Entropy inequalities

Points in Δ lie above the lines connecting neighbouring points Q_k . Thus:

$$H(P) \ge \alpha_k - \beta_k \mathsf{IC}(P)$$

with

$$\alpha_k = \ln k + (k+1) \ln \left(1 + \frac{1}{k}\right),$$

$$\beta_k = k(k+1) \ln \left(1 + \frac{1}{k}\right).$$

Proof. Fix P and $k \geq 1$. Define $f:[0,1] \to \mathbb{R}$ by $f(x) = -\ln x + \beta_k x^2 - \alpha_k x.$

Then f is a concave/convex function, so what we have to check is that $F(P) \geq 0$. It suffices to prove this for a mixture of neighbouring uniform distributions. ... easy!