gq ), (51)
€A
1 o1 .
Sq(P):mgpi(pi _1)—E(ZEAP¢—1>, (52)
D,(PIQ) = 1 (1= (") = (- 2 ) e

For ¢ = 1 we are back to the classical functions ®jas , Scias and Djas. In (52)
we recognize the celebrated Tsallis entropy functions. For ¢ = %, (53) gives
us the popular Hellinger divergence which is the only symmetric divergence
in the Tsallis family (it is even a squared metric, cf. LeCam [25]).

Another important family arises by choosing (o, §) = (—k, k) with 0 <
k < 1 (the value kK = 1 could also be allowed, though, see the previous
footnote). This gives the Kaniadakis family. Here, we use the suffix “{x}”
instead of “—k, k" for all associated concepts and quantities. In particular,
for k # 0, we find the expressions:

B (PIQ) = 5 3" pill —f) (pz +E). (54
Sty (P sz —pf) (55)
Do (P1Q) = Qi > (- gﬁ—z)“) . (56)

For k = 0 one obtains the classical quantities ®as, Scias and Degjas. In (55)
we recognize the family of entropy functions introduced by Kaniadakis.

In Figure 2 we have indicated by “T” respectively “K”, those parts of
the extended domain which define the Tsallis, respectively the Kaniadakis
family (“T'1” corresponds to ¢ < 1, “T2” to g > 1). The classical case is
obtained when we consider the point “C” . The points “X” give divergence
measures related to y2-divergence, cf. footnote 7. These points were added
to the natural domain when we formed the extended domain. Note that the
points “Y” on Figure 2 are truly forbidden’.

We shall now investigate which of the games v, g with («a, 5) € €2 give rise
to equilibrium for convex preparations. It lies nearby to apply the criterion
of Theorem 3. For that purpose we note that

"in physical terms, they correspond to situations of chaos and high temperatures.
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aa—;waﬂ(p”q) = ﬁpa_; ((1 +0)8p° (a7 =1) = (1 +a)a(q - 1)) . (57)

The “concave/convex” behaviour (first concave, then convex) of the func-
tions ¥ 5(+]|q), considered on all of [0, 0o], is of significance (cf. indications
in the final section). Here we focus on the special cases when the functions
(keeping av and f3 fixed, but varying ¢) are either concave or convex. These
cases are closely related to the Tsallis family. Indeed, the functions in ques-
tion are concave on all of [0, 0o if and only if we are in the “T1”-case (see
Figure 2) and they are convex in [0, oo] if and only if we are in the “T2”-case®.

We can now prove the following main result about the Tsallis family:

Theorem 4. (Equilibrium under Tsallis entropy). If 0 < ¢ < 1, then v, =
Y4(S1) is in equilibrium and the bi-optimal distribution exists for any compact
and convex preparation. This does not hold for any other value of q.

Proof. The first part follows by the discussion above.

To prove the second half, assume that ¢ > 1. Consider the case of a finite
alphabet A with n elements, say, and the preparation S; of all distributions
on A. As S, is strictly concave (Theorem 3) a symmetry argument shows
that the uniform distribution, call it U, is the unique MaxEnt-distribution,

hence )
max __ o —q+1
Sq _Sq(U)_q——l(l_nq )
In order to calculate R;mn, first note that by symmetry and convexity of the
risk function (cf. Theorem 3), it follows that Rflnin = R,(U). The analysis

preceeding the proof shows that &, is convex in the first variable and it
follows that ®,(P||U) achieves its maximal value for an extreme distribution
P, i.e. for a deterministic distribution. This shows that

Ry(U) = ——(1— )

min

I—gq
with ¢umin the smallest point probability in (). It follows that
min 1 —1
q — qj('nq — 1) .
Thus
1

min max __ —1 —q+1
Ry =S = ——(n?" 4071 —2)

qg—1

8if we consider the extended domain, convexity also holds for the added parameter
values.
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which is positive (unless n = 1), thus violating the condition of equilibrium.
O

Without going into details we remark that arguing a bit like in the above
proof, one finds that for («, 5) € Q with o + 3 > 0, the game 7, 3 need not
be in equilibrium for simple convex preparations.

7 Discussion, conclusions

The paper is conceptual in nature. Complexity is promoted as the key
concept. Based on this notion, one can define entropy as minimal complexity
and redundancy (divergence) as actual minus minimal complexity. Games
based on complexity allow a discussion of equilibrium in models used in stat-
istical thermodynamics. It is shown that the entropy measures of Tsallis and
Kaniadakis can be discussed from this point of view by embedding them in
one and the same two-parameter family of entropy functions (and associated
complexity measures).

A preliminary interpretation of complexity functions via the introduced
local complexity is provided.

Apparently, Tsallis entropy (and associated objects) with parameter g <
1 is better behaved from the game theoretical point of view than Tsallis
entropy with parameter > 1 or than Kaniadakis entropy. However, this
conclusion is not all that obvious. Fact is that the game theoretical notion
of equilibrium which we have applied works with “worst possible scenarios” .
This points to the conclusion that when the principle of game theoretical
equilibrium (GTE) applies, it is appropriate to infer that also equilibrium in
a physical sense is ensured. However, if GTE does not apply in the form used
here, this may be because weaker concepts of game theoretical equilibrium
are more appropriate. As one such form we propose to look closer into the
condition that the bi-optimal strategy exists. Appropriate interpretations of
the possible discrepancy between R™" and S™*, may then point to situations
where physical equilibrium is not excluded. Let us illustrate this point of view
without going into too many details. As example we take the Kaniadakis
family.

EXAMPLE. Let A be finite with n > 2 elements, let 0 < x < 1 and
consider the preparation of all distributions over A. Denote by U, a typical
uniform distribution over v elements in A. By previous results, U, is the
bi-optimal strategy and S{Y* = Ingy n. Further,

min l—n™" —K K, K
1 = Ry (Un) = 7supz (pll +pi T ) .

2K
P iea
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The function appearing in the summation is of the concave/convex type with
inflection point £ given by

¢ = 1 <1 — H) 2
Vn\1+k/
We can then apply a technical lemma, the “lemma of replacement” , cf. The-
orem III.1 of [26], and conclude that the suppremum above is attained for a

mixture (1 — 2)U; + aU, of a deterministic distribution and U,,. It is then
easy to see that

T > Ry (Ur) = Ryey(Un) = SEIS

The system is not in equilibrium in our strict sense. However, the players
can agree on one and the same choice of distribution, the uniform distribu-
tion. And even if Player II knew beforehand that Player I had chosen this
distribution, he would not feel inclined to change his strategy. Not so for
Player I. Had Player I known that Player II had chosen U, as his strategy,
Player I would have done well in changing the strategy by considering an
appropriate mixture of U, and a deterministic distribution.

The above points to an essential asymmetry among the players. Really,
this is only natural. We expect the laws of nature to be fixed once and for all,
hence Player I really has no intention or possibility to change his strategy,
whereas Player II, the physicist, should use all means available to improve
the performance, i.e. to decrease the complexity.

The example also points to other sensible variations of the theme of equi-
librium. Fact is that a mixture of a deterministic distribution and U,, turned
up. But which deterministic distribution? As symmetry appears to place
all n deterministic distributions on an equal footing, a sensible principle of
symmetry would lead to U, as the natural choice of Player I after all, in spite
of a potential for Player I to improve the performance.

Speculative comments as in the example above or as in Section 5 — a
mathematicians attempt to think in physical terms — may guide further re-
search. But also, several purely mathematical questions are open to further
investigation. This concerns questions about strict convexity of the risk func-
tion, about extensions of the Pythagorean inequalities (16) and (17) when
only weaker forms of equilibrium hold, and so on. It would also be appro-
priate to illuminate the choice of model in Section 4. It looks so natural,
but with a given entropy function, is it really the best way to associate a
measure of complexity as in (24)? A number of topological questions could
also be looked into, e.g. variation of the method of observation, decribed by
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a point (o, 3) € Q, e.g. a move towards “chaos” , the forbiddeen point “Y”
on Figure 2.

Lastly, some comments on the complexity-, entropy-, and divergence-
measures here considered. As will be seen, the notion of Csiszar f-divergences
plays an important role. These divergence measures were introduced, inde-
pendently, by Csiszar, [27], and by Ali and Silvey, [28]. The literature on
specific divergence measures is rich and we do not claim originality regard-
ing these as such. The novelty here lies in the focus on complexity and the
related games and in the possibility to choose suitable families of relevance
to statistical physics.

The more concrete two-parameter family (49) has been considered in the
mathematical literature by Mittal [29] and by Sharma and Taneja [30] from
the point of view of functional equations of relevance to information theory.
More relevant here is the work by Borges and Roditi [31] which looks at
these entropies from a physical point of view and also notes the key problem
of proper interpretations — but with only very sporadic comments on this
important issue. These authors, in contrast to the previous ones, also make
use of the deformed logarithms®.

Regarding Tsallis entropy, they were introduced to the mathematical
readership by Havrda and Charvat, [32], twenty years before Tsallis, but
were not met with great enthusiasm!®. However, a number of papers did
appear, in particular dealing with axiomatics, cf. Forte and Ng [33] (other
references can be traced via the rewiew of [32] on MathSciNet). Though the
“pre-Tsallis” literature on these issues did not really catch on, one should
also note the paper by van der Lubbe [34] as this author addressed the prob-
lem of coding, though in a rather artificial way. Anyhow, it is an important
open problem as we have put much emphasis on.
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